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Abstract

The capabilities of deep learning systems have advanced much faster than our ability to
understand them. Whilst the gains from deep neural networks (DNNs) are significant,
they are accompanied by a growing risk and gravity of a bad outcome. This is troubling
because DNNs can perform well on a task most of the time, but can sometimes exhibit
nonintuitive and nonsensical behavior for reasons that are not well understood.

I begin this thesis arguing that closer alignment between human intuition and the
operation of DNNs is massively beneficial. Next, I identify a class of DNNs that are
particularly tractable and which play an important role in science and technology.
Then I posit three dimensions on which alignment can be achieved – (1) philosophy:
thought exercises to understand the fundamental considerations, (2) pedagogy: to help
fallible humans interact effectively with neural networks, and (3) practice: methods to
impose desired properties upon neural network, without degrading their performance.

Then I present my work along these lines. Chapter 2 analyzes philosophically the
issues of using penalty terms in criterion functions to avoid (negative) side effects via a
three-way decomposition into the choice of (1) baseline, (2) deviation measure, and (3)
scale of the penalty. Chapter 3 attempts to understand which inputs a DNN maps to an
output class. I present two approaches to this problem, which can help users recognize
unsafe behavior, even if they cannot formulate safety beforehand. Chapter 4 examines
whether max pooling can be written as the composition of ReLU activations in order
to investigate an open conjecture that max pooling is essentially redundant. These
studies advance our pedagogical grasp of DNN modelling. Finally, Chapter 5 engages
with practice by presenting a method for making DNNs more linear, and thereby more
human-compatible.

Keywords: AI Safety, Deep Neural Network Interpretability, Max pooling, Adversarial
Robustness, Verification, Polytopes.
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Résumé

Les capacités des systèmes d’apprentissage profond ont progressé bien plus rapide-
ment que notre capacité à les comprendre. Bien que les avantages des réseaux de
neurones profonds (RNP) soient substantifs, ils s’accompagnent d’un risque et d’une
gravité croissants d’un mauvais résultat. C’est inquiétant car les RNPs peuvent bien
functionner sur une tâche la plupart du temps, mais peut parfois agir de manière non
intuitive et non sensible pour des raisons qui ne sont pas bien comprises.

Je commence cette thèse en affirmant qu’alignement plus étroit entre l’intuition hu-
maine et le fonctionnement des RNPs serait extrêmement bénéfique. Ensuite, j’identi-
fie une classe de RNPs particulièrement solubles et qui jouent un rôle important en
science et technologie. Ensuite, je pose trois dimensions sur lesquelles l’alignement
peut être réalisé – (1) philosophie : exercices de réflexion pour comprendre les considé-
rations fondamentales, (2) pédagogie : pour aider les humains faillibles à interagir
efficacement avec les réseaux de neurones, et (3) pratique : méthodes pour imposer
les propriétés souhaitées au réseaux de neurones, sans dégrader leurs performances.

Ensuite, je présente mon travail dans ce sens. Chapitre 2 analyse philosophiquement
les problèmes liés à l’utilisation de termes de pénalité dans les fonctions de critères
pour éviter les effets secondaires (négatifs) via une décomposition à trois voies dans
le choix de (1) la ligne de base, (2) la mesure de l’écart et (3) l’ampleur de la pénalité.
Chapitre 3 tente de comprendre quelles entrées un RNP mappe à une classe de sortie.
Je présente deux approches à ce problème, qui peuvent aider les utilisateurs à re-
connaı̂tre un comportement pas “safe”, même s’ils ne peuvent pas formuler “safety” au
préalable. Chapitre 4 examine si le max pooling peut être écrit comme la composition
des activations ReLU afin d’étudier une conjecture ouverte selon laquelle le max poo-
ling est essentiellement redondant. Ces études font progresser notre compréhension
pédagogique de la modélisation RNP. Enfin, Chapitre 5 s’engage dans la pratique en
présentant une méthode pour rendre les RNPs plus linéaires, et donc plus solubles par
les humaines.
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Résumé

Mots-clés : Sûreté de l’IA, Interpretation des réseaux de neurones profonds, Max
pooling, Robustesse adversariel, Vérification, Polytopes.
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Chapter 1

Introduction

1.1 Introduction

“Civilization advances by extending the number of important operations
which we can perform without thinking about them.”

This quote, from Whitehead [170, page 46] and relayed in Russell [133], is a prescient
summary of our times. Whitehead is ruminating on how elegant notation hides com-
plexity and thereby allows users of mathematics to achieve much more than they could
with clumsier representations of the same underlying truth. Viewed more expansively,
it means that humanity’s wellbeing is advanced not by technology that is known to
possible, but rather by what can be done in a simple, scalable fashion.

Synonyms for “without thinking” in this context might be “commoditized”, “ordinary”,
or “routine”. And every scientific endeavour has a flavour of this hierarchy. Producing
ammonia from atmospheric nitrogen can now be done “without thinking”, though
this was not the case in Whitehead’s time. Synthetic production of human insulin has
passed from the possible to the pedestrian in our lifetimes. The complete sequencing of
a human’s genome is currently becoming routine, and the production of graphene looks
to become commoditized within our lifetimes. It is easy to see how these four human-
welfare-improving breakthroughs have negligible utilitarian effect until they could
be done without thinking. Quantum computation, for example, is now theoretically
possible, but lacks any definite path to becoming routine.

Deep neural networks trained on large datasets using hardware accelerators, rep-
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Chapter 1. Introduction

resent a novel regime where models can be very useful without being routine. The
competence of DNNs has run far ahead of our understanding and they cannot be
used “without thinking”: teams of humanity’s brightest cannot prevent embarassing
and dangerous errors. In Whitehead’s sense, then, there is no guarantee that DNNs,
however powerful they become, will be ultimately beneficial.

Interpretation and control is the bottleneck on making DNNs beneficial. The full promise
of deep learning will be realized only once it can be treated like a self-contained
tool that performs high-level tasks in a predictable and intuitive fashion. This thesis
tackles one aspect of the interpretation and control (“safety” in the title of this thesis is
shorthand for “interpretation and control”) of DNNs: engineering DNNs.

1.2 Engineering DNNs

1.2.1 Characterization

Engineering DNNs are my own concept. They are architecturally simple DNNs used in
narrow applications arising in engineering and science. They map from low dimen-
sional domains, representing real-world quantities with definite intepretations, to low
dimensional ranges, frequently representing some action. People tend to have some
intuition for how they should operate, for example that certain regions of the input
space should map to certain outputs. In many cases, the data used to train engineering
DNNs is generated in an automated fashion, such as in-silico simulation or sensor
readings. Engineering DNNs operate primarily on tangible objects that humans tend
to understand in terms of simple physical quantities. Note that “engineering” here
is used as a noun, the discipline practiced by engineers, not as a verb (“engineering
DNNs” ̸= the process of designing DNNs).

Figure 1.1 summarizes these features.

Some examples and explanation for each point above follows. “Operates in natural
quantities, not human constructions” means that the individual dimensions of the
input space could be, say, angles, speeds, temperatures, or pressures, but not ab-
stract and detached from nature like pixel values, stock price, language toxicity, or
click through rates. “Mapping from low dimensional spaces” complements the previ-
ous, as very high dimensional spaces are almost always detached from the physical
world, such as word embeddings. “Mapping to low dimensional spaces” restricts the
DNN capabilities: a DNN could, say, maximize paperclip production by optimizing
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• Operates in natural quantities, not human constructions

• Map low dimensional spaces to low dimensional spaces

• Humans can recognize properties that they should satisfy

• Replace earlier vintages of handcrafted logic

• Data often acquired automatically via experiment or simulation

• Simple architectures

Figure 1.1: Aspects of a model that characterize engineering DNNs

a parameterized form for its shape only, and not by indirectly pursuing instrumental
goals. “Humans can recognize properties that they should satisfy” means that, for
example, in a DNN that predicts risk of colorectal cancer, inputs such as body mass
index, alcohol consumption, and age should exhibit a positive dependence (Dvijotham
et al. [48] show how to model monotonicity constraints in a DNN). “Replace earlier
vintages of handcrafted logic” reflects that if humans minimally understand the nature
of a relationship in the wild, they will try to build a model of it. For example a linear-
quadratic regulator. “Data often acquired automatically via experiment or simulation”
is similar: if scientists understand a phenomenon well enought to generate data in an
automated fashion then it largely overlaps with the above. It includes DNNs that act as
the policy function for a reinforcement learning agent, partial differential equations
solvers, symbolic equation solvers, and the like.

“Simple architectures” is distinct and is explained further in Section 1.2.2. It means that
the composition of any pair of adjacent layers can be understood, and the complexity
of the network arises from the iterated application of many layers.

The promise of engineering DNNs is greater efficiency. However, replacing classical de-
cision logic (satisfying intuitive properties by construction) with complex, generically
unsafe DNNs opens the door to dangerous failure modes.

The concept of engineering DNNs is inspired by now-ubiquitous tools like CNC (com-
puter numerical control) machining or spreadsheets. These technologies are impactful
and beneficial, with few safety concerns, because they solve well-scoped problems
transparently. These technologies do not advance the possible in the narrow sense of
greenfield research – anything that these tools do was possible before their creation
– but because of their ergonomics and economics, they expand the operations that
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humanity can perform without thinking.

Engineering DNNs tend to address the fundamental aspects of existence: hunger,
disease, physical danger, communication, transportation, shelter or sanitation, say.
They tend not to make possible wholly new technologies such as predicting stock re-
turns, automated number plate recognition, or detecting hate speech. Obviously, what
constitutes a novel technology and what solves an inalienable difficulty of existence is
open for debate, but this is a useful framework for thinking about the differential risk
profile of application areas.

Bostrom [16] makes a profound observation: humans have no idea how much “smarter”
(intelligence is a multifaceted concept, but here the magnitude alone suffices) than
humans a future artificial general intelligence (AGI) might become. AGI that is dra-
matically smarter than us would be a severe threat, and engineering DNNs (almost)
cannot be massively generally capable by construction.

At present, there is no clear path to using general DNNs without thinking, but for engi-
neering DNNs there is perhaps hope. By better understanding the micro-foundations
of DNNs, and devising methods for training models more amenable to analysis, as
well as more targetted analysis methods, practical solutions seem possible, even if the
problem is NP-complete in theory (Katz et al. [87]). That is the goal of this thesis.

1.2.2 Mathematical Form

The mathematical constraints on engineering DNNs are that they be “interpretable”. I
phrase it in this indirect fashion because what is interpretable will evolve, and such a
formulation is more future-proof. That said, I do take a definite stance on what this
means currently.

One condition that implies “interpretable” is that the composition of any pair of
adjacent layers within a network can be comprehensively intuited by a numerate
person. Th is the framework adopted here, and it is true if a network is comprised
of only two types of operations: (1) linear, and (2) ReLU. This is restrictive is in some
ways, but it does encompass more than it might seem at a first glance.

Firstly, this condition imposes no direct limits on the width or depth of a network.
While clear, this fact should be appreciated: deep neural networks are powerful because
of scale more than because they implement varied and complex logic.

Many operations are linear. Notably, convolution is a linear operation, as is average
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pooling, batch norm, instance norm, and the like. Any kind of reindexing, repetition,
padding, Kronecker product, etc. are also linear. Even Fourier transforms, used in Li
et al. [101], are linear. Residual blocks (He et al. [73]) are not linear, but can be handled
in a similar fashion via doubling the layer width, then summing the two halves of a
layer (see Section 3.B).

Some layers are conventions or can be absorbed into the loss function. For example, the
softmax layer that conventionally forms the final layer of DNN classifier. This layer can
usually be elided if it is not necessary to interpret outputs as a probability distribution;
for example, if classification alone suffices then a softmax layer is redundant since
argmax j x j = argmax j softmax(x) j .

ReLU can be used to construct most piecewise linear activations, for example hard
tanh = x 7→ ReLU(x +1)−1−ReLU(x −1) (Collobert [33]), leaky ReLU = x 7→ ReLU(x)−
.01 ×ReLU(−x) (Maas, Hannun, and Ng [104]), ReLU6 = x 7→ ReLU(x)−ReLU(x − 6)

(Krizhevsky [96]), and hard sigmoid = x 7→ (ReLU(x +3)−ReLU(x −3))/6 (Courbariaux,
Bengio, and David [34]). Unless there is a non-performance reason, such as efficiency
or comparison with an existing model (such as in Chapter 5), usually piecewise lin-
ear activations suffice (there are techniques for bounding the difference of a general
activation function to a piecewise linear approximation, such as Zhang et al. [174]).

Lastly, interpretability is a feature of the architecture of a network, not of any aspect
of training. It admits any sort of initialization, optimizer, regularization, data aug-
mentation, label smoothing, learning rate schedule, or stopping criterion. Anything
that does not affect the operation of a network as a function. This means that any
operation that is piecewise linear at inference time, such as dropout (Srivastava et al.
[150]), shake-shake (Gastaldi [58]), or spectral normalization (Miyato et al. [112]) can
be included in an engineering DNN.

As an example of an interpretable network, consider the “all convolutional net” of
Springenberg et al. [147, Table 5]. This network repeatedly applies convolution, leaky
ReLU, and dropout, with a final softmax layer at the end. Reasoning that: (1) convo-
lution is linear, (2) leaky ReLU can be written as the composition of linear and ReLU
operations, (3) dropout is linear at inference time, and (4) the ultimate softmax layer is
a convention that can be absorbed into the optimization criterion, we conclude that
this network is an engineering DNN.

Engineering DNNs do not include some useful primitives – notably attention. That
said, the linear-ReLU structure of engineering DNNs are a crucial building block of
essentially all DNNs. Thus, even if incomplete, interpreting engineering DNNs is a
necessary step to an understanding of all DNNs. Or: if we cannot learn to fully interpret
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and trust engineering DNNs, then it seems unlikely that we will succeed on more
complex models.

1.3 Abbreviations

In this thesis, I use the following abbreviations:

AGI Artifical General Intelligence

AUP Attainable Utility Preservation ([161])

CIFAR Canadian Institute for Advanced Research

CURE Curvature Regularization ([115])

DARPA Defense Advanced Research Projects Agency

DNN deep neural network

EPFL École Polytechnique Fédérale de Lausanne

GPU graphics processing unit

LCNN low curvature neural network ([149])

LLM large language model

LP linear program

ML machine learning

MSE mean squared error

NTK neural tangent kernel

PGD projected gradient descent ([105])

PRNG pseudrandom number generator

QMC quasi monte carlo

RL reinforcement learning

RR Relative Reachability ([93])

SEC Securities and Exchange Commission

SGD stochastic gradient descent

SVHN Street View House Numbers ([117])

UAT universal approximation theorem ([37])

VD Value Difference ([93])
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1.4 Notation

This section introduces the mathematical notation used throughout the thesis.

There is no equivalence between notation (capital, Greek, bold, tildes, etc.) and
mathematical objects (tensors of any order, random variables, sets, mappings, etc.).
Nonetheless, common conventions in form generally hold, for example f , g ,h are
generally functions, i , j ,k are tensor indices, m,n, p are tensor dimensions, s and t are
times, x, y, z are throwaway variables such as function arguments, ϵ generally means a
small positive number, and similar.

Common abbreviations like “std”, and near-ubiquitous mathematical constants like
e = 2.71828. are used without further introduction. For an integer n, n! is “n factorial”
= n × (n −1)× (n −2)× . . .2×1. O is the “big-O” notation: “ f (n) is O(g (n))” means that
there exists n′,m such that n ≥ n′ =⇒ | f (n)| ≤ m ×g (n). E (for “expectation” – E [X ] is the
expectation of a random variable X ), and Pr[A] is the probability of the event A. a ≜ b

means that “a is defined to equal b”.

For a matrix A, rank A gives the matrix rank of a matrix A, det A gives the determinant,
A† is the pseudoninverse of A, and A⊤ denotes matrix transpose. For A ∈ Rr1×c1 ,B ∈
Rr1×c2 ,C ∈Rr2×c1 ,D ∈Rr2×c2 ,

(
A B

C D

)

is the (r1 + r2)× (c1 + c2) (block) matrix where the first r1 rows are the horizontal con-
catenation of A and B , and the (r1 + 1)st through (r1 + r2)th rows are the horizontal
concatenation of C and D.

In is the identity matrix in n dimensions. “0n” and “1n” denote n-dimensional vectors
of zeros and ones. Throughout, the dimension will be dropped if it is clear. ι j is a vector
of size that will be evident from the context of all zeros, except for the j th element,
which is 1. diag acts like in numpy and many other matrix languages, with two distinct
meanings that will be clear from the context (1) mapping a vector x ∈ Rn to a matrix
∈Rn×n with i j th element equal to zero, unless i = j , in which case it is xi , and also (2)
extracting the diagonal of an n ×n matrix. In Section 5.A.2 some more high-powered
notation for tensors is necessary and will be introduced only there because it is clumsy
and not needed elsewhere.
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For a set A, An is the n-fold Euclidean product, e.g. {0,1}n is the set of all length-n

vectors with 0 and 1 valued elements or [0,∞)n is the set of n-dimensional nonnegative
numbers. For a finite set A, |A| ∈N denotes the size of A. For a set A and a function f ,
f (A) = { f (a) : a ∈ A}, and for two sets A and B , the set A +B = {a +b : a ∈ A,b ∈ B} is the
Minkowsi sum. For sets A,B A ⊊ B means that A is a strict subset of B (there is some
b ∈ B , ̸∈ A), and A\B means the subset of A that is not in B .

In my terminology x 7→ f (x) is an anonymous argument synonym for f . The bit after
the colon in f : D → R is a way to optionally specify the domain (D) and range (R)
of a function f , and the inverse of a function f : X → Y is denoted f −1 : Y → X . “◦”
represents function composition, e.g. (g ◦ f )(x) = g ( f (x)). So, for example, (g−1◦h−1)(S) =
g−1(h−1(S)) = {z : g (h(z)) ∈ S}.

1A is the function given by 1A(x) equals 1 if x ∈ A and 0 otherwise. 1A is often called the
indicator function of A. softmax :Rn → [0,1]d is the function x 7→ exp(x)/

∑
j exp(x) j , and

logsoftmax= log◦softmax. || f ||n means the Ln-norm of f , i.e.
(∫ | f (x)|ndx

)1/n , for some
measure

∫
– possibly discrete – that will be obvious from the context. For a matrix A,

||A||n means the n-norm of a matrix, for example ||A||2 is the spectral norm. ∇x f means
the derivative of f with respect to x, and ∇2

x f means the Hessian. When it is clear I drop
the subscript to ∇. “==” is an infix binary function that is true if its two arguments are
equal. This notation is used to emphasize that the equality of two quantities itself is of
interest (for example in an algorithm).

1.5 Organization

What does it mean for DNNs to be more understandable in simple terms? An analogy is
helpful. Consider games of chance prior to the development of probability theory. The
bible mentions Roman soldiers gambling in the time of Jesus, whilst Pascal, Fermat,
and Huygens did their early work (e.g. Hugeni [81]) in the 1650s. Thus, for thousands
of years, people avidly and earnestly played games of chance for high stakes with an
incomplete understanding of the basic principles.

Given the strange fallacies and superstitions that exist even today around gambling
and investing one can only imagine the strange and mistaken views that even the most
scientifically-minded people of this era held (see Cardano [24] for some examples). I
can recall playing board and card games as a child, and can critically reflect on my own
thought process. In retrospect, the heuristics guiding my play were generally correct,
but missed some important dynamics and lacked a cohesive underlying principle.
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What did coming to have a mature understanding of probability theory look like for
me? It was a mix of abstract arguments and thought experiments (e.g. Pascal’s wa-
ger, St. Petersburg paradox, martingale betting strategies), developing and refining
the primitive concepts and notation (probability space, Law of Large numbers, stan-
dard deviation), reading empirical studies and seeing the principle demonstrated (for
example, in Thorp [157]), and working out simplified examples.

This process echoes progress in probability more broadly. To coin a phrase: “phi-
losophy, pedagogy, and practice” – in order to be useful, a concept needs to be well
understood through profound thought-experiments, it needs to be developed in a
matter that facilitates subsequent analysis, and it needs to admit practically interesting
and relevant application.

That is the approach taken in this thesis: Chapter 2 introduces some of the funda-
mental concepts (philosophy), a method for clarifying and simplifying the operation
of DNNs in proposed in Chapter 3, Chapter 4 presents a fundamental analysis of
one primitive operation in DNNs (pedagogy), and Chapter 5 formulates and tests a
theory-driven hypothesis about the empirical behavior of DNNs (practice). Although
the methodology for each chapter is different, this thesis is unified in its goal – which
is understanding – rather than predictive accuracy, computational efficiency, or theo-
retical generality. Engineering DNNs are the motivating class of networks, though the
analysis will in places stray – for example to basic test problems in image classification
– in order to more effectively tie it to the literature.
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Chapter 2

Challenges for Using Impact
Regularizers to Avoid Negative Side
Effects

This chapter is substantively [102] and I would like to thank Andreas Krause, François
Fleuret and Benjamin Grewe for their valuable comments on the original paper. I would
also like to thank Ramana Kumar for introducing me to AI Safety, and the 2019-vintage
members of the EPFL AI Safety reading group for many interesting discussions.

The paper grew out of a desire to know whether in the literature is there a satisfactory
approach to stopping unanticipated side effects, even if it is not implementable in
practice. Sadly, once we learned that the answer was negative, we turned to under-
standing the problem as well as possible, and to determine where future efforts might
be best allocated. David Lindner, Alexander Meulemans, and myself were all equally
involved with all aspects of the conception, analysis, and writing.

2.1 Introduction

Specifying a reward function in reinforcement learning (RL) that completely aligns with
the designer’s intent is a difficult task. Besides specifying what is important to solve
the task at hand, the designer also needs to specify how the AI system should behave
in the environment in general, which is hard to fully cover. For example, RL agents
playing video games can learn to achieve a high score without solving the desired task
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by exploiting the game engine (Saunders et al. [138]). Side effects occur when the
behavior of the AI system diverges from the designer’s intent because of considerations
that were not anticipated beforehand, such as the possibility to exploit a game. This
work focuses on side effects that are tied to the reward function, defined as side effects
that would occur even if we could find an optimal policy for any reward function. We
explicitly do not consider side effects resulting from the RL algorithm, which are often
discussed using the term safe exploration (Garcıa and Fernández [57]).

In practice, the designer would typically iterate the reward specification to optimize
the agent’s performance and minimize side effects. This can be tedious and there is no
guarantee that the agent will not exhibit side effects when it encounters new situations.
In fact, such problems with misspecified reward functions have been observed in
practical applications of RL (Krakovna et al. [94]).

In most situations, it is useful to decompose the reward R(s) into a task-related compo-
nent Rtask(s) and an environment-related component Renv(s), where the latter specifies
how the agent should behave in the environment, regardless of the task. We write the
reward function only as a function of states only for simplicity, as the state-space can
be formally extended to include the last action. Renv is more prone to misspecification,
because it needs to specify everything that can happen beyond a task, which can result
in undesired outcomes. Because the designer builds an RL agent to solve a specific
problem, it is relatively easy to anticipate considerations directly related to solving the
task in Rtask. Shah et al. [142] points out that environments are generally already opti-
mized for humans, hence defining Renv primarily requires specifying which attributes
of the environment the AI systems should not disturb. Therefore, penalizing large
changes in the current state of the world can be thought of as a coarse approximation
for Renv.

Impact regularization has emerged as a tractable and effective way to approximate Renv

(Armstrong and Levinstein [7], Krakovna et al. [93], and Turner, Hadfield-Menell, and
Tadepalli [161]). The main idea is to approximate Renv through a measure of “impact
on the environment”, which avoids negative side effects and reduces the burden on
the reward designer.

