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ARTICLE INFO ABSTRACT
Keywords: The control of modern buildings is a complex multi-loop problem due to the integration of renewable energy
Data-driven building control generation, storage devices, and electric vehicles (EVs). Additionally, it is a complex multi-criteria problem due
Deep reinforcement learning to the need to optimize overall energy use while satisfying users’ comfort. Both conventional rule-based (RB)

Room temperature control
Thermal comfort

EV charging

Recurrent neural networks

controllers, which are difficult to apply in multi-loop settings, and advanced model-based controllers, which
require an accurate building model, cannot fulfil the requirements of the building automation industry to solve
this problem optimally at low development and commissioning costs. This work presents a fully data-driven
pipeline to obtain an optimal control policy from historical building and weather data, thus avoiding the need
for complex physics-based modelling. We demonstrate the potential of this method by jointly controlling a
room temperature and an EV to minimize the cost of electricity while retaining the comfort of the occupants.
We model the room temperature with a recurrent neural network and use it as a simulation environment
to learn a deep reinforcement learning (DRL) control policy. It achieves on average 17% energy savings and
19% better comfort satisfaction than a standard RB room temperature controller. When a bidirectional EV is
connected additionally and a two-tariff electricity pricing is applied, it successfully leverages the battery and
decreases the overall cost of electricity. Finally, we deployed it on a real building, where it achieved up to
30% energy savings while maintaining similar comfort levels compared to a conventional RB room temperature
controller.
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1. Introduction

Buildings account for one-third of global primary energy consump-
tion and one-quarter of greenhouse gas (GHG) emissions. Consequently,
they have been identified as a critical element to enable climate change
mitigation [1]. When looking at the energy use during a building’s life-
cycle, about 80% of it stems from building operation [2]. However,
over the last two decades, buildings have become much more com-
plex to operate optimally due to the integration of renewable energy
generation, transformation, and storage devices [3]. Also, due to the
electrification of the mobility sector, electric vehicle (EV) chargers
are installed in buildings, thus further increasing the control com-
plexity [4]. Today, multiple energy-flows are possible within a single
building, which gives rise to the need for system-wide optimal energy
management. At the same time, the users’ needs for comfort, such as
indoor thermal and visual comfort, and having enough energy in the
EV battery for the next trip, shall be satisfied.

This multi-loop, multi-criteria control problem has raised specific
needs within the building automation (BA) industry related to deliver-
ing optimal performance at low development and commissioning costs.
In the following text, we first provide an overview of the BA industry
requirements for an optimal controller for modern buildings. Then, we
list the limitations of the current widespread rule-based (RB) controllers
and the advanced, state-of-the-art model-based controllers, of which
Model Predictive Control (MPC) is the most famous representative.
We describe why both control methods fail to satisfy the current BA
industry requirements. Following that, we motivate the potential of
deep reinforcement learning (DRL) algorithms for the BA industry. We
briefly review the current work on DRL applied to room tempera-
ture and EV charging control, and we close the Introduction with an
overview of this work and a summary of main contributions.

1.1. Current BA industry requirements

BA requirement I — Multi-loop control policy: Compared to the situ-
ation before the 2000s, renewable energy generation, transformation,
and storage devices have now been vastly integrated into new or
retrofitted buildings allowing for more energy-efficient and cleaner
operations, in terms of GHG and, in particular, CO, emissions [5,6].
A typical set of these devices could include photovoltaic (PV) panels,
battery storage, a heat pump, and thermal storage. Hence, the number
of possible energy flows and the number of decision variables have
increased. For example, electricity could be obtained either from the
grid, a stationary battery, or PV panels. Similarly, when and which
electricity source to use to charge an EV depends on several factors,
such as weather prediction and price of the electricity. Therefore,
control of a modern building is a multi-input-multi-output (MIMO),
i.e., multi-loop, energy management problem, which requires finding
a control policy for several controlled variables simultaneously while
considering several external factors that influence it.

BA requirement II — Building-EV coupling: The building-mobility
sector coupling allows for more efficient control solutions than when
these two sectors are addressed separately [7]. For example, when the
electricity price is low, the building management system (BMS) could
decide to heat the room, charge the EV, or store it in a stationary
battery for later use. On the other side, this coupling also brings chal-
lenges. The charging of EVs causes additional energy consumption for a
building, increasing its total — and possibly peak — energy consumption.
Furthermore, most EV chargers start charging with full power as soon
as an EV is connected. Therefore, if multiple EVs are charged at the
same time in a neighbourhood, the aggregated demand can be very
high, potentially causing energy dispatching and grid stability issues.

A particularly interesting symbiosis between a building and an EV
arises when the latter is bidirectional, i.e., the EV battery can be
charged and discharged. In that case, the stored energy could be used
as a source of electricity for a building [8]. In this case, the EV battery
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expands the capacity of the stationary battery, if one is installed. The
difference with the stationary battery lies in its availability — the
battery of a bidirectional EV is only available when the EV is connected
to the building. Therefore, a BMS can use the battery of a bidirectional
EV for energy management when the EV is connected. However, a BMS
shall also ensure to charge the EV battery to a satisfactory level before
the next trip.

BA requirement III — Occupants comfort: In developed countries,
people spend on average 80%-90% of their time indoors. Therefore,
the influence of building systems on occupants’ well-being is deemed
critical [9]. Consequently, occupants put more and more stringent re-
quirements for comfort to facility managers, which is passed indirectly
to the BA industry. Therefore, the value of a building controller is not
only measured in terms of saved energy but also how comfortable the
indoor environment is to the occupants.

BA requirement IV — Transferability: Buildings differ from each
other in terms of construction properties (e.g. floor layout, geometry,
materials used, age), installed building services (e.g. heating, ventilation,
and air-conditioning (HVAC) systems), outside conditions (climatic re-
gion, orientation), and occupancy profiles. Therefore, an ideal building
controller shall be able to provide optimal performance not only for
the building it is designed for, but also for other similar buildings. If
the engineering effort to apply such a controller to a similar building
is small or negligible in terms of expert knowledge and time required,
then the controller is considered transferable.

BA requirement V - Adaptability and continuous commissioning: The
dynamics of a building can change significantly during its lifetime for
several reasons, such as a retrofit, a change in the occupancy profile,
or ageing. An ideal building control shall detect a change in the build-
ing operation performance, e.g. if a building starts to consume more
energy than it used to, and readjust its parameters, i.e. adapt to the
new situation. This capability of a controller is also called continuous
commissioning [10,11].

Overall, the control of a modern building is a complex MIMO control
problem with the objective to provide the desired thermal comfort
to the occupants and simultaneously ensure the EV is charged to a
satisfactory level for the next trip, all while minimizing the overall
energy consumption to reduce the costs.

1.2. Limitations of RB controllers

Traditionally, more than 90% of industrial BA controllers are RB,
such as bang-bang or proportional-integral-derivative (PID) controllers.
They have fixed predefined rules, simple architectures with straight-
forward implementation, and several parameters with clear guidance
on how to tune them. Even though RB controllers (RBCs) are widely
adopted in the BA industry, there are several limitations on their use
for achieving optimal control of modern buildings.