This chapter discusses impact regularizers of the form

R(st ) = Rspec(st )−λ ·d(st ,b(s0, st−1, t )) (2.1)

where st denotes the state at time step t , Rspec denotes the reward function specified
by the designer, containing the specified parts of both Rtask and Renv, and:
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• the baseline b(s0, st−1, t ) provides a state obtained by following a “default” or “safe”
policy at timestep t and uses either the initial state and the current time (s0, t ) to
compute it, or else the current state st−1,

• d measures the deviation of the realized state from the baseline state, and

• λ ≥ 0 gives a global scale at which to trade off the specified reward and the
regularization.

Composing these three terms gives a general formulation of regularization that en-
compasses most proposals found in the literature, but permits separate analysis.

We start by giving an overview of the related work on impact regularizers (Section 2.2),
before discussing the three main design decisions. First, we discuss how to choose
a baseline (Section 2.3), emphasizing considerations of environment dynamics and
a tendency for agents to offset their actions. Second, we discuss how to quantify
deviations from the baseline (Section 2.4), especially the distinction between nega-
tive, neutral, and positive side effects. Third, we discuss how to calibrate the scale
λ (Section 2.5) of the penalty. Finally, we propose some directions to improve the
effectiveness of impact regularization (Section 2.6) .

The main contribution of this work is to discuss in detail the current main challenges
of impact regularization, building upon previous work, and to suggest possible ways to
overcome these challenges.

2.2 Related Work

Amodei et al. [3] reviewed negative side effects as one of several problems in AI safety,
and discussed using impact regularization to avoid negative side effects. Since then,
several concrete approaches to impact regularization have been proposed. Equa-
tion (2.1) generalizes the majority of these and gives a common framework for compar-
ing approaches. Armstrong and Levinstein [7] proposed measuring the impact of the
agent compared to the inaction baseline, starting from the initial state s0. The inaction
baseline assumes the agent does nothing, formalized by assuming a non-action exists.
Armstrong and Levinstein [7] emphasized the importance of a semantically meaningful
state representation for the environment when measuring distances from the inaction
baseline.

While Armstrong and Levinstein [7] discussed the problem of measuring the impact
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of an agent abstractly, Krakovna et al. [93] proposed a concrete deviation measure
called Relative Reachability (RR). RR measures the average reduction in the number of
states reachable from the current state, compared to a baseline state. This captures the
intuition that irreversible changes to the environment should be penalized more, and
has advantages over using irreversibility as a measure of impact (as in Eysenbach et al.
[50]), such as permitting the quantification of the magnitude of different irreversible
changes.

Turner, Hadfield-Menell, and Tadepalli [161] and Krakovna et al. [93] generalized RR
to Attainable Utility Preservation (AUP) and Value Difference (VD) respectively, which
share the same form for the deviation measure:

dVD(st , s′t ) =∑
x

wx f
(
Vx (s′t )−Vx (st )

)
, (2.2)

where x ranges over some sources of value, Vx (st ) is the value of state st according to x,
wx is its weight in the sum and f is a function characterizing the deviation between the
values. AUP is a special case of VD with wx constant and f = x 7→ |x|. This formulation
captures the same intuition as RR, but measures the impact of the agent in terms
of different value functions, instead of counting states. AUP measures the agent’s
ability to achieve high utility on a range of different goals in the environment, and
penalizes any change that reduces this ability. Turner, Hadfield-Menell, and Tadepalli
[161] introduced the stepwise inaction baseline to mitigate offsetting behavior (c.f.
Section 2.3.2). This baseline follows an inaction policy starting from the previous state
st−1 rather than the starting state s0.

Krakovna et al. [92] built upon the VD measure by introducing an auxiliary loss repre-
senting how well the agent could solve future tasks in the same environment, given its
current state. This is a deviation measure in the form of Equation (2.1) that rewards
similarity with a baseline instead of penalizing deviation from it. Eysenbach et al. [50]’s
irreversibility penalty is a special case of Krakovna et al. [92].

Rahaman et al. [127] proposed learning an arrow of time. This directed reachability
measure observes that irreversible actions leave the environment in a more disorderly
state, making it possible to define an arrow of time with methods from thermodynam-
ics. As another alternative to impact regularization, Zhang, Durfee, and Singh [176]
and Zhang, Durfee, and Singh [175] propose that an AI learn how the environment
can be changed by asking a human overseer and derived an active querying approach
for maximally informative queries. Shah et al. [142] also learns which parts of the
environment a human cares about by assuming that the world is optimized to suit
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humans. Saisubramanian, Kamar, and Zilberstein [135] use a multi-objective Markov
Decision Process to learn a separate reward function penalizing negative side effects
and optimize this secondary objective while staying close to the optimal policy of the
task objective. Saisubramanian, Zilberstein, and Kamar [136] provide a broad overview
of the various approaches for mitigating negative side effects, while we zoom in on one
class of approaches, and discuss the corresponding challenges in detail.

2.3 Choosing a Baseline

Recent work mainly uses two types of baselines: (i) the inaction baseline b(s0, st , t) =
T (st |s0,πinaction) and (ii) the stepwise inaction baseline b(s0, st , t) = T (st |st−1,πinaction),
where T is the distribution over states st when starting at state s0 or st−1 respectively
and following the inaction policy πinaction that always takes an action anop that does
nothing.

Unfortunately, the inaction baseline can lead to undesirable offsetting behavior, where
the agent tries to undo the outcomes of the task after collecting the reward, by moving
back towards the initial baseline. The stepwise inaction baseline removes the offsetting
incentive of the agent by branching off from the previous state instead of the starting
state (Turner, Hadfield-Menell, and Tadepalli [161]). However, Krakovna et al. [92]
argued that offsetting behavior is desirable in many cases. Section 2.3.2 contributes to
this discussion by breaking down in detail when offsetting behavior is desirable, and
Section 2.3.3 argues that the inaction baseline and step-wise inaction baseline can lead
to inaction incentives. We start by observing that the inaction baseline and stepwise
inaction baseline do not always represent safe policies in Section 2.3.1.

2.3.1 Inaction Baselines are not Always Safe

The baseline used in impact regularization should be a safe policy where the AI system
does not harm its environment or itself. In many cases, taking no actions is a safe
policy for the agent, e.g. for a cleaning robot. However, if the AI system performs a task
requiring continuous control, inaction can be disastrous. For example, for an agent
driving a car, doing nothing likely results in a crash. This is particularly problematic
for the stepwise inaction baseline, which follows an inaction policy starting from the
previous state. The inaction policy starting from the initial state can be unsafe, for
example, if an agent takes over the control of the car from a human, and therefore the
initial state s0 already has the car driving.
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For this reason, designing a safe baseline for a task or environment that requires
continuous control is a hard problem. One possible approach is to design a policy
that is known to be safe based on expert knowledge. However, this can be a time-
consuming process, and is not always feasible. Designing safe baselines for tasks and
environments that require continuous control is an open problem that has to be solved
before impact regularization can be used in these applications.

2.3.2 Offsetting

An agent engages in offsetting behavior when it tries to undo the outcomes of previous
actions. Offsetting behavior can be desirable or undesirable, depending on which
outcomes the agent counteracts.

Undesirable offsetting

Impact regularizers with an inaction baseline can lead to undesirable offsetting be-
havior where the agent counteracts the outcomes of its task (Turner, Hadfield-Menell,
and Tadepalli [161]). For example, Krakovna et al. [93] consider a vase on a conveyor
belt. The agent is rewarded for taking the vase off the belt, preventing it from falling
off the belt. The desired behavior is to take the vase and stay put. The offsetting be-
havior is to take the vase off the belt, collect the reward, and afterwards put the vase
back on the conveyor belt to reduce deviation from the baseline. To understand this
offsetting behavior recall the decomposition of the true reward into a task-related and
an environment-related component from Section 2.1. A designer usually specifies a
task reward Rtask

spec that rewards states signaling task completion (taking the vase off the
belt). However, each task has consequences for the environment, which often are the
reason why the task should be completed in the first place (the vase being not broken).
In all but simple tasks, assigning a reward to every task consequence is impossible,
and so by omission, they have a zero reward. When impact regularization penalizes
consequences of completing the task, because they differ from the baseline, this re-
sults in undesirable offsetting behavior. The stepwise inaction baseline from Turner,
Ratzlaff, and Tadepalli [162] successfully removes offsetting incentives. However, in
other situations offsetting might be desired.
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Desirable Offsetting

In many cases, to prevent unnecessary side effects, offsetting is desired. Krakovna et al.
[92] give an example of an agent which is asked to go shopping, and needs to open the
front door of the house to go to the shop. If the agent leaves the door open, wind can
knock over a vase inside, which the agent can prevent by closing the door after leaving
the house. When using the stepwise inaction baseline (with rollouts, c.f. Section 2.4.2),
the agent is penalized once when opening the door for knocking over the vase in the
future, independent of whether it closes the door afterwards or not. Hence, for this
example, the offsetting behavior (closing the door) is desirable. The reasoning behind
this example can be generalized to all cases where the offsetting behavior concerns
states that are instrumental towards achieving the task (e.g. opening the door) and not
a consequence of completing the task (e.g. the vase being not broken).

A Need for a New Baseline

Recently proposed baselines either remove offsetting incentives altogether or allow
for both undesirable and desirable offsetting, which are both unsatisfactory solutions.
Krakovna et al. [92] proposed allowing all offsetting (e.g. by using the inaction baseline)
and rewarding all states where the task is completed in the specified reward function.
However, there are three important downsides to this approach. First, states that occur
after task completion can still have negative side effects; if the reward in these states
is high enough to prevent offsetting, the agent may pursue them and ignore their
negative side effects. Second, not all tasks have a distinct goal state that indicates
the completion of a task, but rather accumulate task-related rewards over time steps
during an episode. Third, since rewards continue after task completion, the agent will
try to prevent being shut down, a concern raised by Hadfield-Menell et al. [70].

In conclusion: offsetting is still an unsolved problem, with no baseline able to prevent
undesirable offsetting behavior but allow for desirable offsetting.

2.3.3 Environment Dynamics and Inaction Incentives

In dynamic environments that are sensitive to the agent’s actions, there will be inaction
incentives. Either the agent will be insufficiently regularized and possibly exhibit
undesired side effects (for small λ) or will not act at all (otherwise).
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Sensitivity to Typical Actions

One useful refinement for improving upon a simple action/inaction dichotomy is to
distinguish typical actions. An action is typical if it is commonly used for solving a wide
variety of tasks (e.g. moving). In an environment that is sensitive to typical actions,
impact regularizers with the current baselines may excessively prevent the agent from
engaging in normal operations. Thus, by penalizing typical actions less, it may be
possible to discourage atypical actions (e.g. discharging weaponry), without impeding
the normal operation of the agent.

Agent Capability and State Features

The inaction incentive is more apparent for agents highly capable of understanding
the detailed consequences of their actions, for example with a powerful physics en-
gine. For agents that can very accurately predict the implications of their actions, an
accompanyingly intelligent impact regularizer is also necessary. Correctly discount-
ing for uncertainty over factors outside of the agent’s control is a clear refinement.
Other possible steps could be to specifically distinguish and downweight higher-order
consquences or even adapt methods from psychology to combat “analysis paralysis”.

A related point is that one should not represent states with overly fine-grained features,
as too much information risks an agent making decisions on irrelevancies (Armstrong
and Levinstein [7]). For example, it would be counterproductive for an demand fore-
casting agent in an online sales environment to model each customer separately, when
broader aggregates would suffice. However, there are two issues with this approach
to mitigate the inaction incentive. First, the intrinsic dynamics of the environment
remains sensitive to small perturbations, even under coarser features (e.g. the specific
weather conditions). Second, for advanced AI systems, it might be beneficial to change
their feature representation to become more capable of predicting the consequences
of their actions. In this case, one would have no control over the granularity of the
features.

2.4 Choosing a Deviation Measure

A baseline defines a “safe” counterfactual to the agent’s actions. The deviation measure
determines how much a deviation from this baseline should be penalized or rewarded.
Currently, the main approaches to a deviation measure are the relative reachability
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(RR) measure, the attainable utility preservation (AUP) measure and the future task
reward (Krakovna et al. [92]). AUP and future task reward require a specification
of which tasks the agent might want to achieve in future. This section argues that
the current deviation measures still require specifying the value of the impact to
avoid unsatisfactory performance of the agent and that new rollout policies should
be designed that allow for a proper incorporation of delayed effects into the deviation
measure.

2.4.1 Which Side Effects are Negative?

An impact regularizer is meant to approximate Renv for all states in a tractable manner.
It does this by penalizing impact on the environment, built upon the assumption that
the environment is already optimized for human preferences (Shah et al. [142]). The
impact regularizer aims to penalize impact proportionally to the magnitude of this
impact assumed to be the magnitude of the side effect. However, not all impact is
negative – impact can be neutral or even positive. Renv does not only consider the
magnitude the impact on the environment, but also to which degree this impact is
negative, neutral or positive. Neglecting the associated value of impact can lead to
suboptimal agent behavior, as highlighted in the example below.

Example: The Chemical Production Plant

Consider an AI system controlling a plant producing a chemical product for which
various reactions exist, each producing a different combination of waste products. The
task of the AI system is to optimize the production rate of the plant. To minimize the
impact of the plant on the environment, the reward function of the agent is augmented
with an impact regularizer, which penalizes the mass of waste byproducts, compared
to an inaction baseline (where the plant is not operational). Some waste products are
harmless (e.g. O2), whereas others can be toxic. When the deviation measure of the
impact regularizer does not differentiate between negative, neutral or positive impact,
at any λ the AI system would choose a toxic byproduct as long as it is emitted at a
lower rate per unit of output. And moreover, if the AI were to discover a technique to
costlessly sequester carbon dioxide alongside its other tasks, a naı̈ve impact regularizer
would not tend to adopt it.
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Value Differences

To distinguish between positive, neutral and negative side effects, an approximation of
Renv that goes beyond measuring impact as a sole source of information is necessary.
Attainable utility preservation allows for differentiating between positive and negative
impact by defining the deviation measure as a sum of differences in value between a
baseline and the agent’s state-action pair for various value functions. Hence, it is possi-
ble to reflect how much the designer values different kinds of side effects in these value
functions. However, the challenge remains to design value functions that approximate
Renv sufficiently on the complete state space, which is again prone to reward misspeci-
fication. So although the value difference framework permits specifying values for side
effects, how to specify this notion of value is still an open problem.

2.4.2 Rollout Policies

The actions of an agent are not always immediately apparent after taking the action.
The stepwise inaction baseline (Turner, Hadfield-Menell, and Tadepalli [161]) ignores
all actions that took place before t −1, hence, to correctly penalize delayed effects, the
deviation measure needs to incorporate future effects. This can be done by collecting
rollouts of future trajectories using a model of the environment. These rollouts depend
on which rollout policy is followed by the agent in the simulation. For the baseline
states, the inaction policy is logical. For the future effects of the agent’s action, it is less
clear which rollout policy should be used. Turner, Hadfield-Menell, and Tadepalli [161]
use the inaction policy. considering a rollout where the agent takes its current action,
after which it cannot take any further actions. This approach has significant downsides,
because it may not allow the agent to consider future actions when determining the
impact penalty (e.g. the agent can take an action to jump, but cannot plan for its
landing accordingly in the rollout). Therefore, it seems that future work should develop
rollout policies different from the inaction policy, such as the current policy of the
agent.

2.5 Choosing the Magnitude of the Regularizer

To combine an impact regularizer with a specified reward function, the designer must
choose the magnitude of the regularizer λ. Turner, Hadfield-Menell, and Tadepalli
[161] say that “loosely speaking, λ can be interpreted as expressing the designer’s
beliefs about the extent to which R [the specified reward] might be misspecified”.
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If λ is too small, the regularizer may not reduce the risk of undesirable side effects.
If λ is too big, the regularizer will overly restrict necessary effects of the agent on
the environment, and the agent will be less effective at achieving its goal. While
the regularizers proposed by Krakovna et al. [93] and Turner, Hadfield-Menell, and
Tadepalli [161] already measure utility, in general λ must also handle a unit conversion
of the regularizer to make it comparable with the reward function.

Some intuition for choosingλ comes from a Bayesian perspective, where the regularizer
encodes prior knowledge and λ controls how far from the prior the posterior should
have moved. Another distinct view on setting λ comes from the dual optimization
problem, where it represents the Lagrange multiplier on an implied set of constraints: λ
is the magnitude of the regularizer for which the solution to the penalized optimization
problem coincides with a constrained optimization problem. Hence, the designer can
use λ to communicate constraints to the AI system, which is a natural way to pose
some common safety problems (Ray, Achiam, and Amodei [129]).

Armstrong and Levinstein [7] discuss tuning λ and note that unintuitively, the region
of useful λs can be small and hard to find safely, for example, by starting with a high
λ and reducing it until the agent achieves the desired behavior. For a fixed step-
size in decreasing λ, tuning might always jump from a λ implying inaction, to a λ

that yields unsafe behavior. The same holds for other common procedures to tune
hyperparameters.

2.6 Ways Forward

This section puts forward promising future research directions to overcome the chal-
lenges discussed in the previous sections.

2.6.1 A Causal Framing of Offsetting

Section 2.3.2 highlighted that some offsetting behavior is desired and some undesired.
To design an impact regularizer that allows for desired offsetting but prevents undesired
offsetting, one first needs a mechanism that can predict and differentiate between
these two types of offsetting. Undesired offsetting concerns the environment states
that are a consequence of the task. The difficulty lies in determining which states are a
causal consequence of the task being completed and differentiate them from states
that could have occurred regardless of the task.
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When the goal is to reach a certain state, the consequences of performing a task
can be formalized in a causal framework (Pearl [123]). Given a causal graph of the
environment-agent-interaction, the states that are a consequence of the task can be
obtained as the causal children nodes of the goal state. Hence, a baseline that allows for
desired offsetting but prevents undesired offsetting prevents the agent from interfering
with the children nodes of the goal states, while allowing for offsetting on other states.

Not all tasks have a distinct goal state indicating the completion of a task, but accu-
mulate instead task-related rewards during an episode. Extending this argument to
general tasks remains an open issue, for which causal influence diagrams (Everitt et al.
[49]) can provide a mathematical framework.

2.6.2 Probabilities as Baseline

Armstrong and Levinstein [7] argue that probabilities are better suited than coun-
terfactuals for measuring the impact of actions. Because the baseline is one specific
trajectory, it can differ considerably from the actual trajectory of the agent in environ-
ments that exhibit random dynamics. One approach to a more robust measure of the
agent’s impact on the environment is to compare probabilities that marginalize over
all external perturbations instead of comparing specific trajectories. Specifically, the
difference between the probability of reaching a state given that the actions that the
agent took, and that under the baseline. All influences of perturbations that did not
arise from the agent are marginalized out (averaged over) in these probabilities. Hence,
a divergence measure between these two probabilities can give a more robust measure
of potential impact of the agent, without being susceptible to non-necessary inaction
incentives. To the best of our knowledge, this idea has not yet been implemented as a
concrete impact regularization method.

2.6.3 Improved Human-Computer interaction

Side effects occur if there is a difference between the outcome an AI system achieves
and the intent of its (human) designer. Thus improving how well the designer can
communicate their intent to the AI system is an important aspect of eliminating side
effects (Leike et al. [100]). This emphasis on the human component of learning to avoid
negative side effects connects it closely to the problem of scalable oversight highlighted
by Amodei et al. [3].
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Improved Tools for Reward Designers

Commonly, when choosing an impact regularizer, a designer will iteratively test the
choice of baseline, deviation measure, and regularization strength in a sequence of
environments that increasingly resemble the production environment. At each iter-
ation, the designer identifies and corrects weaknesses, such that the criterion being
optimized becomes increasingly true to the designer’s intent. For example, an AI with
the goal to trade financial assets may be run against historical data (“backtested”)
in order to understand how it might have reacted in the past, and presented with
deliberately extreme inputs (“stress-tested”) in order to understand likely behavior in
out of sample situations. To design a reward function and a regularizer, it is crucial for
the designer to be able to understand how the system would react in novel situations
and how to fix it in case it exhibits undesired behavior. Further research to increase
the designer’s ability to understand how a system will react, will substantially help
the designer to communicate their intent more effectively. Work in the direction of
interpretability such as Gilpin et al. [63], and verification for example Huang et al. [80]
of machine learning models appear promising.

Actively Learning from Humans

Considering the problem from the perspective of the AI system, the goal is to better
understand the designer’s intent, especially in unanticipated scenarios. Instead of the
designer telling the system their intent, the system can also ask the designer about their
intent. To decide what to ask the designer, the system may be able to determine which
states it is most uncertain about, even if it is not able to accurately ascribe values to
some of them. Recent work, such as Christiano et al. [29], shows that such an approach
can be effectively used to learn from the human about a task, but it may also be used
to learn about the constraints of the environment and which side effects are desired
or undesired (Zhang, Durfee, and Singh [176]). Active learning could also provide a
different perspective on impact regularizers: instead of only penalizing impact on the
environment, a high value of the regularization term could be understood as indicating
feedback is needed. In particular, this approach could help to resolve situations in
which a positive task reward conflicts with the regularization term.
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2.7 Conclusion

Avoiding negative side effects in systems that have the capacity to cause harm is
necessary to fully realize the promise of AI. This chapter discussed a popular approach
to reduce negative side effects: impact regularization. We discussed the practical
difficulty of choosing each of the three components: a baseline, a deviation measure
and a regularization strength. Furthermore, we pointed to fundamental problems that
are currently not addressed by state-of-the-art methods, and presented several new
future research directions to address them. While our discussion showed that current
approaches still leave significant opportunities for future work, impact regularizers are
a promising idea for building the next generation of safe AI systems, and we hope that
our discussion is valuable for researchers trying to build new penalization functions.
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Chapter 3

Inversion and Safety

This chapter is mostly an expanded version of Matoba and Fleuret [109]. Section 3.4
is Matoba [107]. I wish to thank Arnaud Pannatier, Suraj Srinivas, Martin Jaggi, and
Pascal Frossard for their valuable feedback on the original works.

The guiding principle of this chapter is that although it may be difficult or impossible to
characterize ex nihilo failure modes, it is relatively easy for a domain expert to recognize
when shown examples. This meta-principle holds across fields. The phrase “I know it
when I see it” (cf. Gewirtz [60]) is used to describe situations where a comprehensive
definition is difficult, but judging individual instances is trivial. A proactive approach
to DNN safety is to build tools to enable neural network designers to “know it when
they see it” by inspecting their networks directly via the input-output mapping at
senstive inputs.

3.1 Introduction

Although deep neural networks (DNNs) can achieve excellent predictive accuracy,
reasoning about their performance is difficult, even for experts. Our goal is to enable
non-expert stakeholders, such as clinical health workers, investors, or military com-
manders to trust a statistical model in high-stakes environments. To do this, we posit
that decisionmakers want to understand a model in both directions, both from inputs
to outputs, but also being able to start with outputs, and understand the inputs that
lead to them.

This chapter develops an equivalent representation of a certain class of DNN classifiers.
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This representation requires only a basic numeracy to productively interact with and
can be used by domain experts to build intuition and trust. We apply this method
to a reinforcement learning agent trained to solve the cart-pole problem, and find
that a DNN implementing a successful policy makes a particular type of mistake on
24% of the mass of the 1/8th of the state space for which the optimal action is known
(Section 3.3.2). Section 3.3.3 shows how using the preimage in place of verification can
yield an efficient and interpretable end-to-end system for analyzing aircraft collision
avoidance systems.

3.1.1 Previous Work

DNNs have the property that knowing the output tells us very little about the input
it corresponds to. This is most apparent in image classifiers, where totally different
outputs can arise from inputs that are visually indistinguishable, see Szegedy et al.
[152]. This chapter builds upon the mathematical framework developed for verification
of DNNs, for example Tjeng, Xiao, and Tedrake [158] and Wong and Kolter [171].
Table 3.1 orients the present work to the literature.