RBCs limitation I - Difficulty to achieve system-wide optimal perfor-
mance: RBCs are suitable for single output control loops, whether
single-input-single-output (SISO) or multi-input-single-output (MISO).
Therefore, applying these single-output controllers to solve a multi-
output (MIMO) control problem is a challenging and often infeasible
task in practice as MIMO systems typically have dependencies between
their sub-systems that cannot be neglected [10,12,13]. A MIMO system
cannot be typically addressed as a collection of individual SISO/MISO
systems [14]. For example, the temperature of the thermal storage
determines the available heating capacity over the next couple of
hours, while the output heating power of a heat pump connected to
the thermal storage determines at what pace the temperature of the
storage could be increased. A similar analogy could be drawn for the
EV battery and its charging and discharging power. Indeed, optimal
control of MIMO systems requires applying advanced MIMO control
techniques [14].

RBCs limitation II — Absence of optimality guarantees: Even for single-
output problems, manual tuning cannot provide optimality guarantees:
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control experts could tune the RBC, in particular PID, to provide
close-to-optimal regulation performance by looking at the overshoot,
rise time, stability margins, and disturbance rejection, but there is
no mathematical optimization involved in the tuning of the parame-
ters. Therefore, most of the RB controlled loops in buildings perform
sub-optimally [10,12,13].

RBCs limitation III — Difficulty to include prediction rules: RBCs do
not typically involve any prediction rule. A prediction rule could be de-
fined, for example, for pre-scheduled dynamic comfort bounds, which
change between narrow, e.g. [22 °C, 24 °C], and wider, e.g. [20 °C,
26 °C] constraints. Such dynamic bounds are typical for office build-
ings, where wider comfort bounds are allowed outside of office hours
to save energy. However, as an RBC would react to the change of
the bounds only at the time of their change, such control will violate
comfort. On the other hand, a predictive controller would pre-heat the
room for some time before the narrow bounds need to be reached.
Defining and tuning the prediction rule in an RBC would require
experimenting with a building and determining the time dominant
constant of a particular room so that the pre-heating interval could
be defined precisely. However, this interval depends on the day of the
year, the state of the room, i.e., accumulated heat in walls, and weather
prediction. Hence, determining it precisely for all combinations of these
parameters over the year is a challenging task [12].

RBCs limitation IV — Absence of self-adaptation: RBCs need to be
re-tuned after a change in building dynamics to regain the previous
performance, which requires expert knowledge and incurs costs [10].
(See BA requirement V')

Overall, RBCs fail to satisfy all the needs of the BA industry for an
efficient way of obtaining an optimal controller for a modern building
— they can only provide sub-optimal performance and require expert
knowledge during commissioning and maintenance.

1.3. Limitations of MPC controllers

Advanced controllers, on the other hand, in their classical and non-
adaptive form, can overcome the first three limitations of RBCs. The
most well-known representative of this type of controllers is MPC,
which can calculate optimal MIMO control signals for several steps
ahead while respecting the state, input, and/or output constraints.
However, the performance of an MPC controller strongly depends on
the quality of the underlying building model used to develop this
controller. A building model of a poor quality, which does not represent
well the true building dynamics, e.g. a simple grey-box model with
some generic parameters, will lead to unacceptable control perfor-
mance [15]. On the other hand, obtaining a high-quality building
model is a complex and time-consuming task requiring expert knowl-
edge. Therefore, the costs of developing and implementing an MPC
controller are justifiable only for well-defined systems, where the same
controller could be used on many instances of the same system. How-
ever, as buildings differ substantially from each other, the costs of
developing and deploying MPC controllers outweighs the cost benefits,
and, therefore, classical versions of MPC controllers have not yet been
widely adopted in the BA industry [15-17].

Over time, stochastic [18], robust [19], and adaptive [20] MPC
controllers have been developed to address or circumvent the need
for a high-quality building model. Even though some directions are
promising, in particular those of adaptive MPC controllers with online
system identification [20], they have only been applied to single-zone
temperature control problems and validated in simulation. Validation
on real buildings and solving of more complex building problems is
needed for these methods to be accepted by the BA industry.
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1.4. State-of-the-art data-driven RB and MPC controllers

In recent years, due to the increased availability of stored sensor
and actuator data in buildings, researchers have started exploiting the
information contained in this past data to develop improved building
controllers. Two trends can be observed: first, using data to improve
classical control strategies, such as RB and MPC, and second, applying
pure data-driven methods from the machine learning (ML) domain and
adapting them to building control.

The first direction, data-driven autotuning of RBCs, even though
interesting from the industry perspective due to potential direct appli-
cability, has not yet been widely addressed in the literature — only
some recent preliminary results exist [21,22].

Considerably more work has been published in the domain of
learning-based MPC (LB-MPC) recently [23,24]. The most widely spread
approach is to model the building dynamics with a neural network (NN)
and use it as a model in the MPC framework. However, as NNs are
non-linear models, the main challenge is to use them in a linear or
convex fashion so that efficient solvers could be applied. One option is
to design a NN that can be used within MPC by constraining the output
of the model to be convex with respect to the control inputs [25].
Besides NNs, Jain et al. [16] uses Gaussian processes to learn a model,
which is then used within MPC. Another approach uses random forests
for modelling [26]. Recently, it has also been validated experimentally,
and preliminary results are promising [27]. Even though initial results
on data-driven MPC are promising, what is missing is the discussion on
the scalability and transferability of these approaches across different
buildings (see BA requirement IV).

1.5. Potential of DRL for building control

In terms of pure data-driven ML methods, reinforcement learn-
ing (RL), and in particular DRL, have emerged in recent years as
approaches that can fulfil all the requirements for modern building
control. Even though RL was established in the 1960s [28], complex
problems remained out of reach until recently, when people started
using NNs within the RL framework. Together with the increased
availability of large data sets and extensive computational power on
demand, this led to the popularization of DRL methods and the demon-
stration of successful solutions for complex real-world problems [29,
30]. Mnih et al. showed that DRL algorithms could achieve human-level
or even super-human level intelligence in playing Atari games [31]
and the game of Go [32]. Since then, other problems have been
solved at human or super-human levels in image recognition [29],
natural language processing [33], and medicine [34]. Motivated by
these achievements in DL and DRL, building and control engineers
started applying these methods to building control [35-37]. There are
several reasons why DRL is a promising framework to fulfil all the BA
industry requirements for control of modern buildings.

DRL potential I: DRL algorithms operating on a continuous state
space, such as deep deterministic policy gradient (DDPG) [38], can
learn a continuous control policy to maximize a given reward function
through interactions with the environment. As DDPG requires many
interactions with the building, this is not feasible in practice, and
people have to rely on models to learn the optimal policy. There are
no particular requirements on the underlying model, such as convexity
condition, as needed in MPC. As a building model, one could use any
kernel-type model. NNs are particularly popular as they can capture the
non-linear dynamics of the building [39,40]. After fitting the model
to the past data, it is used as the simulation environment in the RL
framework.

DRL potential II: There are no restrictions on how the reward func-
tion could be defined. Not only a single criterion but also multi-criteria
reward functions and trading off requirements could be used. Hence,
complex MIMO control policies could be obtained at once (see BA
requirements I, II, and III).
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Fig. 1. Overview of the room model, bidirectional EV model, and joint deep reinforcement learning controller.

DRL potential III: Once the method is working for a certain room
or building, it could also be applied to other rooms or buildings. The
main part of the algorithm could be reused directly, thus demonstrating
the transferability of the method (see BA requirement IV). This problem
is known as transfer learning, and it has been already considerably
addressed in general reinforcement learning [41]. However, only lim-
ited prior work was published recently on the transferability of DRL
algorithms for building control [42].

DRL potential IV: Finally, if updated with the newly received mea-
surement data, the DRL algorithm could be updated online to adapt to
the new building dynamics, thus fulfilling the BA requirement V [43].

1.6. State-of-the-art DRL-based room temperature and EV charging control

Most previous works on RL and DRL consider either controlling the
building energy system, e.g. [27,44-49], or EV charging, e.g. [50-55].
There are a few works that control both the charging of an EV and a
building energy system, e.g. [56-59]. In [56] for example, a building
equipped with PV, an EV and an energy storage system is considered
as a smart grid system, but no temperature control is addressed. The
authors of [57] minimize the costs of electricity through improved
operations of an HVAC system, an EV, a washing machine and a
dryer. In [58,59], one-day ahead planning is used for building control,
including an EV supporting bidirectional charging.

1.7. Novelty and contribution of this work

In this work, we describe a fully black-box, data-driven, DRL-based
method for the joint control of a room temperature and bidirectional
EV charging (see Fig. 1). The main contributions of this work are the
following.

First of all, the proposed data-driven pipeline requires only histori-
cal data to learn an optimal building control policy, and thus avoids
the need for complex physics-based modelling required to develop
advanced, model-based controllers (see Section 1.3) or expensive fine-
tuning of the conventional, rule-based controller (see Section 1.2). As
a black-box simulation environment that does not require any physics-
based prior knowledge to train the policy, we use a Recurrent Neural
Network (RNNs) model of the room thermal dynamics and a linear
model of the EV battery. We applied Deep Deterministic Policy Gra-
dient, which is a DRL algorithm in the continuous domain, to learn the
control policy. Hence, this pipeline is a cost-effective way to obtain an
optimal MIMO building control policy by only using available historical
data of a building.

Secondly, we use the historical data from a real building, the
DFAB HOUSE at Empa Duebendorf in Switzerland to obtain a close-
to-reality simulation environment. We analyse the simulation results
of the DRL policy in a heating season in terms of energy savings and
occupant comfort and showed that it delivers better performance than
a standard industrial RB controller. Furthermore, we considered an
extended problem when bidirectional EV is connected to the building
and the electricity price has two tariffs. We analysed the simulation
results of the simultaneous control of room temperature and bidirec-
tional EV (dis-)charging in terms of costs savings while minimizing
the comfort violations for the desired comfort bounds and providing
enough energy to the EV battery for the next trip. The obtained DRL-
based control policy showed better performance compared with two
standard industrial RB controllers — one for temperature regulation
and another for EV (dis-)charging.

Thirdly, we validated experimentally the learnt DRL policy for
room temperature control during the heating season. The DRL policy
was directly transferred from simulation onto the real building, the
DFAB HOUSE, and it was successfully regulating the temperature from
the initial time of deployment, achieving up to 30% energy savings
and better comfort satisfaction compared to a conventional, rule-based
controller.

Fourthly, we discuss throughout the paper the potential of this
approach to satisfy all the BA Requirements (I-V).

1.8. Structure

The paper is structured as follows: In Section 2, the case study used
to showcase the proposed data-driven building control methodology
and the data collection process are described. In Section 3, we present
the methods used to model the room temperature and the SoC of
the bidirectional EV. Further, we describe the definition of the RL
environment and the reward functions for two different problems: (i)
room temperature control and (ii) joint control of the room temperature
and bidirectional EV charging. The simulation and experimental results
are illustrated in Section 4. Finally, Section 5 provides an overview
and concluding remarks of this work, as well as directions for future
research.

2. Case study and data collection
The DFAB HOUSE, a three-storey residential building of the Empa

demonstrator NEST in Duebendorf in Switzerland [61] (Fig. 2). NEST
[62] (Fig. 2c) is a vertically integrated neighbourhood and a living lab.
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L
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Fig. 2. DFAB HOUSE. (a) The 2nd floor layout. The room temperature controller was
developed for the room 471, on the bottom right. The locations of thermostats are
marked with a square containing a “T”. (b) External view. (¢) NEST demonstration
building at Empa, Duebendorf, Switzerland.

Source: Credits: R. Keller [60].
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Fig. 3. Flow diagram of the methodology.

The DFAB HOUSE is operational since March 2019 and the correspond-
ing sensor and actuator data is collected at 1 min resolution. We chose
one bedroom (room 471, Fig. 2a) to apply our control algorithm. In this
room, we can control the opening and closing of the valve that regulates
the water flow into the floor heating system. As a bidirectional EV was

not available at the time of this work, we emulated it based on the
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past charging/discharging data of the stationary battery at NEST. For
information on data preparation see Appendix D.

3. Methodology

An overview of the methodology is presented in the flow diagram
of Fig. 3. Previously collected building and weather data, stored in a
database, is firstly used to train the RNN room temperature model. This
model serves as environment to learn the DRL policy offline, which
is then copied to the building controller for real-time control. The
communication with the building is done through an OPC UA client.
In the following sections, we describe the control problem and present
the data-driven pipeline used to get control policies from past data.

3.1. The control problem and model overview

The overview of the system to be controlled is illustrated in Fig. 1. It
consists of two parts: the room temperature model and the EV battery
charging/discharging model. These two models are mainly indepen-
dent, as they serve two different needs of the building occupants,
namely to provide indoor comfort and enough battery capacity for the
next trip, respectively. They are, however, linked through the overall
building electricity demand. If the EV is being charged, the used energy
indeed represents additional building energy demand. If the electric
energy for heating/cooling is sourced from the bidirectional EV battery
instead from the grid, then the overall building demand is reduced.

We can therefore formulate the control problem as: given the energy
stored in the bidirectional EV battery, what would be the optimal
room temperature control (heating or cooling) and optimal EV (dis-
)charging strategy such that the overall costs for energy is minimized
while satisfying the indoor comfort bounds and the minimum SoC of
the EV at the moment of leaving. We assume that the EV leaves at 7:00
with a minimum of 60% SoC and returns at 17:00 with 30% SoC. The
energy price is assumed to take a standard two-stage tariff profile, with
a high price between 8:00 and 20:00 and a low price outside of this
interval.

3.2. Data-driven modelling of the room temperature and bidirectional EV
charging

In this section, the model of the room temperature and the weather
are described. Then, the two models are combined to obtain the final
room temperature model, and we provide details on RNN architecture,
model training, and hyperparameter tuning. Finally, we describe the
bidirectional EV charging/discharging model.

3.2.1. Room temperature model

We consider the temperature control of a single room (a single zone,
i.e. room 471) at the DFAB HOUSE. The room temperature r, depends
on the outside temperature o,, solar irradiance i,, in-/out-flowing water
temperature of the pipes A", A%, and the valve position u, (see Fig. 1).
Here, the index ¢ denotes the time of the measurement. Since we will
be using the room temperature model as a simulation environment
for the RL agent, we need a model that predicts all uncontrollable
(independent) variables. These are all of the above variables apart from
the state of the valve u,.