Commonly called What is computed Examples

Verification ( f , X ,Y ) 7→ f −1(Y )∩X ==;(= f (X )∩Y ==;) [171]
Reachability ( f , X ) 7→ f (X ) [173]
Inversion ( f , y) 7→ f −1({y}) [25]
Preimage ( f ,Y ) 7→ f −1(Y ) Present work

Table 3.1: A taxonomy of previous work on inversion and verification. Here f :Rn1 →RnL

is a DNN, X ⊆Rn1 , x ∈Rn1 , Y ⊆RnL , and y ∈RnL .

Phrasing verification in this fashion facilitates comparison with the other points. In
image classification, X could be an epsilon ball around an input, with Y the halfspace
where one coordinate is higher than all others.

High level analyses typically entails many verifications: for example, studies often
verify the absence of adversarial examples around the entire training set, or give a
complete tradeoff between adversarial robustness and accuracy. Reachability is an
interesting extension to verification in that it computes the entire image of convex
input set. For example, the set of all logits attained within an epsilon ball around a
data point. Given this image, a verification can be performed by seeing if the image
intersects with a set Y , and any number of useful properties besides, with minimal
additional computation. Thus, reachability can be significantly more useful than
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verification for answering higher-level modelling questions.

Computing about the outputs that arise from a set of inputs is only half of the picture,
however. Ascertaining the inputs corresponding to a set of outputs gives a workable
approach to anticipate unforseen problems. And, since f −1(Y )∩X =; ⇐⇒ f (X )∩Y =;
gives a clear connection to verification. Carlsson, Azizpour, and Razavian [25] and
Behrmann et al. [12] are oriented backwards: they reconstruct the inputs that result
in an output. These papers study the statistical invariances that nonlinear layers
encode. Behrmann et al. [12] examines the preimage of a single point through a single
ReLU layer, analyzing stability via an approximation-based experiment. Carlsson,
Azizpour, and Razavian [25] analyzes theoretically the preimage of a single point
through the repeated application of a nonlinearity. This chapter looks at the preimage
of non-singleton subsets of the codomain, and requires considerable extension to their
approaches.

3.2 Method

The method is easily stated: it builds up the preimage of a DNN from the preimage
of its layers, using analytical formulae. We start by developing some properties of the
preimage operator, then we describe the class of sets that we compute the preimage
of, and finally we discuss the class of DNNs that our algorithm addresses.

3.2.1 Preimage Properties

Abstractly, a “layer” in a feedforward neural network is a function, and the entire neural
network is the composition of the action of each layer. Let f = fL◦ fL−1◦. . .◦ f1 denote the
network in this form, where the function fi characterizes the i th layer. Layers operate
on flattened tensors, for instance that a 2d convolutions on 3×32×32 tensor takes
as input 3072×1 vectors. This convention enforces compatibility with the polytope
formulation (Section 3.2.2), and amounts to a simple reindexing at worse.

Lemma 1 shows how to build up the preimage of a DNN from the preimages of its
constitutent layers. The proof of all statements is in Section 3.A.

Lemma 1 (Preimage of composition is reversed composition of preimages). For func-
tions f j :Rn j →Rn j+1 ,

( fℓ+k ◦ fℓ+k−1 ◦ . . .◦ fℓ)−1 = f −1
ℓ ◦ . . .◦ f −1

ℓ+k−1 ◦ f −1
ℓ+k . (3.1)
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Secondly, is an intuitive property of f −1 that is handy for building up the preimage of
any set from the preimages of any partition of that set.

Lemma 2 (Preimage of union is union of preimages).

f −1 (∪N
i=1Si

)=∪N
i=1 f −1(Si ).

3.2.2 Polytopes

The method is not applicable to arbitrary sets Y , but rather to sets that are defined by
piecewise linear inequalities. The basic building block of these sets are polytopes.

Definition 1 (Polytope). A polytope inRn is a set that can be written as {x ∈Rn : b−Ax ≥ 0}

for some m ∈N, b ∈Rm , and A ∈Rm×n .

Definition 1 does not require that polytopes be bounded, but polytopes are convex.
Sets with linear boundaries, though generally non-convex, can decomposed into the
union of polytopes. We term such sets region-unions, and the set of polytopes which
comprise them, regions.

Definition 2 (Region and region-union). For N ∈N,bi ∈Rmi , Ai ∈Rmi×n , with mi ∈N, a
region is a set of polytopes, {{x : bi − Ai x ≥ 0} ; i = 1, . . . , N }. A region-union is a set ∪r∈R r

for some region R.

Region-unions are interesting because the preimage of polytopes under piecewise
linear functions are regions-unions. Thus, the preimages of region-unions through
both ReLU and linear layers are region-unions. It is necessary to also keep information
on how to form a region-union, hence the notion of a region. Note that if R1 and R2 are
regions, then R1 ∪R2 is a region, and correspondingly for region-unions.

3.2.3 Linear and ReLU Polytope Preimages

This section introduces formulae for the preimage of linear and ReLU functions, giving
content to Lemma 1. The preimage of a polytope under linear mappings is a polytope:

Lemma 3 (Preimage of Linear Layer).

(x 7→W x +a)−1({x : b − Ax ≥ 0}) = {x : (b − Aa)− AW x ≥ 0}. (3.2)
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ReLU is a piecewise linear function, so carefully treating the subsets of the domain on
which it exhibits different behavior, gives a similar formulation for each:

Lemma 4 (Preimage of ReLU Layer).

ReLU−1({x : b − Ax ≥ 0})

= ⋃
ν∈{0,1}n

{
x : b − Adiag(ν)x ≥ 0,−diag(1−ν)x ≥ 0,diag(ν)x ≥ 0

}
. (3.3)

To understand Lemma 4 let s(x) be the vector given by s(x)i = 1 if xi ≥ 0 and zero
otherwise. Then diag(s(x))x = ReLU(x). This expression separates x 7→ ReLU(x) into a
pattern of signs over its coordinates and x itself. Thus, restricting attention to a set
on which the sign does not change, familiar linear algebra routines can be used to
compute the preimage set, akin to Lemma 3. The nonnegative values are denoted by
ν ∈ {0,1}n in the above, and the set of x such that xi ≥ 0 ⇐⇒ νi = 1 is given by diag(ν)x ≥ 0.
Similarly, xi ≤ 0 ⇐⇒ νi = 0 for i = 1,2, . . . ,n if and only if −diag(1−ν)x ≥ 0. Equation (3.3)
follows by partitioning Rn into the 2n sets where each coordinate is nonnegative or not.

Computing the preimage of a ReLU layer is intractable at scale, though the problem
exhibits considerable structure. The fundamental problem of computing a preimage is
the same as that of verification – searching all possible sign patterns – thus it appears
likely that it is possible to compute the preimage of networks of a similar scale to those
that can be verified. Preimages are most insightful and useful when the inputs and
outputs have definite interpretation. Thus, it is possible and useful to compute the
preimage of engineering DNNs.

3.3 Experiments

3.3.1 Two Moons Classification

The first experiment fits a DNN f : [−3,+3]2 →R2 consisting of two nonlinear layers with
eight neurons each, on an instance of the “two moons” dataset. This data is shown in
Figure 3.1a (further details of details of f and the data are in Section 3.D.1). Figure 3.1b
plots the corresponding logits, along with the sets to be inverted {x : x1 ≶ x2} ⊆ R2.
Figure 3.1c shows the corresponding preimages, with different hues of the same color
corresponding to different sign patterns ν in Equation (3.3).
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(a) (b) (c)

Figure 3.1: Inversion of a simple DNN R2 7→ R2 fit to the “two moons” data shown in
Figure 3.1a. Figure 3.1b is the logits from a simple DNN corresponding to each data
point, along with the decision boundary. Figure 3.1c shows the preimages comprised
of polytopes that form the region-union.

3.3.2 Cart-pole Reinforcement Learning Agent

In the “cart pole” control problem a pole is balanced atop a cart which moves along a
one dimensional track (Figure 3.2). Gravity pulls the pole downward, the falling of the
pole pushes the cart, and external movement of the cart pushes the pole in turn. The
goal is to keep the pole upright by accelerating the cart.

In the formulation of Brockman et al. [19] controller inputs are: the position of the cart,
x, velocity of the cart ẋ, the angle of the pole from upright θ, and the angular velocity
of the pole θ̇. Possible actions are to accelerate the cart in the positive or negative x

direction. The environment encourages balancing by a unit reward per period before
failure, where failure means that the pole is not sufficiently upright (θ ̸∈ [−π/15,+π/15]),
or the cart is not near enough the origin (x ̸∈ [−2.4,+2.4]). There are no prescribed limits
for ẋ and θ̇, but via a methodology described in Section 3.D.2, these states take values
in [−3.0,+3.0]× [−3.5,+3.5].

Consider a still cart and pole (ẋ = θ̇ = 0), with the cart left of zero (x ≤ 0) and the pole
left of vertical (θ ≤ 0). Keeping x and θ near zero is preferable, since these are further
from failure, so moving left will steady θ but worsen x. Nonzero velocities are more
complicated, but one configuration is unambiguous: if x ≤ 0, ẋ ≤ 0,θ ≥ 0, θ̇ ≥ 0, then
pushing right is clearly the correct action. Figure 3.2 depicts a value in this orthant. Let
D+1 = (−∞,0]2 × [0,∞)2, and correspondingly, let D−1 = [0,+∞)2 × (−∞,0]2.

We fit a one hidden layer neural network control function f : R4 → R2 using policy
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−2.0 −1.5 −1.0 −0.5 0.0
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Figure 3.2: The state space of the cart pole
problem, schematically. Here x ≤ 0 (the
cart is left of the origin), ẋ ≤ 0 (the cart is
moving leftward), θ ≥ 0 (the pole is right
of vertical), and θ̇ ≥ 0 (the pole is moving
rightward).
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Figure 3.3: Projection of subsets of the
domain where the wrong action is taken,
with the hue of the area being propor-
tional to the volume of the wrong sets, di-
vided by the volume of the projection.

gradient reinforcement learning. Details of this calculation are in Section 3.D.2. This
agent succeeds in balancing the pole: in 1000 trials of 200 periods, (x,θ) remains
uniformly in [−.75,+.75]× [−.05,+.05] with very low velocities. Nonetheless there are
many states for which pushing right is clearly the correct action, but for which the DNN
controller predicts −1: in the same simulation of 1000 trials of 200 steps, roughly 7% of
actions performed by the agent fail this sanity check. Such behavior is not a numerical
fluke – it holds if states only nonnegligibly interior to D+1 and D−1 are considered, and
also if only predictions that are made with probability greater than .51 are counted.
One such pocket of clearly wrong behavior is

[−2.399,−1.462]× [−2.922,−2.262]× [+1.798×10−8,+0.1067]× [+1.399,+1.728] ⊆
D+1 ∩ f −1({x ∈R2 : x1 > x2}).

This box is large – for example the first coordinate comprises almost 20% of that
dimension of the state space. And moreover, this box is inscribed within a larger
polytope (using the algorithm of Bemporad, Filippi, and Torrisi [13]) that has a volume
about 40 times larger. The total volume in R4 of these sets is 3% of the state space
volume, and thus 24% of the volume of D−1 ∪D+1. Figure 3.3 parses this surprising
fact a bit further by plotting the projection of the four-dimensional domain onto the
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(x,θ) plane. The hue of the gray is proportional to the volume of the four-dimensional
polytope divided by the volume of the two-dimensional projection, so darker areas
mean more (ẋ, θ̇) mass that is wrong. Since the entirety of the second and fourth
quadrants are grey at every (x,θ) ∈ [−2.4,+2.4]× [−π/15,+π/15] there are some (ẋ, θ̇)

where the cart will be pushed left, when right is clearly the correct action, or vice versa.

3.3.3 Collision Avoidance Systems

The final application shows how to use domain knowledge to anticipate dangerous
behavior of a DNN in a complex modelling domain.

Background

Aircraft automated collision avoidance systems (ACAS) are navigational aids that use
data on aircraft positions and velocities to issue guidance on evasive actions to prevent
collisions with an intruding aircraft. The ACAS developed in Kochenderfer and Chrys-
santhacopoulos [90] uses dynamic programming to formulate the optimal control of a
partially observed Markov process, and issues advisories to optimize a criterion that
penalizes near collisions and raising false or inconsistent warnings. Evaluating the
policy function is too resource-intensive to run on certified avionics hardware. DNNs
have been been found to be adequate approximators that require little storage and can
perform inference quickly. Unfortunately, even accurate DNNs can give very wrong
predictions on some inputs – Katz et al. [87], for example show that when another
aircraft is nearby and approaching from the left, a DNN-based approximation need
not advise the correct action of turning right aggressively.

Verification can check that one-step behavior in a DNN-based ACAS behaves as in-
tended. However, it cannot answer higher level questions like “will a near-collision
occur if this policy is followed?” The idea of Julian and Kochenderfer [84] is to verify
dynamic properties of such systems by combining single-step verification with worst-
case assumptions about randomness in state transitions and (constrained) behavior of
other aircraft.

Discretize and Verify

In Julian and Kochenderfer [84], the state consists of distances (x, y) between two
aircraft, and an angle of approach angle between them, ψ. The actions are five turn-
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g Volume fraction

40 0.05128
80 0.02532
120 0.01681
160 0.01267
200 0.01005

Table 3.2: Quantifying the inefficiency of discretization: Each of the three dimensions,
(x, y,ψ) is discretized into a grid of size g , so that the domain is partitioned into g 3

cubes. “Volume fraction” gives the fraction of cubes for which all eight corners of
this cube do not evaluate to the same prediction, a sufficient condition for the cell to
intersect with a decision boundary.

ing advisories: (1) “clear of conflict” (COC), (2) weak left [turn] (WL), (3) strong left
(SL), (4) weak right (WR), and (5) strong right (SR). The initial condition is given by
the boundary of the domain where the distance of the intruding aircraft are at their
maxima. Transition dynamics are denoted by Ψ(a,S), a set-valued function giving the
set of states that are reachable from states S under action a. Ψ encompasses both
randomness in transition, and behavior of the other aircraft. The change in (x, y) is
controlled by the angle between the crafts, and the update to the angle is the difference
between the turning of the two crafts, with some randomness. To compute the states
that can arise under a policy, the idea is to begin from an initial set of states known
to be reachable, and to iteratively append states that are reachable from any of those
states, until a fixed point is reached. U are the states to preclude.

This idea is formalized by Julian and Kochenderfer [84] as Algorithm 1. This algorithm
loops through starting cells, advisories, and all cells accessible from the starting cell
under the advsories until either a fixed point is reached, an unsafe state is visited, or
the encounter ends. Because multiple advisories are issued whenever a cell straddles
the decision boundary, the discretized algorithm will wrongly include some states as
reachable since a worst-case analysis needs to take account of all reachable states.
Table 3.2 indicates the magnitude of overestimation, presenting how much of the state
space will lead to multiple advisories under a simple discretization scheme.

Julian and Kochenderfer [84] use a dynamic grid with finer resolution where the func-
tion changes more;an improvement on an equispaced grid that not fundamentally
address discretization error. And any false positives in a single-step decision function
will be amplified in the dynamic analysis, as more reachable states at one step lead
to even more reachable points subsequently, so overestimation at one step will com-
pound through the dynamics. Not coincidentally, Julian and Kochenderfer [84] reach a
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usable solution, but are unable to guarantee the absence of near collisions under some
realistic parameter configuations.

Data: Initial state set R0, policy f , unsafe set U , transition dynamics Ψ,
encounter length T .

Result: Guaranteed to not reach an unsafe state from R0 under policy f ?
initialization: t = 0, done = False;
Partition the state space into cells c ∈C ;
while not done do

t = t +1;
Rt =;;
for c ∈C such that c ∩Rt−1 ̸= ; do

for i such that f (c)∩ {x : xi ≥ x j for j ̸= i } ̸= ; do
for c ′ ∈C such that c ′∩Ψ(i ,c) ̸= ; do

Rt ←Rt ∪ c ′

end
end

end
done = Rt ==Rt−1 or U ∩Rt ̸= ; or t > T .

end
Return Rt ∩U ==;

Algorithm 1: Algorithm from Julian and Kochenderfer [84] for computing whether
an unsafe set U can be reached under a policy f beginning from R0 under transition
dynamics Ψ.

Note how the cells can be traversed in any order, indicating that this algorithm is
not fully using the spatial structure of the problem. Algorithm 2 incorporates the
knowledge that behavior should be spatially autocorrelated.

A Preimage-Based Alternative

Rather than looping first the domain, then over actions at those points, using the
preimage Algorithm 2 loops over actions i , computing all reachable points under a.

Algorithm 2 is exact – it will never wrongly say that a state can be reached – while the
accuracy of Algorithm 1 is controlled by the number of cells, |C |. This is because it
is necessary to perform nL verifications for each reachable cell, and the number of
reachable cells is proportional to |C |. Let V denote the cost of a verification. Verification
is known to be NP-complete (see Katz et al. [87]), so V dominates all other calculations
such as computing intersections or evaluating Ψ(i ,c). Thus, the computational cost
of Algorithm 1 is O(|C |V nL). Algorithm 2 must initially compute nL preimages which
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Data: R0, f , U , Ψ, T .
Result: Guaranteed to not reach an unsafe state from R0 under policy f ?
initialization: t = 0, done = False;
for i = 1,2, . . . ,nL do

Ξi = f −1({x : xi ≥ x j for j ̸= i })
end
while not done do

t = t +1;
Rt =;;
for i = 1,2, . . . ,nL do

Rt ←Rt ∪Ψ(i ,Ξi ∩Rt−1);
end
done = Rt ==Rt−1 or U ∩Rt ̸= ; or t > T .

end
Return U ∩Rt ==;.

Algorithm 2: Our preimage-based, exact algorithm for computing the dynamically
reachable states in an ACAS.

dominates the entire calculation, consisting of fast operations – applying the dynamics
and computing intersections up to T times, for T a number around 40.

Let P denote the cost of computing a preimage, then the cost of Algorithm 2 is O(PnL).
So whilst it dispenses with the need to solve O(|C |) verifications, it may be more
intractable if P is significantly greater than V . However, exact verification for even
a single cell is impossible at present for large networks and computing preimages is
computationally hard for the exact same reason that verification is complex – the need
to check most of the sign patterns. Thus, it seems very plausible that the computational
cost of computing a preimage is proportional to that of performing a verification on the
same network: P =O(V ). The practical tractability of both P and V hinges importantly
upon theoretical arguments showing that not all 2n configurations of the nonlinearities
of an n-dimensional layer can be achieved (Serra, Tjandraatmadja, and Ramalingam
[141] and Hanin and Rolnick [72]), and clever implementations that take account of
the structure of the problems (e.g. Tjeng, Xiao, and Tedrake [158] and Katz et al. [87]).

An encounter plot such as Figure 3.4 makes clear the distinction between the two
algorithms. Encounter plots depict the advisories, for a fixed angle of approach (con-
veyed by the angle between the red and black aircrafts), for each relative position. This
figure replicates Julian and Kochenderfer [84, Figure 4] except in one crucial respect:
the preimage of the five sets where each of the advisories are issued are analytically-
computed (details of the experiment are in Section 3.D.3). The shaded areas arise
from plotting polytopes, as in Algorithm 2. Julian and Kochenderfer [84], on the other
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Figure 3.4: An encounter plot showing the optimal action at each (x, y) for a fixed angle
of approach, indicated by the perpendicular orientation of the red (intruder) aircraft
(here π/2). Distances are measured in kilofeet.

hand, produce such plots by evaluating the predictions of the network on a fine grid.
The different manner in which the plots are produced is an exact analogue of the
different way that the networks are summarized and analyzed through time. In par-
ticular, discretization can never preclude small (but practically significant) pockets
of unexpected behavior, but preimages can. The next section gives some preliminary
analysis that permits tackling this problem with a clear tradeoff between completeness
and computation.

3.4 Locating Unsafe Regions

Tha analysis above showed that deep neural networks can demonstrate excellent
performance on a task most of the time, but exhibit nonsensical behavior at isolated
points in the domain for reasons that are not well understood. Preimages offer a way to
observe this phenomenon if present, but is intractable at scale. This section presents
a novel approach that gives a clear tradeoff between computation and the possible
volume of a a connected set of adversarial inputs. Specifically, it shows that for a set
of inputs with sufficiently low-discrepancy (a measure of uniformity), it is possible
to guarantee that adversarial inputs will be observed if they exist. Or, that for inputs
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that are of sufficiently low discrepancy, the set of adversarial inputs cannot be too
large. Like existing methods (Wong and Kolter [171], Zhang et al. [174], and Virmaux
and Scaman [166]), the effectiveness of this approach hinges on the smoothness of
the input-output mapping, but instead of optimization, abstract interpretation (Gehr
et al. [59]) or some other way to summarize the behavior of the network over all inputs,
it uses only function evaluations and relies on the coverage of the input space to
furnish the needed structure via a powerful result from the theory of quasi monte carlo
integration.

3.4.1 A Simple Model of Robustness

As a simple, extensible model of uncovering unanticipated behaviour, akin to Sec-
tion 3.3.2, consider the following scenario. Domain knowledge (such as the argument
that ∀x ∈ D+1, f (x) = 1) specifies that a neural network f is expected to take the value
one1 uniformly over values on the unit cube, [0,1]d . The verification problem is to
determine whether there is a connected region of volume ϵ on which the output is zero.
For brevity, call this subset the “unsafe region”. The goal is thus to determine if a net-
work has an unsafe region. Although unsafe regions of measure zero are conceptually
interesting and practically relevant, they cannot be addressed by this method.

3.4.2 Verification by Sampling

The proposed approach is to “brute force” the model, by evaluating it at many points,
designed so that the fewest number of points are needed to discover an unsafe region
of a given volume, ϵ. Let P = {x1, . . . , xn}⊊ [0,1)d denote an arbitrary point set of size n

in dimension d to search for unsafe points. One nondeterministic baseline would be to
choose identically, independently distributed inputs uniformly, so that the probability
of a single sample falling in the unsafe region would be ϵ, and the probability of having
at least one of n samples in the unsafe region would be 1− (1− ϵ)n . A deterministic
baseline is an equispaced regular grid of p ≜ logd (n) points along each of d dimensions:
{(i1/(p +1), i2/(p +1), . . . , id /(p +1)) : ik = 1, . . . , p,k = 1, . . . ,d}. However, the function

1This argument considers the network as including a thresholding to {0,1}, representing a binary
classifier. This fits seamlessly with the smoothness measure to be used subsequently. The argument
for real-valued networks is similar if the condition of equality with one is replaced by being above some
threshold.
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z 7→
1 if |zi −k/(p +1)| ≤ (1−ϵ

n

)1/d for some i ,k

0 otherwise

satisfies f (x j ) = 1 for all x j ∈ P , and yet also characterizes a connected set of mass ϵ
on which f (x) = 0. The remainder of this section shows how to reduce the search for
an unsafe region to bounding the integration error. Then next section introduces a
decomposition of this error, concluding with a lower bound on the size of a data set
necessary to discover an unsafe region of volume ϵ, if it exists.

3.4.3 Discrepancy

Quasi monte carlo (QMC) pointsets exhibit low discrepancy, a notion of maximal
deviation from uniformity. Let a = (a1, a2, . . . , an) ∈ [0,1)d , and let

δ(a;P ) = 1

n

n∑
i=1

1[0,ai )(xi )−
d∏

j=1
a j .

δ(a;P ) measures the difference between the empirical fraction of points in [0, a) and
the volume of [0, a): a natural measure of the deviation from uniformity of P on [0, a).
The (star) disrepancy of P is the maximum over all intervals starting at the origin:

D⋆(P ) = sup
a∈[0,1)d

|δ(a;P )|. (3.4)

In one dimension, the star discrepancy is the Kolmogorov-Smirnoff statistic for testing
whether P is a realization from a uniform distribution. Figure 3.5 presents a QMC
pointset visually in agreement with the definition above: the number of points in
each subset is roughly proportional to the volume, for every subset. This is not true of
pseudorandomly generated random numbers, which exhibit “clumps”. QMC pointsets
are especially important in high dimensions, where clumps of points necessarily lead
to voids of higher volume.