One way to solve the modelling task would be to fit the data with a
multivariate time-series prediction model in an end-to-end fashion. This
would allow predicting the evolution of all the variables based on their
past values. Since the data collection at the DFAB HOUSE only started
in March 2019, there was less than a year of operation and available
historical data at the time of this work. To make the most out of this
limited amount of data, we took a few more considerations into account
that led us to partition the room model into different sub-models. They
are discussed in the subsequent sections.
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Remark 1. The control framework described here could also be applied
to different types of heating and cooling systems, where heating and
cooling is provided by two different devices, e.g. an electric heater and
an AC unit.

To get a smooth time variable, we transform the linear time of the
day with a sine and a cosine function, #* = sin(?), 1 = cos(t), with ¢
linearly going from 0 to 2z during each day. Note that one could also
define the time in a linear fashion, numbering the time intervals during
each day. However, this induces jumps at midnight from the last to the
first interval. Introducing the smooth sine and cosine time variables
allows us to transfer the idea that these intervals are close to each other
to the model.

3.2.2. Weather model

While there is a correlation between, e.g. the room temperature
and outside temperature, the influence of the room temperature on the
weather is non-existent. Therefore, to avoid that output of the weather
model depends on the room state variables, we train an individual
model of the weather. Such a model could be useful if no weather
prediction data is available on site, but only past observed weather
data could be taken as inputs. This model predicts the weather variables
(outside temperature and irradiance) based on the past values of those
variables and the time of day. Note that the weather model takes the n
previous values of the input series into account to produce the output.

The temperatures of the water entering and leaving the cool-
ing/heating system over a few weeks in summer are shown in Fig. 4. It
can be seen that the water temperature coming from the heat pump is
kept almost constant, but not always at the same level, which depends
on the average outside temperature over a day. Since we are only
interested in predictions with a rather short the horizon of one day at
most, we decided to use a constant predictor for the water temperature
variables. While this is a valid assumption for the inflow temperature,
the outflow temperature is much more dynamic. However, we retained
this assumption for the sake of the simplicity of this model.

3.2.3. Final room temperature model

Putting everything together, we can now build the full model of the
room by combining the previously defined sub-models: the weather
model, the water temperature model, and the room temperature pre-
diction model. As mentioned previously, this model takes into account
the n previous values of the input series 5;°"",. and the same number
of control inputs u,_,,,.,,; to compute the output. In this paper we use

RNNs for this purpose, as explained in the next section.

3.2.4. RNN model

RNNs are commonly used in time series predictions to capture its
time dependencies and tendencies [63]. Fig. 5 illustrates how a single
step prediction is made and this scheme is naturally expanded to multi-
step predictions. In that setting, part of the input is unknown and
relies on the previous outputs of the model. It is then merged together
with the known input part and fed to the RNN to build the next
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Fig. 5. Simplified model structure for the case of predictions based on three previous
inputs (n = 3). On the left, the model uses the provided inputs to make a prediction
O,,1- On the right, it extracts the true output O,,, from the data, which can then be
compared to the prediction to compute the loss and train the network.

prediction. Repeating this procedure allows one to get predictions for
any number of steps for weather and room temperature models. Note
that in practice, we train the actual recurrent model to only predict the
difference in the prediction state, not the absolute state.

To optimize the loss, we use the ADAM [64] optimizer with a base
learning rate » to minimize the mean-square-error (MSE) between the
predictions and the ground truth. The training of the model lasted
for Ry episodes (see Table 2). We also monitor the losses on the
training and on the validation set to get an idea about the amount of
overfitting. The data used to fit the model is shuffled to avoid seasonal
dependencies between the data in consecutive batches.

The hyperparameters that are used to tune the recurrent models are
listed in Table 2. There are a few more parameters that we choose
heuristically, for example, a number of neurons in each recurrent
layer. To compare the performance of the models trained with differ-
ent hyperparameters, we use the following objective. We predict 6h
(i.e. 24 timesteps of 15 min) into the future and take MSE between
this prediction and the ground truth. For this process the validation
data is used. The main idea is to find a model that generalizes well
over multiple consecutive predictions and over unseen data. For the
actual optimization, a Tree Parzen Estimator [65] is used, which is
implemented in the Python library hyperopt [66].

3.2.5. Bidirectional EV charging/discharging model

We use a stationary battery available at NEST in order to emulate
the battery of a bidirectional EV. This battery has a maximum capacity
of 96kWh at a SoC of 100%. However, we will restrict it to lie
within the interval [20.0%, 80.0%] for safety reasons (the details on the
safety are discussed later in Section 3.3.2). Furthermore, we limit the
charge and discharge rate to +100kW. Both stated maximum capacity
and maximum (dis-)charging rate are also found in the following EV
models: Tesla Models S and X [67], BMW i3 [68], and Mercedes-Benz
EQC [69].

The change in SoC is modelled to be proportional to the active
power applied, but the proportionality factor can be different for
charging and discharging. We also allow for a constant discharging rate
when the battery is not used, i.e. if the applied active power is zero, the
battery slowly decreases its SoC due to losses. Let s € [20.0%, 80.0%]
be the SoC at time ¢, let p, € [-100kW, 100kW] be the average active
power from time 7 — 1 to time r. Finally let As)* := s} — s> be the
change in SoC at time ¢ compared to time 7 — 1. Therefore, the change
in SoC, or charging/discharging of the EV battery, can be defined as:

AP (py) ~ A3 (p,) = ag + a; p, + @ max{0, p,} €]
where a;,i =0, 1,2 are the variable coefficients that can be fitted to the
data using least squares. Finally, we can define the battery model as:

abat .__ _bat abat
stj—l T Sra +Asril(pf+1) (©))

It models how the SoC evolves when an active power of p,,; is applied.

We consider the model to be charging if the active power is positive
and discharging otherwise.
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3.3. RL environment

In RL, an agent is learning a control policy through interaction with
an environment. Letting s, and a, be the state and the action at time
t, respectively, the environment maps them into the new state and the
reward R;: (s;,a,) = (5,41, R,). In this work, we trained our agents in an
episodic framework, with a fixed episode length of /,, := 48. With one
timestep corresponding to 15 min, this corresponds to an episode length
of 12h.

In the following sections, we define the environment of our partic-
ular problem using the previously described room temperature and EV
(dis-)charging models.

3.3.1. Room temperature environment

To describe the evolution of the room temperature according to
the actions taken by the agent, we use the room temperature model
defined in Section 3.2.1. To initialize the environment in each episode,
we sample an initial condition from the historical data in the database
and we then use the model to simulate the behaviour of the room under
the agent’s policy for the length of the episode. This episodic framework
allows us to control the errors of the model, since we know how well it
performs. Further, to incorporate stochasticity, a disturbance term d(r)
is added to the output of the deterministic model. The latter is modelled
by an auto-regressive (AR) process that was fitted based on the residuals
of the NN model. This ensures that the disturbance is realistic, i.e. as
seen in the past data.