3.4.4 Hardy-Krause Variation

Controlling the Lipschitz constant of a DNN is a reliable method to improve the adver-
sarial robustness of a deep neural network (Zhang et al. [174] and Virmaux and Scaman
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Figure 3.5: Left: Scrambled Sobol sequence of 2048 points on the 2-d unit cube. Right:
Equal number of uniformly distributed points. It is visually apparent that the Sobol
sequence has fewer gaps.

[166]). The Hardy-Krause variation is a similar measure of regularity. The simplest way
to understand the Hardy-Krause variation is as a multidimensional analogue of the
total variation, to which it reduces in one dimension. Let

Bn = {b : [b0,b1]∪ [b1,b2]∪ . . .∪ [bn ,bn+1] = [0,1],0 = b0 < b1 < b2 < . . . < bn < bn+1 = 1},

then the total variation of a function f is maxn supb∈Bn

∑n
j=0 | f (b j+1)− f (b j )|. Hardy-

Krause variation gives quantitatively meaningful bounds even for discontinuous func-
tions, e.g. step functions have bounded Hardy-Krause variation, but an unbounded
Lipschitz constant. The definition for general dimension is complex, and so omitted
here – a concise definition is given in Owen [119, Definition 2]. Basu and Owen [11]
give more detail on the Hardy-Krause variation, including an upper bound in terms of
average mixed derivatives. Recent work, such as Pausinger and Svane [122], appears to
be moving towards alternative measures of variation that are more tractable. Overall, it
appears that the best method for bounding the (Hardy-Krause, or otherwise) variation
of a function is unresolved, and is a topic of ongoing research.
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3.4.5 A Dataset Size Bound

If an unsafe region exists, then
∫

[0,1]d f (x)dx = 1− ϵ. Given P , an unsafe input will be
found if 1

n

∑n
i=1 f (xi ) < 1, if

1

n

n∑
i=1

f (xi )−1+ϵ≤
∣∣∣∣∣ 1

n

n∑
i=1

f (xi )− (1−ϵ)

∣∣∣∣∣< ϵ.

The Koksma-Hlawka inequality (Hlawka [77]) states that∣∣∣∣∣ 1

n

n∑
i=1

f (xi )−
∫

[0,1]d
f (x)dx

∣∣∣∣∣≤ D⋆(P )×VHK( f ), (3.5)

where D⋆(P ) is the star discrepancy of P (Equation (3.4)) and VHK( f ) is the Hardy-
Krause variation of f . This elegant result bounds the error of an approximate integra-
tion as the product of a component that depends only on how uniform is the pointset,
and another that depends on how regular is the integrand. And more importantly,
for any f with VHK( f ) <∞, it characterizes how large a point set need be to achieve
a particular level of error. If P is a Halton sequence – a QMC pointset construction
contained in scikit-learn – then D⋆(P ) ≤ c(d)(logn)d /n for a constant c(d) that can be
derived from the expression in Atanassov [8, Theorem 2.1]. Let id denote the inverse of
n 7→ (logn)d /n,2 then for P constructed via a Halton sequence, if

VHK( f )c(d)(logn)d /n ≤ ϵ ⇐⇒ n ≥ i

(
ϵ

VHK( f )c(d)

)
,

then D⋆(P ) < ϵ/VHK( f ), meaning that if an unsafe region of volume ϵ exists, at least one
element of the pointset will fall within it. More sophisticated point set contructions
can improve the error rate, and this is an active area of QMC research. For instance,
Dick [41] improves the effective D⋆(P ) to O((logn)d /n3/2) in some situations.

This result still faces impediments to its practical application. Software to work with low
discrepancy point sets is immature; for example, the Sobol pointsets built into PyTorch
hardcodes certain parameters from Joe and Kuo [83] that affect discrepancy. VHK is
complicated to bound, and the number of required points may be large. Nonetheless,
this analysis shows that with a principled construction and an adequate number of

2Technically, this function is monotonic only for n ≥ exp(d) – this is a very weak condition.
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points, it is possible to guarantee robustness, and using only function evaluations.

3.5 Conclusion

The first part of this chapter proposed computing the preimage of the decisions of
a DNN as an intuitive diagnostic that can anticipate problems and help domain ex-
perts gain trust in a DNN, even if they cannot formally articulate what makes a DNN
trustworthy. In order to do this, it developed the preimage of a DNN and presented
an algorithm to compute it. Section 3.3 demonstrated the utility of the preimage to
understand counterintuitive behavior from a cart pole agent, and to more precisely
characterize the set of states that would be reachable in an existing application of
DNNs to aircraft automated collision avoidance systems.

Section 3.4 took a different approach, transposing a foundational result from quasi
monte carlo integration theory to analyze a simple model of DNN safety. It identified
the Hardy-Krause variation of a DNN as an interesting quantity (alongside its Lipschitz
constant and other measures of smoothness), and furthermore showed that low dis-
crepancy point sets are a good approach to summarizing the behavior of a deep neural
network, especially in high dimensions.

3.A Proofs

3.A.1 Proof of Lemma 1

Proof. Unroll Equation (3.1). Let S ⊆Rnℓ+k be arbitrary.

( fℓ+k ◦ fℓ+k−1 ◦ . . .◦ fℓ)−1(S)

={x : ( fℓ+k ◦ fℓ+k−1 ◦ . . .◦ fℓ)(x) ∈ S}

={x : fℓ+k (( fℓ+k−1 ◦ fℓ+k−2 ◦ . . .◦ fℓ)(x)) ∈ S}

={x : ( fℓ+k−1 ◦ fℓ+k−2 ◦ . . .◦ fℓ)(x) ∈ f −1
ℓ+k (S)}

= ...

={x : ( fℓ+1 ◦ fℓ)(x) ∈ ( f −1
ℓ+2 ◦ . . .◦ f −1

ℓ+k−1 ◦ f −1
ℓ+k )(S)}

={x : fℓ(x) ∈ ( f −1
ℓ+1 ◦ f −1

ℓ+2 ◦ . . .◦ f −1
ℓ+k−1 ◦ f −1

ℓ+k )(S)}

=( f −1
ℓ ◦ . . .◦ f −1

ℓ+k−1 ◦ fℓ+k)−1(S).

(3.6)
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3.A.2 Proof of Lemma 2

Proof.

x ∈ f −1(∪N
i=1Si ) ⇐⇒

f (x) ∈∪N
i=1Si ⇐⇒

f (x) ∈ S1 or f (x) ∈ S2 or . . . or f (x) ∈ SN ⇐⇒
x ∈ f −1(S1) or x ∈ f −1(S2) ∈ S2 or . . . or x ∈ f −1(SN ) ⇐⇒
x ∈∪N

i=1 f −1(Si ).

An identical argument shows that f −1
(∩N

i=1Si
)=∩N

i=1 f −1(Si ), which can be useful in an
application where, for Si =Ψ∩Ξi , writing ∪i Si as Ψ∩∪iΞi may be more efficient.

3.B The Inverse of a Residual Block

The key function in a residual block is x 7→W2ReLU(W1x)+ x. Combining arguments
similar to Lemma 3 and Lemma 4, gives Lemma 5.

Lemma 5 (Preimage of residual block).

(z 7→W2ReLU(W1z)+ z)−1({x : b − Ax ≥ 0})

={x : b − A(W2ReLU(W1x)+x) ≥ 0}

= ⋃
ν∈{0,1}n

{
x : b − A(W2diag(ν)W1 + I )x ≥ 0,−diag(1−ν)W1x ≥ 0,diag(ν)W1x ≥ 0

}
.

(3.7)

3.C Collecting This All Up

Combining Section 3.2.1, Section 3.2.2, and Section 3.2.3 give a recipe for computing
the preimage of region-unions for DNNs which can be written as the composition of
linear and ReLU functions. To summarize the steps are:
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1. Put the network into “standard form”:

(a) Embed any transformations that are “off” at inference time, such as dropout
or batch normalization into the weights.

(b) Rewrite the network in flattened form.

(c) Rewrite all transformations as compositions of linear and ReLU functions
(cf. Section 1.2.2).

2. Let f = fL ◦ fL−1 ◦ . . .◦ f1 denote the network in this form.

3. Let RL =∪i∆i be the image set to be inverted, for example RL =∆1 = {x : x1 ≥ x2} ⊆
R2 in a binary classifier.

4. Compute f −1
L (∆i ) for all i , using Lemma 3 or Lemma 4.

5. Each term above is a region-union, thus ∪i f −1
L (∆i ) is a region-union.

6. By Lemma 2, RL−1 ≜ f −1
L (RL) =∪i f −1

L (∆i ).

7. RL−1 is a region-union =⇒ RL−2 ≜ f −1
L−1(RL−1) = f −1

L−1( f −1
L (RL)).

8. Repeat for ℓ= L−2, . . . ,1 to compute R0 = f −1
1 (R1) = . . . = ( f −1

1 ◦ f −1
2 ◦ . . .◦ f −1

L )(RL).

9. Appeal to Equation (3.1) to conclude that R0 = f −1(RL).

3.D Details of Experiments

3.D.1 Experiment in Section 3.3.1

The dataset is constructed using the function sklearn.datasets.make_moons from
scikit-learn (Buitinck et al. [21]) with noise = .2 to generate 500 samples.

Weights are initialized according to a uniform
(
−
p

in features,+
p

in features
)

distribu-
tion (the PyTorch default), and were run for 1000 epochs of with a batch size of 128.
Gradient steps were chosen by the Adam optimizer (Kingma and Ba [89]) with learning
rate of 0.005 and default (β1,β2) = (0.9,0.999).

3.D.2 Experiment in Section 3.3.2

This experiment is based upon the “CartPole-v1” environment from Brockman et al.
[19]. The fitting procedure is based upon the Monte Carlo policy gradient vignette
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from the PyTorch project, with a considerably simplified control policy, consisting of
DNN wih only five hidden units.

Velocity magnitude

There seems to be no single methodology for computing limits on the velocities (ẋ, θ̇)

in the cart pole problem. In premise, very high velocities could be supported by the
discretization scheme, but these are unlikely to be achieved by any feasible sequence
of actions.

An interpretable baseline that gives quantitative bounds robust to details of parame-
terizations would is best. For this, we chose limits on ẋ, θ̇ as the values that answer the
question “how fast can the cart and pole be moving if we start from rest with the cart
all the way to the right, and the pole all the way to the left, and continually push left
until failure?”. This experiment is plotted in Figure 3.6, where we see that the implied
limits are ±3.0 and ±3.5 for ẋ and θ̇, respectively. These limits largely agree with three
the other candidates:

• The same experiment, although constrained to obey the same initialization as in
Brockman et al. [19].

• A simple agent which seeks out high velocities by pushing first in a uniform
direction, then switching to the opposite direction.

• The most extreme values emitted from a small DNN that is able to eventually
achieve good performance.

3.D.3 Experiment in Section 3.3.3

The analysis presented in Section 3.3.3 uses data generated by Julian and Kochenderfer
[84]’s software that formulates and solves dynamic programs to deliver lookup tables
of optimal collision avoidance behavior in the same manner as the FAA’s proprietary
software (cf. Kochenderfer and Chryssanthacopoulos [90]). Our DNN modelling
makes some methodological improvements in order to achieve better results at smaller
network sizes – necessary for the feasibility of inversion. This section details the aspects
of the analysis that differ from Julian and Kochenderfer [84], with the bottom line being
that our results can be directly compared to theirs.
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Figure 3.6: The evolution of the cart pole state under a policy which continually
accelerates left until failure (when θ ≥π/15), starting from rest, with the cart near the
right boundary and the pole near its right boundary ((x, ẋ,θ, θ̇) = (2.39,0,−.20,0)).

Fitting – Optimization Criterion

The first manner in which our approach is different is the fitting criterion: Julian and
Kochenderfer [84] classify indirectly: by first fitting the continuation value to taking
each action, and then choosing the action with the highest predicted continuation
value. This oblique approach is an understandable continuation of their extended
project to build (Kochenderfer and Chryssanthacopoulos [90]) and compress the Q-
table (Julian, Kochenderfer, and Owen [85], Katz et al. [87]).

However, issuing advisories requires only the argmax. In order to recognize the invari-
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ance of the prediction to any increasing transformation we replace Julian, Kochender-
fer, and Owen [85]’s mean squared error (MSE)-based criterion with cross entropy loss
to directly model the optimal decision. This achieves better performance with smaller
networks. For example, Julian and Kochenderfer [84] use a five layer fully connected
layers with 25 neurons each to achieve an accuracy of 97% to 98% while we achieve the
same accuracy with two layers of 25 neuron (a network of the same size using Julian,
Kochenderfer, and Owen [85]’s method attains an accuracy around 93%).

Why is anything less than complete fidelity to the Q-table acceptable in an approx-
imation? The answer is twofold. Firstly the Q-table is itself not perfect, because of
discretization artifacts in the original data. One can observe physically implausible
sawtooth-like decision boundaries that arise from a coarse grid in the top plot of Julian
and Kochenderfer [84, Figure 4]. The second is that accuracy alone does not capture the
genuine metric of goodness, for example in the bottom plot of Julian and Kochenderfer
[84, Figure 4] a highly accurate network exhibits unusual “islands” of SR completely
encompassed by a region of WR that are both not present in the ground truth, and also
prescibe a conceptually wrong relationship.3

Fitting – Symmetry

The second manner in which our approach differs from Julian and Kochenderfer
[84] is the domain. Julian and Kochenderfer [84] fixed a lookup table over (x, y,ψ) ∈
[−56000,+56000]2×[−π,+π). However, if Q :R3 →R5 denotes the Q-function as a function
of the state s = (x, y,ψ), then the physics of the problem ensure that

Q(Ti s) = ToQ(s) where Ti =

+1 0 0

0 −1 0

0 0 −1

 and To =


+1 0 0 0 0

0 0 +1 0 0

0 +1 0 0 0

0 0 0 0 +1

0 0 0 +1 0

 .

This relationship only holds for aprev = COC, but similar symmetries exist more gen-
erally. Thus, only half of the lookup table is needed, and moreover it is wasteful to
ask a network to learn the same thing twice. Our method is to only fit f over (x, y,ψ) ∈

3A pilot could be initially advised a strong right turn, then after some period of lessened danger have it
downgraded to a weak right, only to have it re-upgraded to a strong right, although the danger continues
to lessen.
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[−56000,+56000]2 × [0,+π), and when needed to infer f (s) = To f (Ti s) for s = (x, y,ψ) with
ψ< 0. To continue the analysis above: exploiting symmetry achieves accuracy above
97% from a one layer, 24 neuron network. Figure 3.4 is computed on a 16 neuron
network that achieves about 96% accuracy.

Inversion – Projection

Figure 3.4 was formed by taking the fitted n0 = 3 DNN, fixing ψ to a given value, and
working with the resultant n0 = 2 DNN. If W1,b1 denote the weights and bias of the first
linear layer of the original DNN, then this amounts to replacing these coefficients with

W ′
1 =W1

1 0

0 1

0 0

 ,b′
1 = b1 +ψW1

0

0

1

.

3.D.4 Polytope Dimension

The terms in Equation (3.3) overlap at the boundaries, for example if b ≥ 0 then the
origin is contained in every term in the union. This work only forms full dimensional
polytopes. Lower-dimensional sets do not change the union, so the preimage is not
affected by this choice.

Empirically, most sets in the region-union comprising Equation (3.3) are not full di-
mensional. And if an element of a preimage region is known to not be full dimensional,
it need not be further considered. Thus, most computational effort is spent in calcu-
lations of the form of Equation (B.4). We tested both Mosek ([6]) and Gurobi ([69]) as
software for solving linear programs such as Equation (B.4), and found Gurobi to be
faster.

3.D.5 Clock Time to Solve Problems of Varying Sizes

Table 3.3 indicates the computational difficulty of inverting small DNN. The problem
is as described in Section 3.3.1, with further detail given in Section 3.D.1. Though the
essential computation, checking polytope emptiness, is embarassingly parallel the
computation does not use any multiprocessing. All timings were performed on a 1.6
GHz Dual-Core Intel Core i5 CPU.
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Hidden layer widths Accuracy # parameters Storage (MB) Time (s)

8 0.973 42 1.105 0.205
12 0.975 62 35.256 2.907
16 0.974 82 985.767 52.912
4 → 4 0.972 42 0.260 0.269
6 → 6 0.967 74 6.764 3.205
8 → 8 0.971 114 42.089 26.256
4 → 4 → 4 0.969 62 3.125 1.802
6 → 6 → 6 0.968 116 279.138 117.248
4 → 4 → 4 → 4 0.973 82 43.695 27.253

Table 3.3: Complexity of inverting DNNs of various size. Model accuracy and time to
compute the preimage averaged over ten fittings. Storage (MB) = disk storage necessary
to hold both the H and V forms of a complete preimage partition (pickled dense numpy
arrays of float64s).
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Chapter 4

The Expressiveness of Max Pooling

Max pooling is notably omitted from the function class discussed in Section 1.2.2. This
is not accidental: max pooling is unlike other elementwise nonlinearities. The precise
manner in which this is true is the content of this section, which is based on Matoba,
Dimitriadis, and Fleuret [108]. This work is overwhelmingly my own, with Nikoloas
Dimitriadis offering some feedback and assistance with experiments and proof details.

I would like to thank Guillermo Ortiz-Jiménez, Apostolos Modas, Arnaud Pannatier,
and Suraj Srinivas, for their valuable comments on the original paper. Nikos was
supported by Swisscom (Switzerland) AG.

4.1 Introduction

When convolutional neural networks first became state of the art image classifiers in
the early 2010s, max pooling featured prominently. For example, in VGG (Simonyan
and Zisserman [143]) and AlexNet (Krizhevsky, Sutskever, and Hinton [98]). Largely
coincident with this period, however, Springenberg et al. [147] argued that max pooling
operations were not necessary because strided convolutions composed with nonlin-
earity is simpler and more flexible. And subsequent architectures have continued to
move in such a direction – ResNets (He et al. [73]) have a single max pooling layer,
and some – such as InceptionV3 (Szegedy et al. [153]) and mobilenetV3 (Howard et al.
[79]) – have none at all.1 Max pooling is mostly omitted in the attention-based image

1All statements about historical models refer to their implementation in Torchvision (Marcel and
Rodriguez [106]), described at https://pytorch.org/vision/stable/models.html.
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classifiers that began to see use in the early 2020s, such as the Vision Transformer
(Dosovitskiy et al. [46]). Examining whether max pooling can truly be dropped from
the toolbox of neural network image classifiers is worthwhile because it would ease
architecture design and reduce development burden.2

This chapter examines whether max pooling is a remnant of an earlier era when image
classifiers were motivated by the visual cortex. It finds that for some inputs, max
pooling constructs very different features than an optimal approximation by ReLUs,
thus it expresses a different inductive bias and can sometimes be appropriate. It
derives comprehensive bounds on the error realized by approximating max functions
with the composition of ReLU and linear operations, finds that a simple divide and
conquer algorithm cannot be improved upon. Hence, accurate approximations must
be computationally complex.

The main result of this work does not imply that omitting max pooling from image
classifiers is wrong. Rather, it says when it could be wrong. Max pooling will be strictly
more expressive than a ReLU-based approximation on inputs with a large difference
between the maximum and other values within pools.

The contributions are (1) introducing a novel generalization of max pooling (Sec-
tion 4.4), (2) proving that the max function cannot be represented by simpler elements
of this function class (Theorem 4), (3) analyzing experimentally the size and quality of
approximations (Section 4.5), (4) formulating a notion of separation for max pooling
(Theorem 1, Theorem 2), and (5) connecting mathematically the average of subpool
maximums with order statistics (Theorem 3).

4.2 Background and Related work

Early work examined the neurological antecedents of artificial neural networks, and
experiments with mammal’s eyes and brains showed max pooling to be a biologically
plausible operation (Fukushima [56] and Riesenhuber and Poggio [130]). Practice fol-
lowed this observation, with max pooling being important when deep neural networks
first began achieving competitive performance. For example, AlexNet (Krizhevsky,
Sutskever, and Hinton [98]) dominated the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 (Russakovsky et al. [132]), and had max pooling in more

2For example, in the modern era of extremely specialized hardware, it is common for primitive
operations to be reimplemented several times for different computational “backends”, such as CUDA
device capabilities.
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than half of its “blocks”.3 However, the ILSVRC 2017 leaderboard was dominated by
ResNets, for which max pooling is not central. Similarly with DawnBench (Coleman
et al. [32]). This move away from max pooling was consistent with an influential study,
Springenberg et al. [147], arguing that strided convolution composed with nonlinearity
is preferable to max pooling because it can fit a max pooling mapping if appropriate,
and can seamlessly fit another functional form if not.

We examine this assertion by questioning whether (1) max pooling can be simplified
to ReLU nonlinearity, and if not, (2) what pattern in the data would make max pooling
and ReLU comparably expressive empirically.

The present inquiry is preceded by a literature examining the expressiveness of piece-
wise linear networks via bounds on the number of linear regions they express, for
example Montúfar et al. [114], Serra, Tjandraatmadja, and Ramalingam [141], Hanin
and Rolnick [71], and Montúfar, Ren, and Zhang [113]. Several of these studies examine
the maxout activation function (Goodfellow et al. [64]), which is equivalent to our
mathematical model of max pooling. Maxout networks generally express many more
linear regions than equally-sized networks using ReLU activations (Montúfar et al.
[114] and Tseran and Montúfar [160]).

Compared to these studies, we assess the increased expressivity of max pooling net-
works as the error attained by a single max pooling operation with ReLUs; this it more
direct and practically interpretable. However, the conclusions also need more thought
when transposed to architecture design since it may be that the outputs of a network
using max pooling is efficiently approximated, even though an individual neuron is
not.

These narrow assumptions in turn suggest a potentially fruitful direction of inquiry into
maxout activations: eschew general maxout assumptions for architectures consistent
with max-pooling (e.g. output stricly smaller than input, inputs are grouped into
disjont “pools”, etc.). These stronger assumptions may be the missing link since
maxout, although more general, never gained traction (it is not implemented natively
in PyTorch, for example, and practically never seen in the wild).

Like most related studies, this work easily extends to many other (elementwise) piece-
wise linear activations and does not apply to many other sources of nonlinearity, such
as tanh. However, there are standard techniques for extending work on piecewise linear
activations to general activations based on bounding the difference to a piecewise
linear approximation, such as Zhang et al. [174]. Attention mappings (Vaswani et al.

3The leaderboard is [99], AlexNet is a product of the “SuperVision” team.
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[165]), notably, do not fit within the scope of the analysis. Nonetheless, the recent
move towards of fewer max pooling layers has been continued in the emergence of
transformer-based image classifiers. The Vision Transformer (Dosovitskiy et al. [46]),
for example, uses no max pooling layers.

Hertrich et al. [76] is closely related to the theoretical component of our work. This
study addresses aspects of ReLU-based approximations to the max function, and
proves a technical sense in which max pooling is more expressive than ReLUs. How-
ever, their proof technique relies crucially upon the kink at zero, a dynamic not shared
by our analysis, which is restricted to nonnegative inputs. We give precise error bounds,
and are able to compare the errors of a large parameterized family of approximations
with considerable precision to offer a more precise grasp of the practical tradeoff that
applied approximations entail. Table 4.1 summarizes several results on the approxi-
mation of the maximum function by linear-ReLUs blocks.

Depth
Function

Class
Result

⌈log2 d⌉ width ≤ d/2 exact trivial, Theorem 2
1 width ↑∞ approximation possible, Hornik [78] and Cybenko [37]
⌈log2 d⌉−1 width ↑∞ exact impossible on Rd , Hertrich et al. [76]
⌈log2 d⌉−1 Md (R) exact impossible on [0,1]d , Theorem 4
⌈log2 d⌉−1 width ↑∞ approximation difficult on [0,1]d , Section 4.5

Table 4.1: A taxonomy of approximations to the max function by linear-ReLUs blocks
in d dimensions. Md (R) is the function class introduced in Section 4.4. The quality of
the approximation depends crucially on depth, and as far as we are aware, this is the
first work to examine the finite width case.

Boureau, Ponce, and LeCun [17] is an early work comparing average and max pooling
from an average-case statistical perspective. They also identify the input dimensional-
ity as a key factor in complexity. In their framework, sparse or low-probability features
correspond to the corners of the input domain in our analysis.

Grüning and Barth [68] find that min pooling can also be a useful pooling method,
a finding that supports and is rationalized by the finding here that the quantiles of
the input are the basis for linear combinations of maxes. If the true data is strongly
determined by the nonlinear behavior of quantiles, then ReLU-based approaches are
relatively disadvantaged.
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4.3 The Complexity of Max Pooling Operations

This section proves that in a simplified model, max pooling requires depth – multiple
layers of ReLU nonlinearity are necessary to effect the same computation, and more
layers are needed for larger kernel sizes.

4.3.1 Simplifications

In the design of deep learning architectures, max pooling reduces dimensionality by
summarizing the values of spatially nearby inputs. To simplify, this chapter examines
the approximation of a max function, putting aside “pooling”-specific considerations
like stride, padding, and dilation that are ultimately linear pre-and post-processing.
We summarize the size of the input using the term “order” so that, for example, the
maximum over a 3×3 input is an order 9 max function. In this chapter, we call en-
gineering DNNs comprised of (see Section 1.2.2) alternating ReLU and linear layers
“(feedforward) ReLU networks” to emphasize that they use only ReLU nonlinearity to
approximate max pooling.

4.3.2 Max pooling as a feature-builder

Telgarsky [156] showed that deep neural networks cannot be concisely simulated by
shallow networks. Their approach is to demonstrate a classification problem that is
easy for deep networks, but is provably difficult for shallow networks. We do similarly
by building a test problem on which max pooling succeeds and ReLU fails. First,
we investigate the appropriate metric for comparison. Theorem 1 shows that for
any dimensionality, a narrow, shallow engineering network with a single source of
nonlinearity can emit the same output as max pooling. Thus, prediction accuracy is
not the correct metric by which to compare nonlinearities.

Theorem 1. There exists a feedforward ReLU network f :Rd →R with d hidden neurons
such that for all ξ ∈R, f (x −ξ) ≤ 0 ⇐⇒ max{x1, . . . , xd } ≤ ξ.

Proof.

max{x1, . . . , xd } ≤ ξ ⇐⇒ x1 ≤ ξ and . . . and xd ≤ ξ ⇐⇒
d∑

k=1
ReLU(xk −ξ) ≤ 0.
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Max pooling is used in the construction of intermediate layer features, and not directly
in the computation of final logits. Thus, the ability of a feedforward ReLU network
to achieve the same real-valued output as a max pooling operation with L∞ error
is primary. And since diminishing the representation capacity of a single neuron
necessarily reduces the expressivity of the whole network, the remainder of this chapter
concerns the expressivity of a single neuron.

4.3.3 Computing max using ReLU

Theorem 1 is a positive result on the complexity of functions that the composition of
linear and ReLU functions can represent. This section begins developing a negative
result.

The maximum of two values can be computed using the relationship

max(a,b) = (ReLU(a −b)+ReLU(b −a)+a +b)/2. (4.1)

Mukherjee and Basu [116] and Hertrich et al. [76] prove that the max of 2k variables
cannot be written as a deep neural network with a k ReLU layer engineering DNN, in
particular that the maximum of three variables cannot be written as a linear combina-
tion of ReLU features. Thus, there is no generalization of this formula to three or higher
dimensions – indicating the fundamental inadequacy of using linear combination and
ReLU nonlinearity as a drop-in replacement for max pooling. Nevertheless, Theorem 2
shows that with additional depth a feedfoward network can compute the maximum of
many variables by recursively forming pairwise maxes.

Theorem 2. max: Rd →R can be written as a ⌈log2(d)⌉-hidden layer feedforward ReLU
network, where the kth hidden layer has width 22+⌈log2(d)⌉−k .

Sketch of Proof. A variant of Equation (4.1) applicable to feedforward ReLU networks
is

max(x, y) = (g ◦ReLU◦ f )(x, y) where

f (x, y) =


+x − y

−x + y

+x + y

−x − y


g (x) = (x0:n/4 +xn/4:n/2 +xn/2:3n/4 −x3n/4:n)/2.

(4.2)
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Here xn1:n2 means the n1th through the (n2 −1)th elements of x (inclusive), and n is
the dimension of the input. f and g are linear. At the cost of quadrupling every layer
width, ReLU can evaluate pairwise maxes and ⌈log2(d)⌉ iterations of pairwise maxima
can compute the maximum of d variables.

As an example, the max of five variables is three iterations of pairwise max:

max(x1, x2, x3, x4, x5) = max(z1, z2)

where z1 = max(z3, z4), z2 = max(z5, z6)

where z3 = max(x1, x2), z4 = max(x2, x3), z5 = max(x3, x4), z6 = max(x4, x5).

Theorem 2 is an upper bound on the width and depth necessary to evaluate a max
function. Corresponding lower bounds are more intricate. Table 4.1 outlines several,
and the next section discusses the function class Md (R) that approximating max in the
main result.

4.4 The Class of Subpool Max Averages, Md (R)

This work pertains to a particular function class, Md (R). Section 4.4.1 describes Md (R),
and Section 4.5 justifies the relevance of this function class to deep learning.

4.4.1 Subpool Maxes

For a vector x ∈Rd and index set J ⊆ {1, . . . ,d} let max{x j : j ∈ J } be called the J-subpool
max of x. For example, if x = (3,2,10,5), then the {1,2,4}-subpool max of x is max(3,2,5) =
5. The J-subpool max is a generalization of the max that trades off complexity and
accuracy in the sense that for J1 ⊆ J2, the J1-subset max is simpler to compute than
the J2-subset max, but the error of a J1-subpool max will always be at least that of a
J2-subpool max.

Let C ( j ,r,d) denote the j th (out of
(d

r

)
) subset of {1, . . . ,d} of size r in the lexicographic

ordering. For example, C (1,2,3) = {1,2},C (2,2,3) = {1,3} and C (3,2,3) = {2,3}. Let ω j r (x)
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denote the C ( j ,r,d)-subpool max of x (the dimension d can be inferred from the size of
x). In order to model a constant intercept, let the C (1,0,d)-subpool max, ω10(x), be = 1.

Linear combinations of J-subpool maxes are a natural class of estimators to the max
function. We organize subsets J by (1) the size of the subset, r , and (2) the subset index
of that size, j . For R ⊆ {0,1, . . . ,d −1,d} let

Md (R) =
x 7→ ∑

r∈R

(d
r )∑

j=1
β

j
rω j r (x) :β j

r ∈R
 (4.3)

be the set of all linear combinations of r -subpool maxes, r ∈ R. Let a general element
of Md (R) be called an R-estimator, and because any estimator in Md (R) can be written
as a feedforward ReLU network with ⌈log2(maxR)⌉ layers, call this the depth of Md (R).
Theorem 4 shows that max ̸∈Md ({0,1, . . . ,d −1}), with a bound on the L∞ error from this
function class. For this, Theorem 3 is instrumental.

Theorem 3. Let S(x;r,d)≜ 1

(d
r )

∑(d
r )

j=1ω j r (x) be the average of all subpool maxes of x ∈Rd of

order r ≥ 1. Let x( j ) (the subscripts being enclosed in parentheses) denote the j th largest
element of a vector x ( order statistics notation).

S(x;r,d) = 1(d
r

) d−r+1∑
j=1

(
d − j

r −1

)
x( j ). (4.4)

Sketch of Proof. x( j ) is the largest value within a subpool if and only if all indices less
than j are excluded from that subpool and j is not excluded. For a subpool of size r ,
the r −1 remaining values must be among the d − j values x( j+1), . . . , x(d). Thus, there
will be

(d− j
r−1

)
subpools of size r in which the largest value is x( j ).

The average of subpool maxes of an order r ∈ R is a summary of the quantiles of
the distribution via a particular weighted average, with better fidelity to the max
for larger r . For example, S(x;1,d) = (x(1) + . . .+ x(d))/d = (x1 + . . .+ xd )/d is a simple
average, but S(x;d −1,d) = ((d −1)x(1) + x(2))/d , is mostly the largest value, with only
the second-largest value contributing. At x =

(
0 0 . . . 1

)
, the error of an order-1

approximation is x(1)−S(x;1,d) = 1−1/d . While the error of an order d−1 approximation
is x(1) − S(x;d − 1,d) = 1/d . The idea is demonstrated further in Figure 4.1, with the
individual subpool maxes easily interpreted via shading, and the higher-order subpool
max averages increasingly resembling the actual max.
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r = 1

r = 2

r = 3

r = 4

Figure 4.1: Subpool maxes (left) and their average (right) for d = 5. The value of each
node is presented as inverted grayscale. Each row r = 1,2,3,4 gives the pool order r . As
r grows, the average value grows darker towards the actual max.

4.4.2 Optimal Approximation Over Md (R)

Theorem 4 is the main result of this chapter. It gives the minimal errors achievable
with approximations in Md (R), for various R, over the d-dimensional unit cube. For
example, Equation (4.8) states that the lowest L∞ error achievable using elements of R =
{0,1,d−1} is 1/(2(d+1)), with

(
β0 β1 βd−1

)
=

(
1/2 −d/(d −2) d(d −1)/(d −2)

)
/(d+1).

Theorem 4. Let || f ||∞ denote the the L∞ norm over the unit cube: || f ||∞ = supx∈[0,1]d | f (x)|.
Let dist(R) = minm∈Md (R) ||m −max ||∞, where Md (R) is as defined in Equation (4.3).

dist({0,1}) = 1

2

d −1

d
(4.5)

dist({d −1}) = 1/(2d −1) (4.6)

dist({0,d −1}) = 1/(2d) (4.7)

dist({0,1,d −1}) = 1/(2(d +1)) (4.8)

dist({0,1,d −2,d −1}) = 1/d 2 (4.9)

dist({0,1,2, . . . ,d −1}) = 1/2d . (4.10)

Sketch of Proof. We first establish symmetry as a property of any optimal estimator.
Then we assume that the L∞ norm of the error is characterized by |R| nonzero corners
of the unit cube and zero. Under this conjecture, the norm is optimized by evaluating
the error as a function of the coefficients, and choosing coefficients which equate
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them. Generally, changing coefficients will increase the error at one point and lower
it at others, and balancing these effects characterizes optimality. For example with
R = {0,d −1}, the optimal coefficients are (β0,βd−1) = (1/(2d),1). At x = (0, . . . ,0), (1,0, . . . ,0)

and (1,1, . . . ,1) the error of this estimator is 1/(2d). Given the conjectured error and co-
efficients, it is proven optimal by contradiction: by showing that any other coefficients
attain a higher criterion at some x.

To continue the example from the proof of Equation (4.7), the only way that both
−1/(2d) < 1−β0 −βd−1 (the condition at x = (1, . . . ,1)) and 1−β0 −βd−1(d −1)/d < 1/(2d)

(the condition at x = (1,0, . . . ,0)) is for β0 > 1/(2d). But this clearly precludes the error
from being < 1/(2d) at x = (0,0, . . . ,0).

Even with the largest R, {0,1,2, . . . ,d −1}, the error is > 0, meaning that insufficiently
deep networks in Md (R) cannot model max pooling, and giving a partial converse to
Theorem 2.

Equation (4.5) gives a linear model as a baseline for the max. The error is high, and
not much different to a constant model in high dimensions (an intercept-only model
can obtain .5 = dist({0})). Equation (4.6) shows that error declining with dimensionality
is achievable with a higher order term. Contrasting Equation (4.7) to Equation (4.6)
quantifies the additivity of the intercept. Including an intercept helps, but does not
scale with dimension. Similarly for the grand mean: it reduces the error from 1/(2d) to
1/(2(d +1)) (Equation (4.8)). Neither the intercept nor the mean as a feature entails no
meaningful further nonlinearity, thus it is assumed that {0,1} ⊆ R subsequently.

Equation (4.9) is important for understanding how the error falls with the addition
of further strongly dimension-sensitive subpool orders: appending d −2 to {0,1,d −1}

improves the rate of convergence from O(1/d) to O(1/d 2). Equation (4.10) gives the
best-case rate of convergence: if all lower order r < d are included, then the error is
O(1/2d ). Contrasting this with Equation (4.9), shows that the inclusion of many r is
necessary for low error. Overally, Equation (4.10) implies that max ̸∈Md ({0,1, . . . ,d −1}),
though it can be approximated well within the function class.

Let f ⋆R :Rd →R denote the optimal estimate based on terms in R. L∞ error can be high,
even if f ⋆R ≈ max on most of the domain. If the the high error could not be realized
in practice, because the measure of the domain on which it arises is miniscule, then
Theorem 4 would be only a technicality with little practical relevance. In the literature
studying the number of linear regions of a piecewise linear network, this distinction

58



4.5 Experimental Evidence on the Relevance of Md (R)

is recognized as the difference between the maximum and average number of linear
regions (Tseran and Montúfar [160]). Theorem 5 shows that this is not the case, by
showing that the error is almost surely nonzero. The proof is in Section 4.B.

Theorem 5. If x is uniformly distributed over the unit cube, then vol({x ∈ [0,1]d : |x(1) −
f ⋆R (x)| = 0}) = 0.

4.5 Experimental Evidence on the Relevance of Md (R)

For Md (R) to be relevant, the results must not be dramatically different for a class of
feedforward ReLU networks of the same depth, but somewhat more general than it.
This section presents experimental evidence that Md (R) is an adequate proxy for all
networks of the same depth in empirically approximating the max function. It does
this by showing that additional capacity does not appear to improve the quality of the
approximation.

Section 4.D presents an algorithm for writing f ⋆R as a feedforward ReLU network of
depth ⌈log2(maxR⋆)⌉ based on reusing lower order subpool maxes to evaluate higher
order subpool maxes in a way that skips unneeded orders. For a f given in this form,
let w( f ) denote the layer widths. For example, via this procedure with d = 9 and
R = {0,1,7,8}, f ⋆R can be computed by a feedforward ReLU network with hidden layer
widths w( f ⋆R ) = (78,122,182). Finally, let Gd ,k denote the set of all depth k feedforward
ReLU networks Rd →R, and for µ> 0 let

Gd (R,µ) = {g ∈Gd ,⌈log2(maxR)⌉ : w(g ) ≤µ×w( f ⋆R )} (4.11)

be the set of all neural networks that are at most µ times as wide as f ⋆R . Gd (R,µ) repre-
sents a parameterized interpolation between Md (R) and all networks of a given depth
in the sense that Md (R) ⊆Gd (R,1),µ1 <µ2 =⇒ Gd (R,µ1) ⊆Gd (R,µ2) and limµ↑∞Gd (R,µ) =
Gd ,⌈log2(maxR)⌉, and width, via µ, is the notion of “capacity” when discussing the addition
of capacity to Md (R).

Rhetorically, Md (R) will be more relevant if elements of Gd (R,µ) do not achieve low
error, even for µ high. This is an awkward result because failing to achieve low error on
a deep learning task is not difficult, for example it could result from a coding mistake or
a bad hyperparameterization. That said, given the simplicity of the modelling problem,
excluding bugs is plausible – we code it in an idiomatic fashion, check that the code
can solve problems that should be solvable (for example, replacing the max with the
mean), and transparently release the source code. We endeavor to show that our
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results are not caused by poor modelling choices with extensive ablation studies in the
appendix. Finally, there is an important precedent for this type of result in machine
learning experiments: interpreting any result showing that one method is better than
another relies upon the inferior method implemented correctly and reasonably. Thus,
although demonstrating experimentally the correctness of a failing method requires a
high standard of evidence, the nature of the argument is not inherently problematic.

4.5.1 Experimental setup

Independent test and train datasets are generated uniformly on the unit cube with
10,000 rows. L∞ loss is directly optimized by an Adam optimizer (with PyTorch default
parameters). Results are similar with MSE loss. Parameters are initialized according to
the PyTorch default. A batch size of 512 is used throughout, and the data set is shuffled
over each of 300 epochs. The experiments are all repeated over ten pseudorandom
number generator seeds, with both the data being generated differently, and different
randomness in the fitting (e.g. the shuffling over minibatches).

4.5.2 Results

The experimental evidence in this section consists of assessing how the expressiveness
of trained models ∈ Gd (R,µ) depends on µ. A DNN ∈ Gd (R,µ) optimized to model
x 7→ x(1) is more expressive if it achieves a lower empirical test L∞ error. We term this
quantity ERR(R,µ). If expressiveness is not substantially increased ( ⇐⇒ ERR(R,µ) is not
substantially decreased) for progressively greater µ, then a lower bound on the error of
approximating the max function over Md (R) empirically also holds for Gd . And this is
observed.

The results focus on µ around 1, because it corresponds to the width of f ⋆R .4 To prove
the desired point – that adding capacity does not significantly increase expressiveness
– requires only µ≥ 1, however the results for µ< 1 are included to help foster intuition.
µ< 1 also demonstrates an expected result from the literature on the neural tangent
kernel (NTK), for instance Allen-Zhu, Li, and Liang [2], showing that for a fixed dataset
size, error falls from high levels for small models, but rapidly levels off. Note, however,

4There are non-width reasons that, even for µ= 1, Md (R)⊊Gd (R,1). One is that Gd (R,µ) allows inter-
cepts in the linear layers, despite not being present in f ⋆R . Gd (R,µ) also imposes no low-rank structure on
the weight matrices, despite a straightforward representation of the theoretical weights as the outer prod-
uct of matrices roughly one quarter as large (via the quadrupling of layer sizes implied by Equation (4.2)).
The larger is the class of models that does not substantially reduce error, the more conservative are the
experimental results and the stronger is the conclusion.
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that not all the assumptions of the NTK, such as a very small learning rate, hold. Thus,
prescriptions of this model are indicative. Neither the NTK nor universal approxima-
tion theorems (UATs) ensure that there is a network achieving arbitrarily low error as
µ ↑∞.

We examine R = {0,1,d −1}, {0,1,d −2,d −1}, and {0,1,2, . . . ,d −2,d −1} as prototypical
“small”, “medium”, and “large” approximations, respectively. Although larger models
do empirically achieve lower errors, the overall flattening trajectory of their depen-
dence on increased capacity is uniform.

For a single order d max-pool layer the maximum expected number of regions is, from
Tseran and Montúfar [160], Theorem 8: 1+ (d −1)d/2. Contrast this with Montúfar et al.
[114]’s bound for a single-output, d-input fully connected network, of (1+w( f )1)× . . .×
(1+w( f )k ). Thus, by this metric, µ= 4 more than suffices to model any reasonable d .

Figure 4.2 is the main experimental result: fitting error does not reliably fall as µ rises.
Even quadrupling all layer widths does not noticeably increase expressiveness. Clearly,
the amount of data available to train models of differing capacities is an important
determinant of performance. Figure 4.3 examines the effect of dataset size on training
error for the R = {0,1,2, . . . ,d −2,d −1} model. Here the x-axis is on a logarithmic scale in
µ space. Observe that although test error reliably falls with the addition of more data,
there is a marked flattening for all dataset sizes – beyond a certain point, simply adding
capacity does not make a more accurate model. That the results are uniform across
dataset sizes indicates that the results are not driven by overfitting.

Figure 4.4 analyzes each model separately in greater detail. Shaded around the sample
mean is the region encompassed by ±1.96 standard deviations. The max and min values
over the ten seeds are plotted in dotted lines. The min and max are roughly coincident
with ±1.96 standard deviations above and below the sample mean, so the distribution
of results over seeds is even more thin-tailed than a Gaussian. The train error is plotted
as a dashed line: slightly lower than test, but following the same trajectory.

This analysis shows that greater width does not seem to decrease approximation
error. From this, we conclude that although the main results are proven only for Md (R),
empirically they translate well to more general and powerful function classes within the
space of all feedforward ReLU networks. Section 5.D contains additional experimental
results in order to further establish the robustness of this conclusion.
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area: averaged test error ±1.96 standard deviations. Here d = 8 and the parameter
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Figure 4.5: Estimator size and error in d = 12.

4.5.3 The Complexity of Md (R)

Equation (4.6) and Equation (4.10) represent quite disparate orders of error. This is
because Md ({0,1,2, . . . ,d −1}) is much larger than Md ({0,1,d −1}), and there are many
models in between. Figure 4.5 plots the number of parameters in a deep neural network
representation of an R-estimator. Figure 4.5a relates the parameter counts to R. For
d = 12, this ranges from less than 3500 parameters for R = {0,1,2}, to nearly 50 million
for R = {0,1, . . . ,d −1}. Figure 4.5b further relates the model size to the L∞ error bound
computed in Section 4.C to convey a sense of how many parameters are needed to
achieve a given error. In both plots, we group models by |R|, indicated by color.

For another view on model size that offers more insight on how network architecture
is affected by dimension, Figure 4.6 plots the model sizes for networks implementing
two f ⋆R for two R, as a function of the model dimension, d . The depth of these models
is always ⌊log2(max(R)−1)⌋+1.

4.6 Conclusion

Motivated by a clear trend in computer vision architectures, we have posed and an-
swered the question: can max pooling be replaced by linear mappings composed with
ReLU activations? And when would it give a model that is considerably different?

To do this, we first established distance in intermediate feature space as the notion
of comparison. Next, we established a simple baseline: max pooling with kernel
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Figure 4.6: Model sizes for neural networks representing f ⋆R for two different R. y-axis
(logarithmic): hidden layer width, x-axis: d . Layer numbers by color are shown in
the legend on the left plot. Depth of the requisite network at each dimension d is
implied by the number of lines present, for example a d = 17,R = {0,1,d −1}-estimator
has w( f ) = (96,80,72,68).

size of d can be computed by a block of log2(d) narrow layers. We next introduced
subpool max averages as a tractable class of approximators, and proved that the max
function in d dimensions cannot be written as the linear combination of subpool
max averages of order < d , though the error can be made as low as 1/2d . This novel
approach complements existing work on the number of linear regions in piecewise
linear networks. We experimentally extended our analysis to networks not constrained
to have a fixed weight pattern by establishing that the class of subpool max averages
was not less expressive than more general function classes.

4.A Proofs

4.A.1 Proof of Theorem 4

Proof. Let perm(d) denote the set of all permutations of {1,2, . . . ,d}, and let

M s
d (R) = {m ∈Md (R) : m(xσ1 , xσ2 , . . . , xσd ) = m(x1, x2, . . . , xd ) for all σ ∈perm(d)}
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denote the restriction of Md (R) to those elements that are invariant to a reordering of
its arguments. Because max is symmetric, any optimal approximation to it should be
in M s

d (R) – that is the essence of Theorem 6.

Theorem 6. For all R,

min
m∈Md (R)

||m −max ||∞ = min
m∈M s

d (R)
||m −max ||∞.

Proof. Assume otherwise, ⇐⇒ there is an m that is not symmetric and an x such
that m(x ′) < ms(x) for all symmetric ms and all x ′. In particular, m(xσ) < ms(x) for all
permutations xσ of x. Thus, since m(xσ) < ms(xσ) = ms(x):

1

d !

∑
σ∈perm(x)

m(x ′
σ) < ms(x).

However, x 7→ 1
d !

∑
σ∈perm(d) m(xσ) is evidently symmetric, a contradiction.