The reward of the agent controlling the room temperature is defined
as follows:

Energy usage

/———_/\——.—\
FOOM [ (FOOM FOOMY «_ __ room | pin _ pout| _ . .
O (s, ay =—a [h" = A —a
_ _room _ _ .
=—¢ a-¢

Comfort violation

—~
r e (r,) 3)

where we defined e/ := g/°".|hi" — h%| and c”*" denotes the penalty
function for room temperatures that are outside the comfort bounds.
The parameter « > 0 determines the weight of the temperature bound
violation compared to the energy usage. The penalty function ¢*" is

defined as follows:

0 rminsrtﬁrmax

pen —

) = ey = Tt > Ponax “4)
Tt = Fmin - Tt <Tmin

Note that this function is always positive and increases linearly with
r, = +oo as soon as the temperature gets out of the defined comfort
bound [7 ;s Fpmax )

3.3.2. EV battery environment

To build the RL environment for the EV battery, the battery model
described in Section 3.2.5 is used. The SoC of the battery at a given time
t, sf"”, is used as state and the active power af"” = p,41 as action of the
environment. Note that the subscripts do not match since we defined
P, as the active power applied from 7 to 7 + 1, but this is also at time
t.

Besides restricting the active power, we also want to restrict the SoC
of the battery to lie within a certain range. Since the battery model
learnt from the data is piece-wise linear and strictly increasing, it can
be inverted and used to build a fallback controller. We implemented
two functions in the fallback controller. First, the fallback controller
prevents the SoC from falling out of the previously defined safety range,
[20.0%,80.0%]. The actions are not directly used but clipped using the
safety guaranteeing function f*%/¢ that will clip the chosen actions to
the required range for the constraints to be fulfilled:

etbat = _fsafe(af)at) (5)

More details on how this function is defined can be found in
Appendix C.3. Furthermore, the fallback controller achieves a specified
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Fig. 6. EV battery environment demonstration.

SoC at the desired future time t,,, by restricting the battery to be
charged at high power when the SoC is too low when approaching 7,,,.
This makes it easy to build an environment for RL: we can choose the
reward as the negative active power applied per timestep and we do
not need additional penalties contained within the reward that penalize
SoCs outside of the given bounds or not reaching the SoC goal at time
f405- I this way, we omit choosing a heuristic factor for balancing the
energy used and the SoC constraint violation (see Appendix C for details
on SoC constrain violation).

Fig. 6 shows how the resulting environment behaves under two dif-
ferent heuristic agents that apply a constant action. One is discharging
and the other is charging at a constant rate. Note that in this case, we
chose 1, as the end of the episode, i.e. 7,,, = /,, := 48. One can see that
the agent that constantly wants to discharge arrives at the minimum
SoC after a few steps and needs to charge the battery at full capacity
when approaching the end of the episode. The safety controller built
into the environment prevents the SoC from falling below the minimum
and charges the battery before the end of the episode, even if the agents
continue to discharge.

3.3.3. Joint room temperature and EV battery environment

As both subsystems evolve independently, we simply use the room
and battery environments described above to map their current state
and action to the next state and reward and then concatenate them.
Since the reward was one-dimensional in both cases, we combined the
two in a weighted sum as follows:

joint , joint _jointy ,__
r (s a"™) =

energy usage comfort violation 6)
e
b
() (@py " + ") —a s ")

where p(t) denotes a suitable energy price function that may vary over
the course of a day, but is the same for different days. Note that
compared to the room temperature environment, in this case, we are
no longer interested in energy minimization but in price minimization.
Note, also, that coefficient « here is introduced to balance out the
consumption of the battery and the room, which have different scales.

3.4. DRL algorithm

In this work, we used the Deep Deterministic Policy Gradient
(DDPG) algorithm [38]. It is model-free, off-policy, and uses an actor—
critic setting. Unlike standard Q-learning, it naturally handles continu-
ous state and action spaces, which was one of the main reasons this
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Fig. 7. Piece-wise linear EV battery charging/discharging model.

algorithm was chosen. This choice was also motivated by previous
work using this algorithm, for example in [70-73]. There exists an
implementation of DDPG based on the python deep learning library
Keras [74] in another library called Keras-RL [75].

Four neural networks are used within the DDPG algorithm: an actor
(taking actions) and a critic network (evaluating these actions) and
corresponding target networks for each of them. Note that the actor
and its target network have the same architecture but different weights.
The same applies to the critic and its target network. In our case, a
fully connected neural network with two layers of 100 units and the
Rectified Linear Unit (ReLU) activation function was used for both
the actor and the critic. To perturb the actions chosen by the actor
network with exploration noise, an Ornstein—Uhlenbeck process (see
e.g. [76]) was used. As for the RNN training in the modelling section,
we used the ADAM optimizer [64] to update the parameters of the
neural networks. The discount factor y was fixed to 0.99. Note that
a few more hyperparameters, like the learning rate for the ADAM
optimizer and the number of training episodes, were adjusted manually.
This could be avoided using automatic hyperparameter tuning, as it was
done in the case of the neural network models in .

4. Results

In this section, the results of different elements of the proposed
data-driven DRL-based control learning pipeline are presented. First,
the evaluations of the room temperature and bidirectional EV (dis-
)charging models are shown and analysed. Then, the simulation results
of applying the DRL algorithm to the room temperature control are
illustrated, followed by the results on the joint control of the room
temperature and EV (dis-)charging operations. Finally, the experimen-
tal results demonstrating the DRL agent applied to the real building are
presented.

4.1. Simulation results

4.1.1. Evaluation of the EV battery model

The piece-wise linear EV battery charging/discharging model, to-
gether with the real data collected at NEST used for fitting, can be seen
in Fig. 7.

The 6 h ahead SoC prediction using the EV battery model described
in Section 3.2.5 is shown in Fig. 8a. Note that the ground truth is
shown for comparison and was not used to fit the model. We also
performed a more detailed analysis of the prediction performance of
the battery model by analysing the mean absolute error (MAE) and
maximum absolute error for a different number of prediction steps,
up to 12h prediction interval (Fig. 8b). The prediction captures the
dynamics very well, with an MAE of the SoC of less than 0.75% after
6 h. On average, after 12h, the prediction will be less than 1% away
from the true SoC.
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Fig. 8. Prediction performance of the EV battery model. (a) A sample week from the
training set. (b) Quantitative evaluation.

4.1.2. Evaluation of the weather model

We compare two methods for the weather model: a linear model
and a recurrent neural network model. As a linear model, we chose
a 5-fold cross-validated multi-task Lasso estimator from SKLearn [77].
For the RNN, we used the same configuration as the other RNNs in this
study (see Section 3.2.4). Both models used the same inputs to make
the predictions, i.e. data from the previous 19 steps. Further, we used
clipping at O for the irradiance in both cases for a fair comparison. Note
that this makes the model previously described as linear actually only
piece-wise linear.

Fig. 9 shows how the weather model performs when evaluated on
the test set for one specific initial condition. It can be observed that
the piece-wise linear model makes smoother predictions and diverges
faster than the RNN model. The quality of predictions drops with the
longer horizon and, overall, the RNNs provide better predictions, even
though the linear model is comparable on short horizons.

Note that, by investing more thoughts into the piece-wise linear
model, e.g. by manual feature engineering, one might obtain a linear
model that may be able to outperform the RNN. On the other hand, as
the dataset grows with time, it is easy to increase the size of the RNN
to make it more powerful, which is not the case for the linear model,
which is another reason the RNN was favoured.

4.1.3. Evaluation of room temperature model

The performance of the room temperature model is shown in
Fig. 10. A quantitative evaluation of the model is shown in Fig. 10b,
where the temperature prediction is done over a whole week. The
MAE and maximum absolute errors are 0.5 °C and 2.3 °C after 12 h,
respectively. As this RNN model showed a satisfactory fit, we selected
it as an environment to train the DRL agent.