Thus, it is without loss of generality to optimize over M s(R) rather than M (R). For
r > 1, ω j r (1d − ιk ) = 15 for all k = 1,2, . . . ,d and all j = 1, . . . ,

(d
r

)
since there is only a single

non-one value. This implies that all subpool maxes of order greater than 1 are equal,
and for all k1,k2:

∑
r∈R\{0,1}

(d
r )∑

j=1
β

j
rω j r (1d − ιk1 ) = ∑

r∈R\{0,1}

(d
r )∑

j=1
β

j
rω j r (1d − ιk2 ).

The restriction to symmetric functions moreover requires that

∑
j ̸=k1

β
j
1 =

d∑
j=1

β
j
1ω j 1(1d − ιk1 ) =

d∑
j=1

β
j
1ω j 1(1d − ιk2 ) = ∑

j ̸=k2

β
j
1.

5ω j r (x) is defined in Section 4.4.1, the C ( j ,r,d)-subpool max of x.

65



Chapter 4. The Expressiveness of Max Pooling

Thus: β1
1 =β2

1 = . . . =βd
1 . Call this single value β1, and (for {0,1} ⊆ R)

M s
d (R) =

x 7→β0 +β1S(x;1,d)+ ∑
r∈R\{0,1}

(d
r )∑

j=1
β

j
rω j r (x) :β j

r ,β0,β1 ∈R
 .

Repeating this process for pools consisting of entirely of 1, except for 2,3,4, . . . ,d −1

zeros in turn implies that the estimator must be a function of S(x;r,d) alone, and not
the individual terms of the sum separately for r = 2,3, . . . ,d −1:

M s
d (R) =

{
x 7→ ∑

r∈R
βr S(x;r,d) :βr ∈R

}
. (4.12)

So, the maximization over all m ∈ Md (R) can be reduced to the maximization of |R|
scalar coefficients.

Put simply, to prove Theorem 4, we want to show that

min
β0,β1

||x(1) −β0 −β1S(x;1,d)||∞ = 1

2

d −1

d
(4.13)

min
βd−1

||x(1) −βd−1S(x;d −1,d)||∞ = 1

2d −1
(4.14)

min
β0,βd−1

||x(1) −β0 −βd−1S(x;d −1,d)||∞ = 1

2d
(4.15)

min
β0,β1,βd−1

||x(1) −β0 −β1S(x;1,d)−βd−1S(x;d −1,d)||∞ = 1

2(d +1)
(4.16)

min
β0,β1,βd−2,βd−1

||x(1) −β0 −β1S(x;1,d)−βd−2S(x;d −2,d)−βd−1S(x;d −1,d)||∞ = 1

d 2 (4.17)

min
β0,β1,...,βd−1

||x(1) −β0 −β1S(x;1,d)− . . .−βd−1S(x;d −1,d)||∞ = 1

2d
(4.18)

where the L∞ norm is taken over values of x ∈ [0,1]d . The proof of all the above equa-
tions are similar, and share this prototype:

1. Conjecture coefficients, β⋆ with the help of Section 4.C.
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2. Lower bound: for any f and for any set of points P ⊆ [0,1]d ,

min
β

max
x

| f (β, x)| ≥ min
β

max
x∈P

| f (β, x)| = max
x∈P

| f (β⋆, x)|

and prove the equality by contradiction: suppose there is a better β′, and derive a
contradiction.

3. Upper bound: for any f ,

min
β

max
x

| f (β, x)| ≤ max
x

| f (β⋆, x)|.

Then show that maxx | f (β⋆, x)| ≤β⋆0 by writing it as a linear combination of order
statistics.

For Equation 4.13, let
(
β⋆0 β⋆1

)
=

(
(d −1)/(2d) 1

)
. Suppose that there were some(

β′
0 β′

1

)
achieving a criterion < β⋆0 . Evaluating the error at x =

(
1 1 . . . 1

)
and

x =
(
1 0 . . . 0

)
, this implies

1−β′
0 −β′

1/d <+β⋆0 and 1−β′
0 −β′

1 >−β⋆0 =⇒ (d −1)(1−β′
0) < (d +1)β⋆0

⇐⇒ β′
0 > 1− d +1

d −1
β⋆0 =β⋆0 .

A contradiction to the condition at x = 0 that |β′
0| ≤ (d −1)/(2d). Thus, minβ0,β1 ||x(1) −

β0 −β1S(x;1,d)||∞ ≥β⋆0 . For the upper bound, from Theorem 3

x(1) −β⋆0 −S(x;1,d) =
(
1− 1

d

)
x(1) − 1

d

(
x(2) + . . .+x(d)

)−β⋆0 ∈ [−β⋆0 ,+β⋆0
]

.

For Equation 4.14, let β⋆d−1 = 2d
2d−1 . Suppose that there were some β′

d−1 achieving a

criterion strictly less than 1/(2d −1). Evaluating the criterion at x =
(
1 1 . . . 1

)
and

x =
(
1 1 . . . 1 0

)
, this is only possible if

1−β′
d−1 >− 1

2d −1
and 1−β′

d−1

d −1

d
< 1

2d −1
⇐⇒ 2d

2d −1
>β′

d−1 and β′
d−1 >

2d

2d −1
,
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which is to say it is impossible. For the upper bound, from Theorem 3

x(1) − 2d

2d −1
S(x;d −1,d) = x(1) − 2d

2d −1

(
d −1

d
x(1) + 1

d
x(2)

)
= x(1) −2x(2)

2d −1
∈

[
− 1

2d −1
,+ 1

2d −1

]
.

For Equation (4.15), let
(
β⋆0 β⋆d−1

)
=

(
1/(2d) 1

)
. Suppose that there are some

(
β′

0 β′
d−1

)
achieving a criterion <β⋆0 . Evaluating the error at x =

(
1 1 1 . . . 1

)
implies

−1/(2d) < 1−β′
0 −β′

d−1 ⇐⇒ β′
d−1 < 1−β′

0 +1/(2d). (4.19)

Evaluating the error at x =
(
1 0 0 . . . 0

)
implies

1−β′
0 −β′

d−1(d −1)/d <+1/(2d) ⇐⇒ 1−β′
0 −1/(2d) <β′

d−1(d −1)/d

⇐⇒ d

d −1

(
1−β′

0 −1/(2d)
)<β′

d−1.
(4.20)

Combining Equation 4.19 and Equation 4.20

d

d −1

(
1−β′

0 −1/(2d)
)< 1−β′

0 +1/(2d) ⇐⇒
(

d

d −1
−1

)
(1−β′

0) < 1

2d

(
1+ d

d −1

)
⇐⇒ (1−β′

0) < 2d −1

2d

⇐⇒ β′
0 >

1

2d
.

(4.21)

A contradiction to the condition at x = 0 that |β′
0| ≤ 1/(2d). For the upper bound, from

Theorem 3

x(1) − 1

2d
−S(x;d −1,d) = 1

d

(
x(1) −x(2)

)− 1

2d
∈

[
− 1

2d
,+ 1

2d

]
. (4.22)
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For Equation (4.16), let
(
β⋆0 β⋆1 β⋆d−1

)
=

(
1
2

−d
d−2

d(d−1)
d−2

)
1

d+1 . Suppose that there

were a
(
β′

0 β′
1 β′

d−1

)
achieving a criterion less than β⋆0 , then the condition at x =(

1 1 . . . 1
)
,
(
1 1 0 . . . 0

)
, and

(
1 0 0 . . . 0

)
imply:

1−β′
0 −β′

1 −β′
d−1 <+β′

0 ⇐⇒ 1−β′
1 −β′

d−1 <+2β′
0

1−β′
0 −β′

1
2

d
−β′

d−1 >−β′
0 ⇐⇒ 1−β′

1
2

d
−β′

d−1 > 0

1−β′
0 −β′

1
1

d
−β′

d−1

d −1

d
<+β′

0 ⇐⇒ 1−β′
1

1

d
−β′

d−1

d −1

d
<+2β′

0

combining the first and the second implies − 2d
d−2β

′
0 ≤β′

1, while combining the second
and third implies β′

1 ≤ 2d 2

d−2β
′
0 − d

d−2 . Combining these

− 2d

d −2
β′

0 <
2d 2

d −2
β′

0 −
d

d −2
⇐⇒ β′

0 >
1

2(d +1)
,

a contradiction to the condition at x = 0 that |β′
0| ≤ 1/(2(d +1)). For the upper bound,

from Theorem 3

x(1) − 1

2(d +1)
+ 1

(d +1)(d −2)
(x(1) + . . .+x(d))−

(d −1)

(d +1)(d −2)

(
(d −1)x(1) +x(2)

)
= 1

d +1
(x(1) −x(2))+ 1

(d +1)(d −2)
(x(3) + . . .+x(d))−

1

2(d +1)
∈

[
− 1

2(d +1)
,+ 1

2(d +1)

]
.

For Equation (4.17):
(
β⋆0 ,β⋆1 ,β⋆d−2,β⋆d−1

)
=

(
1

d 2
2

d(d−3) −1− 2
d(d−3) 2

)
. Suppose that

there were a
(
β′

0 β′
1 β′

d−2 β′
d−1

)
achieving a criterion less than β⋆0 . In order to scale

up the proof by contradiction, we use Theorem 7.

Theorem 7 (Carver [26], Theorem 3). Ax < b is consistent ⇐⇒ y = 0 is the only solution
for y ≥ 0, y⊤A = 0, y⊤b ≤ 0.

Applying the assumed condition at x = (0,0, . . . ,0), (1,1, . . . ,1), (1,1,1,0, . . . ,0), (1,1,0, . . . ,0),
and (1,0, . . .0) imply that:
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β′
0 <+β⋆0

1−β′
0 −β′

1 −β′
d−2 −β′

d−1 >−β⋆0
1−β′

0 −β′
1

3

d
−β′

d−2 −β′
d−1 <+β⋆0

1−β′
0 −β′

1
2

d
−β′

d−2

(d +1)(d −2)

d(d −1)
−β′

d−1 >−β⋆0

1−β′
0 −β′

1
1

d
−β′

d−2

d −2

d
−β′

d−1

d −1

d
<+β⋆0

or Ax < b for

A =


+1 0 0 0

+1 +1 +1 +1

−1 − 3
d −1 −1

+1 + 2
d

(d+1)(d+2)
d(d−1) +1

−1 − 1
d

d−2
d −d−1

d

 , x =


β′

0

β′
1

β′
d−2

β′
d−1

 , and b =


β⋆0

β⋆0 +1

β⋆0 −1

β⋆0 +1

β⋆0 −1

 .

It is straightforward to verify that

y =


1/d

(d −2)/(2d)

(d/2−1)

(d −1)/2

1



satisfes y⊤A = 0 and y⊤b = (β⋆0 d −1/d) = 0. The last equality is because β⋆0 = 1/d 2. This
demonstrates a y ≥ 0, y ̸= 0 with y⊤b ≤ 0, thus the system is not consistent, which forms
a contradiction to the supposition that there exists a

(
β′

0 β′
1 β′

d−2 β′
d−1

)
achieving a

criterion less than β⋆0 . For the upper bound, from Theorem 3

x(1) − 1

d 2 − 2

d(d −3)

1

d
(x(1) + . . .+x(d))+

(d −2)(d −1)

d(d −3)
2S(x;d −2,d)− 2

d

(
(d −1)x(1) +x(2))

)
= 2

d 2 x(1) − 2

d 2 x(2) + 2

d 2 x(3) − 2

d 2

1

d −3
(x(4) + . . .+x(d))−

1

d 2 ∈
[
− 1

d 2 ,+ 1

d 2

]
.
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The idea of Equation (4.18) is the same, but handling d +1 equations simultaneously
requires more powerful notation. Let B(d) be the d − 1×d matrix with (r,c)th ele-
ment

(d−c
r−1

)
/
(d

r

)
if r + c ≤ d +1, and zero otherwise. Write the condition Equation (4.4)

simultaneously for all r as

S(x;d)⊤ ≜



S(x;0,d)

S(x;1,d)

S(x;2,d)

S(x;3,d)
...

S(x;d −1,d)



⊤

=



1

x(1)

x(2)
...

x(d)



⊤

(
1 0⊤

d−1

0d B(d)⊤

)
∈R1×d . (4.23)

Let V (d) be the d ×d +1 matrix of points at which the estimator is evaluated.

V (d)≜



0 1 1 . . . 1 1

0 0 1 . . . 1 1
... . . .

...
0 0 0 . . . 1 1

0 0 0 . . . 0 1

 (4.24)

Let s(d) be the (d +1)-dimensional vector starting and ending with j th element (−1) j−1;
diag(s(d)) encodes the signs of the binding inequalities. Let

A =diag(s(d))

(
11×d+1

B(d)V (d)

)⊤
,b = 1/2d +diag(s(d))


0

1

1

. . .

1

 .

where we indicate the dimensionality of the d +1-dimensional vector of ones. Here
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y =



(d
0

)(d
1

)(d
2

)
...( d

d−1

)(d
d

)



satisfies y⊤A = 0 and y⊤b = 0. Thus, there are no parameters achieving a criterion
< 1/2d , by Theorem 7. For the other direction, let

β⋆ =


β⋆0
β⋆1
...

β⋆d−1

=−1×



−1/2d

(−1/2)d−1
(d

1

)
(−1/2)d−2

(d
2

)
...

(−1/2)1
(d

d

)

 .

Then, by the binomial theorem,
∑n

k=0

(n
k

)
r k = (1+ r )n :

−
(

1 01×d−1

0d×1 B(d)⊤

)
β⋆ =



1/2d

1−2/2d

+2/2d

−2/2d

...

 .

Thus

x(1) −S(x;d)⊤β⋆ = 1/2d +
d∑

j=1

2

2d
(−1) j+1x( j ) ∈

[
− 1

2d
,+ 1

2d

]
. (4.25)
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Figure 4.7: Simulated empirical cumulative distribution functions for x(1) − f ⋆R (x) over
1500 uniform random points in the unit cube, for three R. The y axis is scaled between
± the maximum L∞ error.

4.B Distribution of Optimal Error

This section derives the distribution of the optimal residual.

4.B.1 A Foundational Result

Weisberg [169] gives this result:

Let x(0), x(1), x(2), . . . , x(d), x(d+1) be the order statistics from x sampled uni-
formly on the d-dimensional unit cube with the convention that x(0) =
0, x(d+1) = 1.

Let α j ≥ 0, j = 1, . . . ,d be positive weights, and let a j = ∑d
k= j αk , so a1 ≥ a2 ≥

. . . ≥ ad . Let c1 > c2 > . . . > cs be the unique (strictly ordered) values of ak , and
kℓ denotes the number of a j that cℓ covers.

Then

Pr

[
d∑

j=1
x( j )α j ≤ z

]
= 1−

r∑
i=1

dki−1

dxki−1

(x − z)d∏
ℓ̸=i (x − cℓ)

∣∣∣∣∣
x=ci

, (4.26)

where r is the largest i where z ≤ ci .
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Matsunawa [110] also gives a characteristic function-based analysis.

In our application, the weights in the linear combination are not nonnegative. Happily,
there is a reduction to this case presented by Diniz, Silva, and Gail [43] (modernized
from Dempster and Kleyle [40]):

Let α j be as before, though not necessarily nonnegative this time, and as
before let a j =∑d

k= j αk . Let a0 = (0, a1, . . . , ad ) be a prepended with a zero and
let σ be the permutation of the {1, . . . ,d +1} so that a0

σ(1) ≥ . . . ≥ a0
σ(d+1). Then

Pr

[
d∑

j=1
x( j )α j ≤ z

]
= Pr

[
d∑

j=1
x( j )(a0

σ( j ) −a0
σ( j+1)) ≤ z −a0

σ(d+1)

]
. (4.27)

Basically: including zero with the a as calculated previously, sort them, then using the
previous logic with the differences (guaranteed to be nonnegative), and a modified
argument, gives the same probability. In this equation, some differences may be zero,
and that is covered in Equation (4.26) with zero α j s.

Actually evaluating the derivatives in Equation (4.26) is not difficult – there is an efficent
recursive formulation – but is also not totally straightforward. Thus, for brevity we do
not go into too more detail and instead simply observe that the cumulative distribution
function is a continuously differentiable function of its input. To give an idea of the
distribution, Figure 4.7 plots the empirical distribution for 1500 points.

4.B.2 The Residual as a Linear Combination of Order Statistics

The optimal residual is a linear combination of order statistics, from Equation (4.12)
and Equation (4.4):

f ⋆R (x) = ∑
r∈R

β⋆r S(x;r,d)

= ∑
r∈R

β⋆r
1(d
r

) d−r+1∑
j=1

(
d − j

r −1

)
x( j )

=
d∑

k=1
a⋆k x(k) where a⋆k = ∑

r∈R∩{0,...,d−k+1}

β⋆r(d
r

)(
d −k

r −1

)
.
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Thus, the optimal residual is a linear function of the order statistics:

x(1) − f ⋆R (x) = (1−a⋆1 )x(1) −β⋆0 − ∑
r∈R\{0,1}

a⋆r x(r ).

The cumulative distribution of this quantity then follows from plugging these coeffi-
cients into Equation (4.27). This distribution is a a polynomial, so continuous, thus the
probability that it takes any discrete value is zero.

4.C Bounding the Error and Complexity of a General R-Estimator

This section presents a method for computing nontrivially tight lower bounds on the
error from a general R ⊆ {0,1,2, . . . ,d −1}-estimator. For any set of points P ⊆ [0,1]d ,

||m −max ||∞ ≥ max
x∈P

|m(x)−max(x)| =⇒
min

m∈M s
d (R)

||m −max ||∞ ≥ min
m∈M s

d (R)
max
x∈P

|m(x)−max(x)|.

Apply this with P equal to d +1 corners of the unit cube containing 0,1, . . . ones:

||m −max ||∞ ≥ min
m∈M s

d (R)
max {|m(

(
0 0 . . . 0 0

)
)|,

|m(
(
1 0 . . . 0 0

)
)−1|,

|m(
(
1 1 . . . 0 0

)
)−1|,

. . .

|m(
(
1 1 . . . 1 0

)
)−1|,

|m(
(
1 1 . . . 1 1

)
)−1|}.

Finally, write this as a convex optimization problem in 2(d +1) constraints and 1 +
|R| variables, using a a standard trick for rewriting L∞ optimization (see Boyd and
Vandenberghe [18]).
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min
g ,β0,(βr ,r∈R\{0})

g subject to

∣∣∣∣∣β0 +
∑

r∈R\{0}
βr S(

(
0 0 . . . 0 0

)
;r,d)

∣∣∣∣∣≤ g ,∣∣∣∣∣β0 −
∑

r∈R\{0}
βr S(

(
1 0 . . . 0 0

)
;r,d)−1

∣∣∣∣∣≤ g ,∣∣∣∣∣β0 −
∑

r∈R\{0}
βr S(

(
1 1 . . . 0 0

)
;r,d)−1

∣∣∣∣∣≤ g ,

. . .∣∣∣∣∣β0 −
∑

r∈R\{0}
βr S(

(
1 1 . . . 1 0

)
;r,d)−1

∣∣∣∣∣≤ g ,∣∣∣∣∣β0 −
∑

r∈R\{0}
βr S(

(
1 1 . . . 1 1

)
;r,d)−1

∣∣∣∣∣≤ g .

This computation scales well: linear programs such as this can be simply solved on a
desktop computer using standard software for thousands of variables and constraints.

4.D Implementing an R Estimator as a Feedforward Network

This section demonstrates how to cast a general R-estimator as the forward pass of a
feedfoward network. This analysis is necessary to give a benchmark against which to
compare stochastic gradient descent fitting.

First, we describe a concept called the R-mapping and an algorithm for computing
R-mappings, and then we show how to use an R-mapping to construct a feedforward
ReLU network that is an R-estimator.

4.D.1 R-Mapping Definition and Motivation

An R-mapping describes an R-estimator as a sequence of pairwise maxes. For d ∈N
and r ∈ {1,2, . . . ,d} let C (r,d) = {{1,2, . . . ,r }, {1,3, . . . ,r +1}, . . . , {d − r, . . . ,d}} denote the set of
size

(d
r

)
of all subsets of {1,2, . . . ,d} of size r .

Definition 3. An R-mapping for R ⊆ {0,1,2, . . . ,d} is a sequence of sets t1, t2, . . . , ts with
s ≤ ⌈log2 d⌉ satisfying:
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• for all r ∈ R,r > 0 there is some j such that C (r,d) ⊆ t j , and

• t j+1 ⊆ {τ1 ∪τ2 : τ1,τ2 ∈ t j }.

Each element of an R-mapping corresponds to a set of indices into the input, and at
the j th layer computes the max of the input over all indices in t j . The first defining
characteristic of an R-mapping ensures that the indices permit the evaluation of all
required subpool max averages. And the second condition ensures that a feedforward
ReLU network can compute the maxes over the implied indices.

4.D.2 Computing R-Mappings

This section shows how to compute an R-estimator. Say that R is adequate if max(R) ≤
2×max

(
R ∩ [0,2⌊log2(max(R)−1)⌋]

)
. If R is adequate then it possible to form the greatest re-

maining term from pairwise maxes of terms that are a lower power of two – a condition
necessary to enforce the second condition in Definition 3. If R is not adequate, then
it can be brought closer to adequacy by appending an additional term. Let R̃ = a(R),
where a : {0, . . . ,d} 7→ {0, . . . ,d} is defined recursively as:

a(R) =


R if R = {0,1}

{max(R)}∪a(R\{max(R)}) if R is adequate

{max(R)}∪a(R\{max(R)})∪ {⌈max(R)/2⌉} otherwise.

(4.28)

The third case covers the situation where it would not be possible to compute an
R-mapping out of terms in R, and so an additional term is appended. For example,
a({0,1,2,5,6}) = {0,1,2,3,5,6}: 3 has been appended since it is impossible to compute
the maxes of five and six terms using only pairwise maxes (r = 2) of pairs of variables.
a(R) reduces its argument by one term with each recursive call, and thus it is fast and
straightforward to evaluate.

By construction, every truncation of R̃ is adequate, thus for every r̃ ∈ R̃ with r̃ > 1 there
exists a r̃ ′ ∈ R̃ with r̃ ′ ≥ r̃ /2. This means that

C (1,d),C (2,d),∪r∈R∩{3,4}C (r,d), . . . ,∪r∈R∩{d/2,...,d}C (r,d)

is a R-mapping, however if R ⊊ R̃, then there will be smaller R-mappings since it is
possible to skip the computation of some terms in C (r,d). For example, there are 56
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subsets of size 3 of d = 8 values, but 36 terms of length 3 can be combined to form all
subsets of size 5 and 6.

For a vector A ∈ Rℓ with ℓ > k, let SPLITk : Rℓ → Rk ×Rk be the function that splits its
argument into the first and last k elements: SPLITk (A) = (A(1), . . . , A(k)), (A(ℓ−k), . . . , A(ℓ)).
And let FLATSPLITk be the set-valued function that applies SPLIT to each of its inputs
and collects the outputs into a single set

FLATSPLITk ({A1, A2, . . . , An})

= {(A1
(1), . . . , A1

(k)), (A2
(ℓ−k), . . . , A2

(ℓ)), . . . , (An
(1), . . . , An

(k)), (An
(ℓ−k), . . . , An

(ℓ))}.

Note that computing all subpool maxes entails some redundancy: for example

max(x1, x2, x3) = max(z1, z2)

max(x1, x2, x4) = max(z1, z3)

max(x1, x3, x4) = max(z2, z3)

max(x2, x3, x4) = max(z4, z5)

where

z1 = max(x1, x2)

z2 = max(x1, x3)

z3 = max(x1, x4)

z4 = max(x2, x3)

z5 = max(x2, x4)

.

In particular, just 5 out of the
(4

2

)= 6 terms suffice. This is the idea of Algorithm 3, which
gives one approach to compute an R-mapping that computes only a minimal subset of
terms necessary to support the computation of subsequent terms.