Note that the quality of the room model influences the final control
performance. One known issue is that black-box models, i.e. non-
physics based models, do not extrapolate well for unseen data. In
our case, the room temperature model could be outputting physically
inconsistent behaviours in the worst case. For example, on a winter day
with low solar irradiance and the heating turned off, a black-box model
might predict an increase of the room temperature. Such inconsistent
physical outputs of the room temperature model can influence the
control policy search negatively, as the DRL agent could learn that
it could heat the room by closing the heating valves. Therefore, the
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Fig. 9. Weather models: (a) Prediction over several days — example. (b) Quantitative
comparison.

more physically-consistent behaviour a room model expresses for the
test data, the better control performance of the DRL agent is expected.
However, a detailed analysis of the physical inconsistency of the room
temperature model for some input data is outside of the scope of this
work.

4.1.4. Evaluation of the DRL agent for room temperature control

We evaluated the DRL agent for both heating and cooling seasons,
either by taking two different agents, one for each season, or by
letting a unique agent learn the global control policy. We tested both
approaches and obtained better results for the separate agents. The
reasons for better results in the case of heating only or cooling only
agent is that it makes the problem less complex. In that way, the deep
learning (DDPG) agent is able to find a better control policy.

It actually turned out that for heating cases only, the optimization
of the DDPG agent was much harder than in the case of searching for a
global control policy and required some manual hyperparameter tuning
to perform well. Therefore, we decided to switch to a reference tracking
mode by setting r,,,, = r,,;, = 22.5 °C. This makes it easier for the agent
to know what actions are beneficial for temperature control since the
temperature bound violation is only exactly zero for r, = r,,,, = 22.5 °C.
As soon as r, differs, the comfort violation will increase and the agent is
penalized. We trained the RL agent for 20’000 steps and the evaluation
is shown in Fig. 13, where the agent is compared to the following
three controllers: one always opening the valves, one always closing
them, and a rule-based bang-bang controller without hysteresis, which
is a standard industrial controller. One can observe that the DDPG
agent achieves on average 17% energy savings and 19% better comfort
satisfaction compared to the rule-based controller.

A simulated case example is shown in Fig. 11. The DDPG agent
can accurately control the room temperature by starting to open the
valve before the RB controller, i.e. before the temperature reaches the
setpoint, and opening them only a little to avoid overshooting. One
can observe that the DDPG agent obtained the least comfort violations
while using less energy than the rule-based agent. The quantitative
analysis of this example shows 36% energy saving and 13% better
comfort (see Fig. 12).
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4.1.5. Evaluation of the joint room heating and EV charging control
As in the previous case of room temperature control, we again use
three controllers as a comparison for the evaluation:

» Valves Open, Charge: This agent always leaves the valves open,
as the Valves Open agent in the previous setting, but additionally
always charges the battery at full power instantaneously upon
arrival of the EV until it is full.

 Valves Closed, Discharge: This agent does the opposite of the
previous one, i.e. it never opens the valves and constantly tries to
discharge the battery at full power.

» Rule-Based: This agent does the same as the previous Rule-Based
agent for the heating and constantly charges the battery at full
power.

The performance of a MIMO DDPG agent trained on the joint
environment is shown in Fig. 16. For the room temperature control, we
used the same parameters as in Section 4.1.4 and we considered only
heating cases. While again being able to reduce the comfort violations
and the heating energy usage compared to the RB agent, the DDPG
agent also achieved lower costs. As expected, the agent that never turns
the heating on and discharges the battery uses the least energy, which
also resulted in the lowest costs. Additionally, comfort violations are
less pronounced than in the case of constant heating (constantly valve
kept on), but still worse than in both RB and DDPG controlled cases.

A simulated example is shown in Fig. 14. The DDPG agent manages
to regulate the comfort better by using the energy stored in the EV
battery. Compared to the RB controller for heating, which heats at the
maximum power while the temperature is lower than the reference
temperature of 22.5 °C, the DDPG controller actively regulates the
valves so that better tracking is achieved. In terms of EV battery
management, the energy from the EV battery is immediately used at
the beginning of the interval until the minimum level of 20% of SoC is
reached, which makes sense due to the lower electricity tariff at this
time. Then, before the start of the next trip, the fallback controller
charges the EV battery to the required SoC. The DDPG control output
is presented in full red line, while the constrained DDPG is shown in
the dashed light red line. The quantitative analysis of this DDPG agent
is shown in Fig. 15, where it achieves 63% energy savings, 71% better
comfort, and 53% costs savings compared to two RB controllers, for a
certain weighting factor between the energy cost savings and comfort
satisfaction. Note that this result is specific to the weighting factor used
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in the reward function. On average, when tested over 10’000 historical
intervals, the MIMO DDPG controller achieved 12% better comfort
satisfaction, 11% energy savings, 63% less EV charging at home, and
42% energy costs savings compared to two standard RB controllers, for
the same weighting factor.

4.2. Experimental results

The DRL control agent, which was obtained in Section 4.1.4 for
the heating season and tested in simulation, was applied on the real
building, the DFAB HOUSE, in room 471, for two weeks in February

10

2020. The performance of the DRL controller was compared with
the performance of the room temperature bang-bang RB controller
implemented in the same room over a subsequent week. The time-
series results are shown in Fig. 17. Both controllers are aiming at
the setpoint 22.5 °C. Due to the chosen weighting factor emphasizing
energy savings, the DDPG controller is using less energy, at the cost of
comfort, keeping the temperature slightly under the setpoint (-0.3 °C
on average). On the other hand, the RBC is staying closer to the setpoint
(0.1 °C on average), but it is using more energy.

As the ambient conditions were naturally different for both con-
trollers, we compared them using the Heating Degree Days (HDD) as
a normalization variable. As per definition, the HDD of a given day
represents how far from 18 °C the daily average temperature is [78].
In other words, higher heating degree days mean lower average outside
temperature, for which we naturally expect more energy to be needed.
The outside temperature was indeed approximately 4 °C lower during
the DDPG experiment, which forced the controller to use more energy
and made it hard to compare both experiments without a normalization
procedure.

The daily energy used by both the DDPG and the RBC during five
experimental days each are plotted against the corresponding HDD in
Fig. 18. We can see that the DDPG controller outperforms the RBC: at
HDD levels of around 7 and 12.5, the energy savings are 28% and 26%,
respectively. On the other hand, we can also observe that while both
controllers used between 6 and 8 kWh during three days, the average
outside temperature was much lower (about 4°C colder) during the
DDPG experiment. In other words, the DDPG algorithm was able to use
the same energy budget and maintain similar comfort levels to the RB
approach but in harsher conditions.

Additionally, the points in Fig. 18 exhibit linear-like behaviours. To
leverage that fact, we fitted a linear regression to both controllers to
capture their global behaviour. This allowed us to clearly picture the
gap between the RB algorithm and our proposed method, which on
average saves around 25%-30% energy.

5. Conclusion and discussion

In this paper, we introduced a fully data-driven DRL-based method
to obtain optimal control policies for MIMO building control problems.
We demonstrated the method on the joint control of room temperature
and bidirectional EV (dis-)charging to minimize the energy consump-
tion and maximize occupants thermal comfort while ensuring enough
energy stored in the EV upon leaving for the next trip. We demonstrated
the method on a real building case study — the DFAB HOUSE at Empa
Duebendorf in Switzerland with available past operational data of less
than a year.