4.D.3 R-Mappings to Neural Network R-Estimators

An R-mapping (Definition 3), is a sequence of sets where each element of a set is
associated with a pair of elements in the previous set. Thus, it is well-suited to compute
pairwise maxes via a simple linear-ReLU-linear block as shown in Equation (4.2).
Computing the average of all subpooled values is a linear operation.

An important book-keeping challenge with this approach is to enable the network to
convey the average of low-order subpool maxes through the network. To do this, we
append to the network a “memory” – additional neurons which carry forward values
computed earlier in the network via identity mappings (propagated through ReLUs
via x = ReLU(+x)−ReLU(−x)) through until the end – a layer of width |R|, containing
all needed subpool max averages. Finally, these values are aggregated according to β.
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Data: R ⊆ {0,1, . . . ,d}
Result: R-mapping suitable for evaluating f ⋆R
R̃ ← a(R) // Augment R with needed terms
s = ⌈log2(maxR)⌉
R j ← R ∩ {i : i ∈N,⌈log2 i⌉ = j } for j = 1,2, . . . , s // group R by power of 2
R̃ j ← R̃ ∩ {i : i ∈N,⌈log2 i⌉ = j } for j = 1,2, . . . , s // group R̃ by power of 2
for i = 0,1, . . . , s −1 do

j ← s − i −1 // backward index
if i = 0 then

N j ←;
else

N j ← t j+1 // terms needed for subsequent layer
end
X j ← {C (k,r,d) : k = 1, . . . ,

(d
r

)
,r ∈ R j } terms needed for this layer

Y j ← X j ∪N j

k j ← max(R̃ j ) // tuple width in this mapping term
t j ← FLATSPLITk j (Y j )

end
Return t1, t2, . . . , ts

Algorithm 3: Computation of an R-mapping

The code is written in three stages: (1) compute a base network consisting of the
linear layers implied by Equation (4.2), then (2) append the subpool averages and their
attendant memory neurons, and finally (3) aggregate the penultimate layer value with
the coefficients. One helpful trick to developing this logic is to leave each step above as
consecutive linear layers, then once everything is complete, to fuse them all together.

This approach perhaps does not result in the smallest possible network, but it is simple,
fast, and the architecture is very descriptive of the logic the network implements. It
seems unlikely that a large improvement on this general scheme is possible, though
we do not attempt to prove this speculation.

4.E Additional Experiments

This section repeats Figure 4.2 for configurations different than the one described in
Section 4.5.1 in exactly one way, described in the caption. Across Figure 4.8, Figure 4.9,
Figure 4.10, Figure 4.11, Figure 4.12, and Figure 4.13 the basic pattern of quickly falling
error that levels out around µ= 1 for all three models is repeated.
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Figure 4.8: Figure 4.2 with Kaiming initialization for weights and small positive constant
for bias.
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Figure 4.9: Figure 4.2 with Xavier initialization for weights and small positive constant
for bias.
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Figure 4.10: Figure 4.2 with L∞ criterion replaced with L2 criterion.

.50 .75 1 2 3 4
µ

0.10

0.15

0.20

0.25

E
R

R
(R

,µ
)

R = {0,1,d −1}

R = {0,1,d −2,d −1}

R = {0,1, ...,d −2,d −1}

Figure 4.11: Figure 4.2 with Adam optimizer replaced with AdamW optimizer (PyTorch
default parameters).
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Figure 4.12: Figure 4.2 with pseudorandom uniform data replaced with Sobol sequence.
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Figure 4.13: Figure 4.2 with pseudorandom uniform data replaced with Dirichlet(1, . . . ,1)
data.
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Chapter 5

Curvature

An important takeaway from Chapter 3 is that linearity is essentially “free” as it pertains
to model complexity. Moreover, small reductions in nonlinearity can imply large
reductions in complexity. Thus, a principled way to make a network “more linear” is
called for. That is the idea of this chapter, which is based on Srinivas et al. [149].

Suraj and I jointly and equally developed the idea, the main theorem, the novel activa-
tion function, and the other layer modifications and criterion that finally characterized
a LCNN. In the latter stages, I validated the Lipschitz one-ness conditions, ran more of
the experiments and developed the tensor-based proof of the curvature bound, whilst
Suraj did more of the writing up of the experiments, and proof of the gradient stability
and adversarial robustness.

Suraj was supported in part by NSF awards #IIS-2008461 and #IIS-2040989, and re-
search awards from Google, JP Morgan, Amazon, Harvard Data Science Initiative, and
the D3 Institute at Harvard.

Note that differently to the other work in this thesis, we here do not use piecewise
linear activations (an important contribution is to posit a new activation). This is only
to enable simple calculus only; by standard arguments for approximating nonsmooth
functions as the limit of smooth functions, the intuition holds for piecewise linear
activations. A formal argument to this effect is in Dombrowski et al. [45].

To motivate more and less linear activations, consider the “leaky relu” activation
function of Maas, Hannun, and Ng [104], LeakyReLUα = x 7→ReLU(x)+α×min(0, x) with
α ∈ [0,1]. Clearly, LeakyReLUα(x) = (1−α)ReLU(x)+αx, thus the leaky relu activation
interpolates between the highly nonlinear relu activation (for α= 0), and the identity

83



Chapter 5. Curvature

0 10 20 30

−2

−1

0

1

0.000
0.333
0.667

Figure 5.1: More “leakiness” α in a LeakyReLUα activation makes for a more linear and
less expressive model.

mapping (for α = 1). In this sense, 1 −α is in an increasing correspondence with
curvature, and its consequences are demonstrated in Figure 5.1, where we train three
deep neural networks R→R, identical except for α in the leaky relu activation function,
are trained on a noisy dataset. Less curved (higher α) models overfit less.

A basic premise of this is analysis is that linearity itself is valuable. The chapter cap-
tures this goal circumspectly, via adversarial robustness, gradient stability, etc. But
the motivation is deeper in that linearity implies untold attractive properties. For
example, reproducbility (similar results for similar trainings), robustness to label noise,
composability with other optimizations, or compressability are a few of the many
attributes that are implied by linearity.

5.1 Introduction

The nonlinearity of deep neural networks is critical to achieving good performance
in complex tasks such as image classification, language modelling and generative
modelling of images (He et al. [74], Chowdhery et al. [28], and Ramesh et al. [128]).
However, excessive flexibility (nonlinearity) is undesirable as this can lead to model
under-specification (see D’Amour et al. [38]) which results in unpredictable behaviour
on out-of-domain inputs, such as vulnerability to adversarial examples. This work
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develops a method for training neural network models without excess non-linearity
(see Figure 5.2b for example), such that predictive performance remains unaffected.

To do this, a precise notion of curvature – a mathematical quantity that encodes the
flexibility or the degree of non-linearity of a function – is required. In deep learning,
the curvature of a function at a point is often quantified as the norm of the Hessian
(matrix of mixed second derivatives) at that point, for example Moosavi-Dezfooli et al.
[115] and Dombrowski et al. [45]. The Hessian is zero everywhere if and only if the
function is linear, making Hessian norm a suitable measure of non-linearity. However,
the Hessian depends on the scaling of model gradients, which makes it unsuitable to
study its interplay with model robustness. In particular, Hein and Andriushchenko [75]
shows that robust models have small gradient norms, which naturally imply smaller
Hessian norms. But are they truly more linear as a result? To be able to study robustness
independent of non-linearity, we propose normalized curvature, which normalizes
the Hessian norm by its corresponding gradient norm, thereby disentangling the two
measures. Experimentally, it seems that normalized curvature is a stable measure
across train and test samples (see Table 5.3), whereas existing curvature measures are
not.

One approach to train low-curvature models is to directly penalize curvature at training
samples, see Kanbak, Moosavi-Dezfooli, and Frossard [86] and Qin et al. [126]. How-
ever, these methods require expensive Hessian computations, and only minimize local
point-wise curvature and not curvature everywhere. A complementary approach is
presented in Dombrowski et al. [45], who propose architectures that have small global
curvature, but do not penalize curvature during training. In contrast, this chapter
proposes efficient mechanisms to directly penalize the normalized curvature globally.
In addition, while Moosavi-Dezfooli et al. [115] and Dombrowski et al. [45] penalize
the Hessian Frobenius norm, here the spectral norm is penalized, providing tighter
and more interpretable robustness bounds.

The overall contributions of this chapter are:

1. Section 5.3.1 proposes measuring the curvature of deep models via normalized
curvature, which is invariant to scaling of the model gradients, in particular, the
magnitude of linear layers.

2. Section 5.3.2 shows that the normalized curvature of DNNs can be upper bounded
via a decomposition into normalized curvatures and slopes of individual layers.

3. Developing an architecture for training low curvature neural networks combining
a novel activation function (Section 5.3.3) with recent innovations to constrain
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(a) Decision boundary
with standard NN (β =
1000)

(b) Decision boundary
with LCNN (β= 1)

2 0 2

1

0
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4

5 softplus( = 1.0)
softplus( = 0.2)
c-softplus( = 1.0)
c-softplus( = 0.2)

(c) Softplus vs Centered-Softplus

Figure 5.2: Decision boundaries of (a) standard NN and (b) Low Curvature NN trained
on the two moons dataset. The low curvature NN recovers a highly regular deci-
sion boundary. (c) The softplus and centered-softplus non-linearities (defined in
Section 5.3.3) behave similarly for large β, and converge to linear maps for small β.
However, softplus diverges while centered-softplus stays close to the origin.

the Lipschitz constant of convolutional (Section 5.3.4) and batch normalization
(Section 5.3.4) layers.

4. Section 5.4 proves that controlling normalized curvature controls relative gradi-
ent robustness and adversarial robustness.

5. Section 5.5 demonstrates that these innovations are successful in training low-
curvature models without sacrificing training accuracy, and that such models
have robust gradients and are more adversarially robust.

5.2 Related Work

5.2.1 Parameter Curvature and the Loss Landscape

A large literature examines the sensitivity of the loss with respect to the parameters in
order to improve the training dynamics and thereby find more stable optima. High loss
sensitivity to parameter choice around a fitted value indicates (by construction) either
a high slope or curvature. However, more linear loss landscapes are easier to optimize
so stability and extreme suboptimality are more expected in the presence of significant
parameter nonlinearity. In this section, let “parameter Hessian” refer to the matrix of
second derivatives of a DNN loss with respect to the parameters. Keskar et al. [88] coin
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the term “sharpness” as an approximate spectral norm of the parameter Hessian, scaled
by one plus the function value – observing that larger batch sizes tend to lead to sharper
optima. Dinh et al. [42] builds on this work, showing that a simple reparamaterization
can change the sharpness of a network arbitrarily without affecting its prediction
and showing that methodological decisions in modelling nonlinearity can be pivotal.
Ghorbani, Krishnan, and Xiao [62] give a method to efficiently and accurately estimate
the entire spectrum of the parameter Hessian, and isolate difficulties in training to
outliers in parameter Hessian eigenvalues. Foret et al. [51] find that penalizing a
parameter Hessian inner product has significant empirical and theoretical advantages.
Indeed, Andriushchenko and Flammarion [4] prove that models trained via sharpness-
regularized optimization provably generalize better than standard SGD.

Section 5.E examines further the relationship between the input-loss Hessian, consid-
ered here, and the parameter-loss Hessian that features in work on the geometry of the
loss landscape. In particular, it shows a duality between the Hessians with respect to
the input and the first layer weights.

5.2.2 Adversarial Robustness of Neural Networks

Adding imperceptible noise can cause deep neural networks to misclassify points with
high confidence (Szegedy et al. [152] and Goodfellow, Shlens, and Szegedy [65]). The
canonical method to defend against this vulnerability is adversarial training (Madry
et al. [105]) which trains models to accurately classify adversarial examples generated
via an attack such as projected gradient descent (PGD). However, this approach is
computationally expensive and provides no formal guarantees on robustness. Cohen,
Rosenfeld, and Kolter [31] proposed randomized smoothing, which provides a formal
guarantee on robustness by generating a smooth classifer from any black-box classifier.
Hein and Andriushchenko [75] identified the Lipschitz constant as critical quantity
to prove formal robustness guarantees. Moosavi-Dezfooli et al. [115] penalize the
Frobenius norm of the Hessian, and show that they performs similarly to models
trained via adversarial training. Qin et al. [126] introduce a local linearity regularizer,
which also implicitly penalizes the Hessian.

5.2.3 Unreliable Gradient Interpretations in Neural Networks

Gradient explanations in neural networks can be unreliable. Ghorbani, Abid, and Zou
[61] and Zhang et al. [177] showed that for any input, there are nearby inputs with
highly dissimilar gradient explanations. Srinivas and Fleuret [148] showed that pre-
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softmax logit gradients are independent of model behaviour, and as a result we focus on
post-softmax loss gradients in this work. Ros and Doshi-Velez [131] showed empirically
that robustness can be improved by gradient regularization, however Dombrowski
et al. [44] showed that gradient instability is primarily due to large Hessian norms. This
suggests that the gradient penalization in Ros and Doshi-Velez [131] performed unin-
tentional Hessian regularization, which is consistent with our experimental results.
To alleviate this, Dombrowski et al. [45] proposed to train low curvature models via
softplus activations and weight decay, similar to our approach.

5.2.4 Lipschitz Layers in Neural Networks

There has been extensive work on methods to bound the Lipschitz constant of DNNs.
Cisse et al. [30] introduced Parseval networks, which penalizes the deviation of linear
layers from orthonormality – since an orthonormal linear operator evidently has a
Lipschitz constant of one, this shrinks the Lipschitz constant of a layer towards one.
Trockman and Kolter [159] use a reparameterization of the weight matrix, called the
Cayley Transform, that is orthogonal by construction. Miyato et al. [112] and Ryu et al.
[134] proposed spectral normalization, where linear layers are divided by their spectral
norm, ensuring that the overall spectral norm of the layer is one.

Other works, such as Loukas, Poiitis, and Jegelka [103], have directly posited the Lip-
schitz constants at the data as a useful diagnostic on training, with lower empirical
Lipschitz parameter trajectories resulting in less complex models.

5.3 Training Low-Curvature Neural Networks

This section introduces an approach to train low curvature neural networks (LCNNs).

5.3.1 Measuring Model Non-Linearity via Normalized Curvature

A linear function should have zero curvature, and the higher the curvature, the further
from linear the function is. Moosavi-Dezfooli et al. [115] and Dombrowski et al. [45]
proposed measuring the curvature of a DNN via the Frobenius norm of the Hessian.
This approach is sensitive to gradient scaling, which is undesirable: if two functions
are scaled versions of each other, then they should have similar curvatures. It is easy to
see that Hessian norms do not have this property, as scaling the function also scales
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the Hessian. Low curvature models with steep gradients may be overly sensitive, but
are close to linear, however Hessian norms alone cannot adequately distinguish such
models from those with high-curvature models and small gradients. A definition of
curvature that is approximately normalized can disentangle the two. For a function f

let

C f (x) = ∥∇2 f (x)∥2/(∥∇ f (x)∥2 +ε) (5.1)

be called the curvature of f at x. ∥∇ f (x)∥2 and ∥∇2 f (x)∥2 are the L2 norm of the gradient
and the Hessian, respectively, and ε> 0 is a small constant to ensure well-behavedness
of the measure when the denominator approaches zero. This measure joins other
approaches normalizing the second derviative in order to achieve desired scaling
properties, such as from geometry, where a term of (1+ f ′(x))3/2 normalizes by the
arclength of a curve in one dimension.

Equation (5.1) measures Hessian norm relative to the gradient norm, and captures
relative local linearity, which can be seen via Taylor’s theorem:

∥ f (x +δ)− f (x)−∇ f (x)⊤δ∥2

∥∇ f (x)∥2︸ ︷︷ ︸
relative local linearity

≤ 1

2
max

x
C f (x)︸ ︷︷ ︸

max normalized curvature

×∥δ∥2. (5.2)

5.3.2 A Data-Free Upper Bound on Curvature

Directly penalizing the loss curvature requires backpropagating an estimate of the
Hessian norm, which itself requires backpropagating gradient-vector products. This
requires chaining the entire computational graph of the model at least three times.
Moosavi-Dezfooli et al. [115] reduce the complexity of this operation by computing a
finite-difference approximation to the Hessian from gradients, but even this double-
backpropagation is expensive. Ideally, a penalization procedure would take a single
backpropagation step. A measure that is a function of model parameters alone (and
not training data) satisfies this property.

To illustrate the idea, Lemma 6 shows this upper bound for the simplified case of the
composition of one-dimensional functions.

Lemma 6. For a function f = fL◦ fL−1◦...◦ f1 with fi :R→R for i = 1,2, . . . ,L, the normalized

curvature C f = | f ′′/ f ′|, is bounded by
∣∣∣ f ′′

f ′

∣∣∣ ≤ ∑L
i=1

∣∣∣ f ′′
i

f ′
i

∣∣∣ ∏i
j=1 | f ′

j | where f ′, f ′′ are the first
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and second order derivatives.

Proof. The chain rule for the first derivative gives f ′ = ∏L
i=1 f ′

i . Differentiating this
expression gives f ′′ =∑L

i=1 f ′′
i

∏i
j=1 f ′

j

∏L
k=1,k ̸=i f ′

k . Dividing by f ′, taking absolute value of
both sides, and using the triangle inequality, delivers the intended result.

Section 5.A derives the expression for general layer widths using a result from Wang
et al. [167] that connects the spectral norms of order-n tensors to the spectral norm of
their matrix “unfoldings”. The simplified result is Theorem 8.

Theorem 8. Given a function f = fL ◦ fL−1 ◦ . . .◦ f1 with fi :Rni−1 →Rni , the curvature C f

can be bounded as a function of the curvatures of individual layers C fi (x), i.e.,

C f (x) ≤
L∑

i=1
ni ×C fi (x)×

i∏
j=1

∥∇ f j (F j−1(x))∥2 ≤
L∑

i=1
ni ×max

x ′ C fi (x ′)×
i∏

j=1
max

x ′ ∥∇ f j (F j−1(x ′))∥2,

(5.3)
where F j−1(x) = ( f j−1 ◦ f j−2 ◦ . . .◦ f1)(x).

The rightmost term is independent of x and thus holds uniformly across all data points.
This bound shows that controlling the curvature and Lipschitz constant of each layer
of a neural network controls the overall curvature of the model. A similar bound is
constructed recursively in Singla and Feizi [145]. Dombrowski et al. [45] gives a similar
formula, albeit for the Frobenius norm, which is simpler, because the sum of squared
entries is independent of the layout of the data. To our knowledge Equation (5.3) is the
first explicit, easily-interpreted formula of its type.

Neural networks typically consist of linear maps such as convolutions, fully connected
layers, and batch normalization layers, along with non-linear activation functions. Lin-
ear maps have zero curvature by definition, and non-linear layers often have bounded
gradients (= 1), which simplifies computations. The next section analyzes the penal-
ization of the remaining terms, i.e., the curvature of the non-linear activations, and the
Lipschitz constant of the linear layers.

5.3.3 Centered-Softplus: An Activation with Trainable Curvature

Theorem 8 shows that the curvature of a neural network depends on the curvature of
its constituent activation functions. We thus propose to use activation functions with
minimal curvature.
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A smooth activation such as the softplus function, s(x;β) = log(1+ exp(βx))/β is well
suited to analyzing questions of curvature. Although not common, softplus is used,
especially where its smoothness facilitates analysis, such as in Grathwohl et al. [67].
The curvature of the softplus function is

Cs(·;β)(x) =β×
(
1− ds(x;β)

dx

)
≤β. (5.4)

Thus using softplus with small β values ensures low curvature. However, there are two
drawbacks of softplus with small β: (1) limβ↓0 s(x;β) =∞, meaning that well-behaved
low curvature maps cannot be recovered and, (2) instability around the origin upon
composition, sn(0;β) = (s ◦ s ◦ . . .◦ s)︸ ︷︷ ︸

n times

(0;β) = log(n+1)
β . Thus sn(0;β) →∞ as n →∞, which is

problematic for deep networks. The centered-softplus s0(x;β) solves this by introducing
a normalizing term as follows:

s0(x;β) = s(x;β)− log2

β
= 1

β
log

(
1+exp(βx)

2

)
. (5.5)

s(0;β) = sn(0;β) = 0 for any positive integer n, thus s0 is stable under composition. More
importantly, limβ↓0 s0(x;β) = x/2, while still retaining limβ↑∞ s0(x;β) = ReLU(x). This
ensures that s0 can learn both well-behaved linear maps, as well as highly non-linear
ReLU-like maps if required.

β is a learnable parameter with its value penalized, thereby penalizing the curvature of
that layer. Having accounted for the curvature of the non-linearities, the next section
discusses controlling the gradients of the linear layers.

5.3.4 Lipschitz Linear Layers

Theorem 8 shows that penalizing the Lipschitz constants of the constituent linear
layers in a model penalizes overall model curvature. There are three classes of linear
layers we consider: convolutions, fully connected layers, and batch normalization.
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Spectrally Normalized Convolutions and Fully Connected Layers

Existing spectral normalization techniques suffice to penalize the Lipschitz constant of
convolutions and fully connected layers. For fully connected layers, ordinary spectral
normalization from Miyato et al. [112] which controls the spectral norm of a fully
connected layer by reparameterization (replacing a weight matrix W , by W /||W ||2 and
using a small number of power iterations to approximate ||W ||2) works. Ryu et al.
[134] generalize this normalization to convolutions with a power iteration method that
works directly on the linear mapping implicit in a 2D convolution: maintaining 3D left
and right singular “vectors” of the 4D tensor of convolutional filters and developing
the corresponding update. Ryu et al. [134] call this “real” spectral normalization
to distinguish it from approximations based on flattening higher order tensors and
applying Miyato et al. [112]. Spectral normalization on fully connected layers and
“real” spectral normalization on convolutional layers ensures that the spectral norm of
these layers is exactly equal to one, simplifying the bound in Theorem 8.

γ-Lipschitz Batch Normalization

Ignoring the learnable parameters of batch normalization, at inference time batch
normalization is multiplication by the diagonal matrix of inverse running standard
deviation estimates. Thus clipping the reciprocal of the smallest running standard de-
viation value across dimensions at one normalizes the spectral norm. Experimentally,
models with spectrally normalized batch norm layers failed to train well, indicating
that the scaling is necessary for training (Ghorbani, Krishnan, and Xiao [62] offer a
compelling explanation of this phenomena, since eliminating the scaling aspect of
batch normalization reduces it to de-meaning – essentially removing it). To remedy
this, let “BN” denote the normal batchnorm operation,

1-Lipschitz-BN(x)≜BN(x)/||BN||2
γ-Lipschitz-BN(x)≜min(γ, ||BN||2)︸ ︷︷ ︸

scaling factor≤γ

×1-Lipschitz-BN(x).

Clipping the scaling above at γ (equivalently, the running standard deviation below, at
1/γ) ensures that the Lipschitz constant of a batch normalization layer is at most equal
to γ. As with β, described in Section 5.3.3, we cast γ as a learnable parameter in order
to penalize it during training. Gouk et al. [66] proposed a similar approach, though
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restricted to a common γ for all batch norm layers, while here γ can vary by layer.

5.3.5 Penalizing Curvature

Section 5.3.4 discussed three architectural innovations – centered-softplus activa-
tions with a trainable β, spectrally normalized linear and convolution layers and a
γ-Lipschitz batch normalization layer. This section discusses methods to penalize the
overall curvature of a model built with these layers.

Spectrally-normalized convolutional and linear layers have spectral norms equal to
one by construction, thus only batch normalization and activation layers contribute
to curvature. We refer to these layers as γBN and βSP. For models with batch nor-
malization, naı̈vely using the upper bound in Theorem 8 is problematic due to the
exponential growth in the product of Lipschitz constants of batch normalization layers.
We thus use a simpler penalization where logγi is aggregated additively across batch
normalization layers, and independent of βi in the following manner:

λβ×
∑

i∈βSP
βi +λγ×

∑
j∈γBN

logγ j . (5.6)

Additive aggregation ensures that the penalization does not grow exponentially. Note
that the model is necessarily linear if the penalization term is zero, thus making it an
appropriate measure of model non-linearity. γ and β are parameterized in terms of
their log value, to ensure they remain positive during training.