We show in simulation that the trained DRL agents are capable of
saving on average 17% energy over the whole heating season while
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providing 19% better comfort satisfaction compared to a classical
rule-based controller. When an EV is additionally connected to the
building and two tariff electricity pricing is considered, the DRL agents
can successfully leverage its battery and decrease the overall cost
of electricity. The obtained DRL control agent achieved 12% better
comfort satisfaction, 11% energy savings, and 42% energy costs sav-
ings compared to two standard RB controllers, one controlling the
room temperature and another controlling the bidirectional EV (dis-
)charging. This result is specific to the weighting factor used in the DRL
algorithm to balance the energy cost savings and comfort satisfaction.
Finally, we demonstrate a successful transfer of the learnt DRL policy
from simulation onto the actual building achieving up to 30% energy
savings while maintaining similar comfort compared to a conventional
RB room temperature controller over one week during the heating
season. Note that one should keep in mind that, while the methodology
is generic and might be applied to any building and under any external
conditions, those particular energy savings were obtained on the DFAB
house over a week long experiment, and further analysis would be
required to understand the effect of such control policies in general.
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Fig. 16. Joint EV charging and room heating control agent evaluation over a total of
10’000 steps.

The data-driven DRL-based control method proposed in this work is
a viable approach to satisfy all the BA industry requirements for control
of modern buildings, as defined in Section 1.1. We demonstrated that
this method could match the first three BA industry requirements.
In terms of the fourth requirement on transferability (and usabil-
ity) for similar control problems in other buildings, we can argue in
favour of the developed method; One can reuse the same NN and DRL
architectures to obtain control policies in other conditions.

Indeed, we applied the same methodology to another room at the
DFAB HOUSE, and we obtained comparable results. Thus, we believe
that this method has a strong potential to work for any building or
room, and could thus be a stepping stone towards obtaining transfer-
able model-free data-driven room temperature control policies. As such,
we also believe it to be valuable for the BA industry as it minimizes the
engineering efforts to obtain a custom-tailored controller for a different
room and building.

However, a few points still need to be addressed before this method
can achieve widespread transferability to any building or room.
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Fig. 18. Experimental comparison of the DDPG and rule-based controller performances
in term of required energy over the heating degree days. The DDPG provides in average
27% energy saving and better comfort at the same time. The numbers in the plot
correspond to days in February 2020.

The availability and quality of the building model is the first point
to be addressed in future work. As demonstrated in this paper, the
building model could be built as an RNN model, which could be directly
applied to another room with the same setting, i.e. the same HVAC
equipment and the same number of sensors and actuators. However,
rooms generally differ in terms of HVAC equipment and the number
of sensors and actuators. Thus, to model a different room, a certain
engineering effort needs to be invested into linking the new inputs
and outputs to the RNN model and fitting it. This process could be
simplified and even automated if a linked, i.e. semantic, database of
a building exists.

Secondly, the availability of past building operational data is a
requirement to apply our black-box pipeline. While this may not be an
issue for existing building with operational data stored in databases,
it could be an issue for new or retrofitted buildings. A potential so-
lution to this could be to apply transfer learning to the modelling
part and learn the dynamics of a new building with the available
fewer data. Similarly, transfer learning could be applied to “‘jump-start”
the learning of the control policy for another building, given already
existing proven policies in other buildings. This is also directly related
to the last BA industry requirement on (self-) adaptability and continuous
commissioning of building controllers. Indeed, transferring a controller
to another or a retrofitted building is in essence very similar and a very
interesting direction for future work.

Thirdly, the questions of stability and robustness of the proposed
methodology could be addressed in future work, which is an open
problem and very hard to solve (see, e.g. [79,80]). Since data-driven
DRL-based control policies are based on NNs, there may exist adver-
sarial examples for which the room temperature violates the predefined
comfort bounds. In our case however, we are not dealing with safety-
critical systems, such as in autonomous driving; the water-based radiant
heating/cooling systems are stable by design — if constantly kept on,

12

the room temperature would increase/decrease and saturate at the
water temperature circulating in the system. The maximum/minimum
room temperatures that could be achieved would lay outside standard
comfort bounds, but they are typically not dangerous for human health
or catastrophic for the heating/cooling system. Therefore, in our case,
we rather talk about a soft constraint satisfaction problem, and the
controller does not always have to be robust. Moreover, comfort bound
violations also occur with other types of controllers, such as RB or
MPC, due to unlearned dynamics or strong disturbances, such as from
solar gains through windows. In other words, no room temperature
controller would guarantee comfort bounds satisfaction at all times, in
particular, if the bounds are very narrow, for example, of +/-1 °C.
One interesting method that could be explored to create more robust
policies is policy distillation [81], where different control policies are
learnt for different input data (e.g. one controller per season/month in
the case of buildings) and then a common policy that shall work in any
conditions is extracted from them.
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Appendix A. Variables

The main variables used in the paper are summarized in Table 1.

Appendix B. Hyperparameters of the RNN

The hyperparameters of the RNN model of the room temperature
dynamics are shown in Table 2.
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Table 1
Overview of the variables used in the model.
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Variable [Unit] Symbol Interval
Outside temperature [°C] o, [-15.0, 40.0]
Room temperature [°C] r, [10.0, 40.0]

In- and Out-flowing heating water temperature [°C] hi", R [10.0, 100.0]
Irradiance [W m~2] i, [0.0, 1300.0]
Valve open/close state u, [0.0, 1.0]
Battery SoC [%] sbat [0.0, 100.0]
Battery power [kW] [kW] Py [-100.0, 100.0]
Safe (active) power applied to the battery [kW] ef"” [-100.0, 100.0]
Sine and Cosine of time of day 12 = sin(1), 1 = cos(t) [-1.0, 1.0]
Combined time of day 1= (1,15)

Combined weather variables w, = (0,,1,)

Room state variable space S10M = (w,, 1y, A" A2 1)

Full room variable space sT = (s ugy )

Joint state space of room and battery

t
slomnt — (sroom, Sfm)

Table 2
Hyperparameters of the RNN.
Symbol Meaning Domain Room temp. Weather
model model
n Number of recurrent layers N 3 1
n, Number of neurons per layer N 30 60
1, Number of epochs in training N 10 80
n Learning rate R 1.544e-5 6.163e—5
o; Standard deviation of the R* 3.633e—6 0.01202
Gaussian noise added to the
input
Cell Type of recurrent cell used LSTM GRU

Appendix C. SoC constraint satisfaction

Assume we have the piece-wise linear battery model as described in
Section 3.2.5, omitting the bat superscript and using p = p, for clarity:

8,01 =S, + 4s(p)
t+1 t (7)
=5, +ay + ap+ ay max{0, p}
We assume that the coefficients «; have the following properties to

make sure the model can be inverted and is physically meaningful:

a; > 0: The more the battery is discharged (i.e. the more negative
the active power), the faster the SoC decreases.

—a; < a, < 0: The slope of 4s(p) is always positive, but smaller for
charging (p > 0), so that one cannot gain energy from charging
and discharging again.

ay < 0: The battery slowly loses energy when it is not used.

Using these properties, we explain below how to make sure that
bounds on the SoC will be satisfied.

C.1. Minimum and maximum SoC constraints

We require the SoC of the battery to lie within predefined bounds
[Spmins Smax] At any time. Assuming we start from s,, it suffices to show
that the next SoG, s,, |, given the previous SoC, stays within the bounds,
and then apply the argument recursively. For the maximum constraint,
we have to make sure that:

Sl =S taptapta max{O,p} < Spmax

(C))
Sapta max{0, p} < Smax — St — %o
Let us define the following helper function:
aj+a, p>0
h(p) := { L ©
a, else
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Note that it is positive for all values of p because of the properties
on the coefficients «;. Now we can rewrite the equation above as:

p-hp) < Smax — St — %o
N

o< (10)

max ~ 51 — %)

h(p)

To get a bound for p from this equation that does not contain p itself,
we need to make a case distinction:

+ Case 1: s, — s, — &y > 0 This means that the SoC at the next
step will be lower than the maximum SoC when p = 0, we can
therefore discharge as much as we want, i.e. we do not need to
handle the case p < 0, so we only look at p > O0and we have
h(p) = ay + a3

+ Case 2: s s; —ay < 0 This means that the SoC at the next step

will be higher than maximum SoC when p = 0, we therefore need

to discharge in any case, i.e. p < 0, which means A(p) = «,

max —

Putting the two cases together, we get the following bound on the
active power p:

Smaxfsxfa(]
_— N —s,—ay>0
bat . ay+a max 4 0
< ca) = 1+ay 11
A O S glse an
L1
Note that in the edge case s,,, — s, — @y = 0 both cases return

the same, i.e. the bound is continuous. Applying the same chain of
reasoning to the s,,;, case, one can derive the following:

P> (s s s ) 12)

Note that this case is using the exact same function.

C.2. Achieving the goal SoC

We want to ensure that the battery is charged for some minimum
desired amount s,,, at a given time 7,,,. Assuming we are now at time
t, i.e. the SoC is s,, and assuming we can charge for a maximum of
Pmax> then at the next timestep, the SoC has to be at least s,,, — (7405 —
t — 1) - As(p,.y), Where (t4,, —t — 1) denotes the number of remaining
timesteps after this step. Now we can use the results derived in the
previous section from Eq. (12) and get:

des

P2 Pl = P (s = (o — 1 = 1)+ AS(Dpgr): 515 ;) (13)

Note that, if we start with an SoC that is already too low to achieve
the goal SoC, the bounds will require an active power p > p,,,., which
is not possible, and p,,,, would be applied.
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C.3. Constraining battery controller

Now, we can finally combine all the previous considerations to
define the controller that constrains the active power for the battery
charging and discharging. We consider the following constraints:

+ Direct constraints: p,,;, < p < Pax
* SoC constraints: s,,;, < s, < 8,4,

+ Charging constraint: s, > s,,, for t =14,

Note that we still use p := p,, . Using the formulas defined before,
the last two constraints can be converted to constraints on p as shown
in Egs. (11), (12) and (13). Combining these constraints with the direct
constraints on p and choosing always the tightest one yields:

= . des _bat .
pz Pmin = max{Pmin’pmc;:,’c “ (smin!st’ai)}
= . . bat .
p < Pmax = mln{pmax’c “ (Smax’st’ai)}

(14)

Finally, we can define our safety controller that assures that the
chosen action, i.e. the active power, lies in the appropriate range.

[5p) = clipg,, 5 1(p) (15)
where clip is the clipping function defined as follows:
a p<a
clipy () :=4b p>=b (16)
p else

Note that the function f%%/¢(p) implicitly depends on a lot of pa-
rameters, i.e. p,in Pmax> Smin> Smaxs Sdess St» 1> L4es and the parameters of the
model ¢; and not only on p.

Appendix D. Data preparation

D.1. DFAB data

The following variables are measured inside the DFAB unit and are
processed as follows, before their usage in the data-driven learning
process.

* Room temperature (r,): The room temperature contained a few
data points at exactly 0 °C which were removed. Furthermore,
sequences of constant temperature that lasted for at least one day
were removed, too. In the next step, spikes in the temperature of
a magnitude of at least 1.5 °C were extracted and deleted. Finally,
we applied Gaussian smoothing with a standard deviation of 5.0.
Valves (y,): The data measured for each individual valve only
stated if the valve was open (1) or closed (0). Subsampling re-
sulted in values in the interval [0.0, 1.0]. Since this series naturally
contains long sequences of constant values, i.e. 0 or 1, we only
removed constant sequences which lasted for at least 30 days.
Water temperatures (h;'", hf“’): The water temperature of the
heating water flowing into and out of the rooms was processed
by removing all data points that did not lie in the range [10.0 °C,
50.0 °C] were removed and then smoothing with a Gaussian filter
with a standard deviation of 5.0 was applied.

D.2. Weather data

Outside temperature and solar irradiance are measured by the
weather station at NEST. They were processed in the following way.

+ Outside temperature (o,): First, we remove values that are con-
stant for more than 30 min. In the next step, we fill values that
are missing by linear interpolation between the last and the next
known value, but only if the time interval of missing values was
less than 45 minutes. Finally, we smooth the data with a Gaussian
filter with a standard deviation of 2.0.
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Table 3

Python libraries, used with Python [83] version 3.6.6.
Library Version
Numpy [84] 1.18.1
TensorFlow [82] 1.14.0
Keras [74] 2.3.1
Hyperopt [66] 0.2.3
Pandas [85] 0.25.3
SkLearn [77] 0.22.1
Matplotlib [86] 3.1.2
OpenAl gym [87] 0.15.4
Keras-RL [75] 0.4.2
SciPy [88] 1.41
Statsmodels [89] 0.10.2

« Irradiance (i,): Since the irradiance data series naturally contains
values that are constant for a long time, e.g. zero at night, we only
remove a series of data points if they are constant for at least
20h. Then again we fill missing data points by interpolation and
smooth the data as was done with the temperature data.

D.3. EV battery data

The data of the battery consists of the state of charge (SoC) and
the active power used to charge or discharge the battery. The two time
series were processed as follows.

- State of charge (s,b‘”): Since the SoC cannot lie outside of the
interval [0.0%, 100.0%], we remove all values that lie outside
that range including the boundary values. Further, if the data
is exactly constant for at least 24h, we assume something went
wrong with the data collection and remove the data of that time
interval.

Active power (p,): In this case, we do not have strict boundaries
for the values, so we only remove values where the series was
constant for at least 6 h.

Appendix E. Implementation

The work was implemented in Python version 3.6.6 and is not com-
patible to versions 3.5 and lower since f-strings were used. The main
libraries that were used are listed in Table 3. Note that the most recent
version of all libraries was used, except for TensorFlow [82] because of
a dependency on another library, Keras-RL [75]. In most cases, the pro-
duced code is Pep-8. The actual code can be accessed at https://github.
com/BratislavS/MIMO_DRL _Building_control. There is also information
available on how to run the code.

E.1. Data whitening

As another data processing step, we whitened the data, i.e. it was
scaled to have mean 0.0 and variance 1.0 before training the models.
This is a standard procedure in machine learning and helps to avoid
a bias in the feature importance while also allowing task-independent
weight initialization in the neural network training. Since this was done
manually, without the use of an existing library, this resulted in a few
complications. For example, the reinforcement learning environment
took the original actions as input and then had to scale them, feed them
to the model and scale the output of the model back to the original
domain to get the output for the agent.
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