The term “LCNN” refers to a model trained with the proposed architectural compo-
nents (centered-softplus, spectral normalization, and γ-Lipschitz batch normalization)
and associated regularization terms on β,γ. The next section discusses the robustness
and interpretability benefits of LCNNs.

5.4 Why Train Low-Curvature Models?

This section discusses the advantages of low-curvature models, particularly as it per-
tains to robustness and gradient stability. These statements apply not just to LCNNs,
but low-curvature models in general.

93



Chapter 5. Curvature

5.4.1 Low Curvature Models have Stable Gradients

Recent work such as Ghorbani, Abid, and Zou [61] and Zhang et al. [177] has shown
that gradient explanations are manipulable, and that inputs whose explanations differ
maximally from those at the original inputs are easily found, making them unreli-
able in practice for identifying important features. This amounts to models having a
large curvature. In particular, the relative gradient distance is upper bounded by the
normalized curvature C f , as given below.

Theorem 9. Consider a model f with maxx C f (x) ≤ ν and two inputs x and x +δ. The
relative distance between gradients at these points is bounded by

∥∇ f (x +δ)−∇ f (x)∥2

∥∇ f (x)∥2
≤ ∥δ∥2ν×exp(∥δ∥2ν).

If f is quadratic, then we obtain the tighter bound ∥δ∥2C f (x).

The proof (Section 5.B.1) expands f (x) in a Taylor expansion around x +δ and bounds
the magnitude of the second and higher order terms over the neighborhood of x. Thus
the smaller the model curvature, the more locally stable are the gradients.

5.4.2 Low Curvature is Necessary for L2 Robustness

A small gradient norm is known to be an important aspect of adversarial robustness
(see Hein and Andriushchenko [75]). However, small gradients alone are not sufficient,
and low curvature is also necessary to achieve robustness. This is easy to see intuitively
- a model may have low gradients at a point leading to robustness for small noise
values, but if the curvature is large, then gradient norms at neighboring points can
quickly increase, leading to misclassification for even slightly larger noise levels.

Theorem 10 formalizes this intuition establishing an upper bound on the distance
between two nearby points, which depends on both the gradient norm (as was known
previously) and well as the max curvature of the underlying model.

Theorem 10. Consider a model f with maxx C f (x) ≤ ν, then for two inputs x and x +δ,
we have the following expression for robustness
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∥ f (x +δ)− f (x)∥2 ≤ ∥δ∥2∥∇ f (x)∥2
(
1+∥δ∥2ν×exp(∥δ∥2ν)/2

)
.

If f is quadratic, then we obtain the tigher bound ∥δ∥2∥∇ f (x)∥2
(
1+∥δ∥2C f (x)/2

)
.

The proof (Section 5.B.2) uses similar techniques to the proof of Theorem 9. This result
shows that between two models with equal gradients at data points, greater robustness
will be achieved by the model with the smaller curvature.

5.5 Experiments

This section presents experiments to (1) evaluate the effectiveness of the proposed
method to achieve low curvature as intended, (2) evaluate whether low curvature
models have robust gradients, and (3) evaluate whether low-curvature models are ad-
versarially robust. These experiments are primarily conducted on a base ResNet-18 ar-
chitecture from He et al. [73] using the CIFAR10 and CIFAR100 datasets (cf. Krizhevsky
[97]), and using the PyTorch (Paszke et al. [121]) framework.

5.5.1 Loss curvature and logit curvature

Section 5.4.1 and Section 5.4.2 interpreted f as the logits of a deep neural network. This
is advantageous in permitting conclusions about adversarial robustness (Theorem 10)
and notationally convenient in relying on only the input x and not the y .

For consistency with earlier papers, such as Moosavi-Dezfooli et al. [115], here we
consider the loss curvature, where the loss function is cross-entropy loss. The two
are connected via loss(x, y) =−logsoftmax( f (x))y . This is the notion tabulated below,
though the penalty is Equation (5.6). The empirical analogues tabulated here are
computed exactly using PyTorch’s native autograd functionality.

Recognizing that loss(x, y) ≤ ||logsoftmax( f (x))|| we have this informative relationship
between the loss and logit derivatives
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∇(logsoftmax◦ f )(x) =∇logsoftmax( f (x))∇ f (x) and (5.7)

∇2(logsoftmax◦ f )(x) =∇ f (x)∇2logsoftmax( f (x))∇ f (x)⊤+∇logsoftmax( f (x))∇2 f (x).

(5.8)

Minimizing logit curvature also tends to decrease the loss curvature via the second
term. Moreover, reducing the loss gradient norm tends to reduce logit gradient norm
which tends to separately decrease the loss curvature. Though loss depends on x and
y , in the empirical results, all derivatives are with respect to x only.

5.5.2 Baselines and Our Methods

The main baseline is a ResNet-18 model with softplus activation with β= 103 to mimic
ReLU, and yet have well-defined curvatures. Another baseline is gradient norm reg-
ularization (henceforth called ‘GradReg’, Drucker and Le Cun [47]), trained with an
additional penalty on the gradient norm. We train two variants of our approach - a
base LCNN, which penalizes the curvature, and another variant combining LCNN
penalty and gradient norm regularization (LCNN + GradReg), which controls both the
curvature and gradient norm. Our theory indicates that the LCNN + GradReg variant
is likely to produce more robust models, which is verified experimentally. We also
compare with Curvature Regularization (CURE) from Moosavi-Dezfooli et al. [115],
softplus with weight decay from Dombrowski et al. [45] and adversarial training with
L2 PGD from Madry et al. [105] with noise magnitude of 0.1 and 3 iterations of PGD.
Further experimental details are in the appendix.

5.5.3 Parameter Settings

All models are trained for 200 epochs with an SGD + momentum optimizer, with a
momentum of 0.9 and an initial learning rate of 0.1 which decays by a factor of 10 at
150 and 175 epochs, and a weight decay of 5×10−4.

5.5.4 Evaluating the Efficacy of Curvature Penalization

This section evaluates whether LCNNs reduce model curvature in practice. Table 5.1
contains the results, from which we observe: (1) most baselines except CURE and

96



5.5 Experiments

adversarial training do not meaningfully lose predictive performance (2) GradReg and
adversarially trained models are best at reducing gradient norm while LCNN-based
models are best at penalizing curvature. Overall, these experimental results show that
LCNN-based models indeed minimize curvature as intended.

Table 5.1 also shows that GradReg has a regularizing effect on the Hessian and curva-
ture above and beyond penalizing the curvature. This can be seen from Equation (5.8),
as setting aside the logsoftmax terms ∇loss ∝ ∇ f , and ∇2loss = c1(∇ f )(∇ f )⊤+ c2∇2 f .
Thus, penalizing both gradient norm and curvature penalizes both curvature directly,
and a component of curvature arising from the gradient norm. Lower gradient norms
generically benefit model stability, for example adversarial robustness. And penalizing
curvature alone does not directly reduce the gradient norm (unlike existing methods),
thus penalizing both gradient norm and gradient norm-scaled curvature is antici-
pated to have the best overall properties and the most direct competitor to existing
approaches.

The average per-epoch training times on a GTX 1080Ti are: standard models and
softplus + weight decay (100 seconds), LCNN (160 seconds), GradReg (270 seconds),
LCNN + GradReg (350 seconds), CURE and Adversarial Training (500 seconds). Note
that the increase in computation for LCNN is primarily due to the use of spectral
normalization layers. The results show that LCNNs are able to penalize curvature
while only marginally (1.6 ×) increasing training time, and using LCNN+GradReg only
increases time 1.3 × over GradReg while reducing curvature.

Table 5.1: Model geometry of ResNet-18 models trained with various regularizers on
the CIFAR100 test dataset. Gradient norm regularized models (‘GradReg’) are best at
reducing gradient norms, while LCNN-based models are best at reducing curvature,
leaving gradients unpenalized. We obtain the benefits of both by combining these
penalties. All models use softplus (or centered softplus). Results are averaged across
two runs. All statistics are averaged over the test data.

Model ∥∇loss∥2 ∥∇2loss∥2 Closs Acc. (%)

Standard 19.66 ±0.33 6061.96 ±968.05 270.89 ±75.04 77.42 ±0.11

LCNN 22.04 ±1.41 1143.62 ±99.38 69.50 ±2.41 77.30 ±0.11

GradReg 8.86 ±0.12 776.56 ±63.62 89.47 ±5.86 77.20 ±0.26

LCNN + GradReg 9.87 ±0.27 154.36 ±0.22 25.30 ±0.09 77.29 ±0.07

CURE 8.86 ±0.01 979.45 ±14.05 116.31 ±4.58 76.48 ±0.07

Weight Decay 18.08 ±0.05 1052.84 ±7.27 70.39 ±0.88 77.44 ±0.28

Adversarial Training 7.99 ±0.03 501.43 ±18.64 63.79 ±1.65 76.96 ±0.26
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(a) Gradient Robustness on CIFAR10
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(b) Gradient Robustness on CIFAR100

Figure 5.3: Relative gradient robustness ∥∇ f (x+δ)−∇ f (x)∥2

∥∇ f (x)∥2
as a function of noise magni-

tude ∥δ∥2 on (a) CIFAR10 and (b) CIFAR100 with a ResNet-18 model. Low-curvature
models show an order of magnitude improvement in gradient robustness, which
closely follows the trend predicted by the theoretical upper bound in Section 5.4.

5.5.5 Impact of Curvature on Gradient Robustness

Section 5.4.1 showed that low-curvature models tend to have more robust gradients.
This section measures the relative gradient robustness for the models with various
ranges of curvature and noise levels. Figure 5.3 plots results of measuring robustness
to random noise at fixed magnitudes ranging logarithmically from 1×10−3 to 1×10−1.
Theresults match the quadratic approximation in Section 5.4.1 quite closely in terms of
the overall trends, and low curvature models have an order of magnitude improvement
in robustness over standard models.

5.5.6 Impact of Curvature on Adversarial Robustness

Theorem 10 shows that having low curvature is necessary for robustness, along with
having small gradient norms. This section evaluates this claim empirically, by eval-
uating adversarial examples via L2 PGD adversaries with various noise magnitudes.
PGD is implemented via the Cleverhans library (Papernot et al. [120]). The results in
Table 5.2 show that LCNN+GradReg models perform on par with adversarial training,
with no accuracy loss.
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Table 5.2: Results indicating off-the-shelf model accuracies (%) against L2 PGD ad-
versarial examples across various noise magnitudes. Adversarial training performs
the best overall, however sacrifices clean accuracy. LCNN+GradReg models perform
similarly but without significant loss of clean accuracy. All models use softplus (or
centered softplus). Results are averaged across two runs.

Model Acc. (%) ∥δ∥2 = 0.05 ∥δ∥2 = 0.1 ∥δ∥2 = 0.15 ∥δ∥2 = 0.2

Standard 77.42 ±.10 59.97 ±.11 37.55 ±.13 23.41 ±.08 16.11 ±.21

LCNN 77.16 ±.07 61.17 ±.53 39.72 ±.17 25.60 ±.32 17.66 ±.18

GradReg 77.20 ±.26 71.90 ±.11 61.06 ±.03 49.19 ±.12 38.09 ±.47

LCNN + GradReg 77.29 ±.26 72.68 ±.52 63.36 ±.39 52.96 ±.76 42.70 ±.77

CURE 76.48 ±.07 71.39 ±.12 61.28 ±.32 49.60 ±.09 39.04 ±.16

Weight Decay 77.44 ±.28 60.86 ±.36 38.04 ±.43 23.85 ±.33 16.20 ±.01

Adversarial Training 76.96 ±.26 72.76 ±.15 64.70 ±.20 54.80 ±.25 44.98 ±.57

5.5.7 Train-Test Discrepancy in Model Geometry

Table 5.3 shows that the empirical gradient norm and Hessian norms are much larger
on train than on test data, hinting at a form of overfitting with regards to these quanti-
ties. We term this phenomenon the train-test discrepancy in model geometry. Interest-
ingly, no such discrepancy appears for our curvature measure, indicating that it may
be a more reliable measure of model geometry. We leave further investigation of this
phenomenon as a topic for future work.

Table 5.3: Train-test discrepancy in model geometry. For a scalar-valued function g
of a dataset xtrain or xtest, let ttd-g denote |1− g (xtrain)/g (xtest)|. We present ttd-g for
g being the gradient norm, Hessian norm, and curvature. There is a large train-test
discrepancy for gradient and Hessian norm, but almost none for curvature, indicating
that it may be a stable model property.

Model ttd-∥∇loss∥2 ttd-∥∇2loss∥2 ttd-Closs

Standard 11.75 12.28 0.025
GradReg 11.33 11.22 0.017
LCNN 19.99 11.33 0.129
LCNNs + GradReg 21.82 10.43 0.146

Summary of Experimental Results Overall, our experiments show that:

(1) LCNNs have lower curvature than standard models, and combining them with
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gradient norm regularization further decreases curvature (see Table 5.1). The latter
phenomenon is unexpected, as our curvature measure ignores gradient scaling.

(2) LCNNs combined with gradient norm regularization achieve an order of magnitude
improved gradient robustness over standard models (see Figure 5.3).

(3) LCNNs combined with gradient norm regularization outperform adversarial train-
ing with (1) better predictive accuracy at a lower curvature (see Table 5.1), and (2) 1.4 ×
faster training, with comparable adversarial robustness (see Table 5.2).

(4) We observe that there exists a train-test discrepancy for standard geometric quan-
tities like the gradient and Hessian norm, and this discrepancy disappears for our
proposed curvature measure (see Table 5.3).

Section 5.D presents ablation experiments, additional adversarial attacks, and evalua-
tions on more datasets and architectures.

5.6 Conclusion

This chapter presented a modular approach to remove excess curvature in neural
network models. Importantly, we found that combining LCNNs with gradient norm
regularization resulted in models with the smallest curvature, the most stable gradients
as well as those that are the most adversarially robust.

A limitation of our approach is that we only consider convolutional and fully con-
nected layers, and not self-attention or recurrent layers. We also do not investigate the
learning-theoretic benefits (or harms) of low-curvature models, or characterize how
they may affect generalization for small number of training samples, or robustness to
label noise. Investigating these topics would be important future work.

5.A Proof of Theorem 8

This section proves Theorem 8, which decomposes overall curvature into curvatures
and slopes of constituent layers. We restate it here for reference. Section 5.A.1, Sec-
tion 5.A.2, and Section 5.A.3 given necessary preliminaries, and the actual bound is in
Section 5.A.4.
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5.A.1 Derivatives of Compositional Functions

For a function f :Rd →Rr , let ∇ f :Rd →Rd×r denote its gradient, and ∇2 f :Rd →Rd×r×d

denote its Hessian. Given functions fi : Rni−1 → Rni , i = 1. . . ,L let fk,k+ j = fk+ j ◦ fk+ j−1 ◦
. . .◦ fk :Rnk−1 →Rnk+ j for 1 ≤ k ≤ k + j ≤ L. If each fi is continuously differentiable, then

∇ fk,k+ j =
j∏

i=1
∇ fk+ j−i+1 ∈Rnk+ j×nk . (5.9)

with the convention that f j , j (x) = x. The product begins at the end, with ∇ fk+ j , and
progresses forward through the indices via the chain rule of differentiation. Supposing
that each fi is twice-differentiable, the second derivative of f1,k is given by:

∇2 f1,k =
k∑

i=1
∇2 f1,i −∇2 f1,i−1

where (∇2 f1,i −∇2 f1,i−1) = (∇2 fi )
(
∇ f1,i−1,∇ f ⊤

i+1,k ,∇ f1,i−1

)
∈Rn0×nk×n0 .

(5.10)

This equation uses the covariant multilinear matrix multiplication notation: ∇2 fi is
an order-three tensor ∈Rni×ni×ni , with the first and third modes multiplied by ∇ f1,i−1 ∈
Rni×n0 and the second mode multiplied by ∇ f ⊤

i+1,k ∈Rni×nk .

5.A.2 Tensor Calculus

This section presents a simplifed version of the notation from Wang et al. [167]. A k-
linear map is a function of k variables such that if any k −1 variables are held constant,
the map is linear in the remaining variable. A k-linear function can be represented by
an order-k tensor A given elementwise by A = �a j1... jk � ∈Rd1×...×dk .

The covariant multilinear matrix multiplication of a tensor with matrices M1 = (m(1)
i1 j1

) ∈
Rd1×s1 , . . . , Mk = (m(k)

ik jk
) ∈Rdk×sk is

A (M1, . . . , Mk ) =
�

d1∑
i1=1

. . .
dk∑
ik

ai1...ik m(1)
i1 j1

. . .m(k)
ik jk

�
∈Rs1×...×sk .

For example, covariant multilinear matrix multiplication of an order two tensor is pre-

101



Chapter 5. Curvature

and post- multiplication by its arguments: M⊤
1 A M2 =A (M1, M2). This operation can

be implemented via iterated einsums as:

def covariant_multilinear_matmul(a: torch.Tensor,
mlist: List[torch.Tensor]) -> torch.Tensor:

order = a.ndim
base_indices = string.ascii_letters
indices = base_indices[:order]
next_index = base_indices[order]
val = a
for idx in range(order):

resp_str = indices[:idx] + next_index + indices[idx+1:]
einsum_str = indices + f",{indices[idx]}{next_index}->{resp_str}"
val = torch.einsum(einsum_str, val, mlist[idx])

return val

The spectral norm of a general tensor is ||A ||2 = sup{A (x1, . . . , xk ) : ||xi || = 1, xi ∈ Rdi , i =
1,2, . . . ,k}. The computation of order-k operator norms is hard in theory, and also in
practice (cf. Friedland and Lim [53]). Following the literature, we thus upper-bound the
operator norm by the norm of one unfolding. For A ∈Rd1×d2×d3 , let unfold{{1,2},{3}}(A ) ∈
Rd1d2×d3 be the matrix with the j th column being the flattened j th (in the final index)
d2 ×d3 matrix.1 Unfolding is useful because it bounds an order-3 operator norm in
terms of order-2 operator norms: Wang et al. [167, Theorem 4.8] shows that ||A || ≤
||unfold{{1,2},{3}}(A )||. The upper bound – the operator norm of a matrix – can computed
with standard largest singular-value routines. A similar bound was used in Singla and
Feizi [144] to give improved estimates on the spectral norm of convolution operators.

To facilitate the analysis of unfolded tensors, let pdiag2 :Rd 7→Rd×d and pdiag3 :Rd 7→
Rd×d×d be operations that put to the diagonal of tensors:

pdiag2(x)i j =
x j if i = j

0 otherwise
, and pdiag3(x)i j k =

xk if i = j = k

0 otherwise.

Further, let 1n ∈ Rn be a vector of ones, In = pdiag2(1n) ∈ Rn×n be the n-dimensional
identity matrix, and In = pdiag3(1n) ∈ Rn×n×n . For two vectors a ∈ Rn ,b ∈ Rn , let ab

denote the elementwise product. ⊗ denotes the well-understood Kronecker product,
so that, for example, 1⊤

n ⊗ Im is an m ×nm matrix consisting of n copies of the m ×m

identity matrix stacked side by side.

1In PyTorch, unfold{{1,2},{3}}(a) = torch.flatten(a, end_dim=1).
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These straightforwardly-verified facts are used subsequently:

1. A =pdiag3(ab) =⇒ A (M1, M2, M3) =I (pdiag2(a)M1, M2,pdiag2(b)M3),

2. unfold{{1,2},{3}}(I (M1, M2, M3)) = (M1 ⊗ Is2 )⊤unfold{{1,2},{3}}(I (Id1 , M2, M3)), and

3. ||(1⊤
d1
⊗ Is2 )unfold{{1,2},{3}}(I (Id1 , M2, M3))|| ≤ ||M⊤

2 M3||s2.

Taken together Fact #2 and #3 imply that

||unfold{{1,2},{3}}(I (M1, M2, M3))|| ≤ ||M1||× ||M⊤
2 M3||× s2. (5.11)

5.A.3 Hessian Increment Bound

Let σ(x) = exp(x)/(1+exp(x)) denote the (elementwise) logistic function Rd 7→Rd . The
derivatives of s(x;β) can be written as

∇s(x;β) =pdiag2(σ(βx)) ∈Rd×d (5.12)

∇2s(x;β) =pdiag3(βσ(βx)(1−σ(βx))) ∈Rd×d×d . (5.13)

Let the i th softplus layer have coefficient βi , then the increment from Equation (5.10),
can be bounded as follows:

||(∇2 fi )
(
∇ f1,i−1,∇ f ⊤

i+1,k ,∇ f1,i−1

)
|| (5.14)

=||βi Ini

(
pdiag2(1−σ(βi x))∇ f1,i−1,∇ f ⊤

i+1,k ,pdiag2(σ(βi x))∇ f1,i−1

)
|| (5.15)

≤||βi unfold{{1,2},{3}}(Ini (pdiag2(1−σ(βi x))∇ f1,i−1,∇ f ⊤
i+1,k ,pdiag2(σ(βi x))∇ f1,i−1)||

(5.16)

≤||βi (pdiag2(1−σ(βi x))∇ f1,i−1||× ||∇ f ⊤
i+1,k pdiag2(σ(βi x))∇ f1,i−1||×ni (5.17)

≤ni ×||βi (pdiag2(1−σ(βi x))||× ||∇ f1,i−1||× ||∇ f ⊤
i+1,k∇ fi∇ f1,i−1|| (5.18)

=ni ×C fi ×||∇ f1,i−1||× ||∇ f ||. (5.19)
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Equation (5.15) follows by Fact #1 above, along with Equation (5.13). Equation (5.16) is
the standard unfolding bound by Wang et al. [167]. Equation (5.17) is Equation (5.11).
Equation (5.18) follows from the Cauchy-Schwartz inequality. The replacement in the
last term of the product is Equation (5.12). Equation (5.19) rewrites Equation (5.18)
using Equation (5.9): f ⊤

i+1,k∇ fi∇ f1,i−1 =∇ f1,k and the definition of the curvature of fi .

5.A.4 Putting it Together

Ignoring the ϵ term in the denominator,

C f (x) = ∥∇2 f (x)∥
∥∇ f (x)∥ (5.20)

= 1

∥∇ f (x)∥

∣∣∣∣∣
∣∣∣∣∣ L∑
i=1

∇2 f1,i (x)−∇2 f1,i−1(x)

∣∣∣∣∣
∣∣∣∣∣ (5.21)

≤ 1

∥∇ f (x)∥
L∑

i=1
||∇2 f1,i (x)−∇2 f1,i−1(x)|| (5.22)

≤
L∑

i=1
ni ×C fi (x)×||∇ f1,i−1(x)|| (5.23)

≤
L∑

i=1
ni ×C fi (x)×

j∏
i=1

||∇ fi (Fi−1(x))|| (5.24)

≤
L∑

i=1
ni ×max

x ′ C fi (x ′)×
j∏

i=1
max

x ′ ||∇ fi (Fi−1(x ′))||. (5.25)

Equation (5.21) substitutes Equation (5.10). Equation (5.22) is the triangle inequality.
Equation (5.23) is Equation (5.19), along with cancelling the term of ||∇ f || top and
bottom. Equation (5.24) are Equation (5.25) are obvious and a standard simplification
in the literature on controlling the Lipschitz constant of neural networks. Because
exactly computing the smallest Lipschitz constant of a general neural network is
NP-complete, a widely-used baseline measure of Lipschitz-smoothness is rather the
product of the Lipschitz constants of smaller components of the network, such as
single layers (Scaman and Virmaux [139]).

5.B Proofs of LCNN Properties

This section proves the properties linking LCNNs to gradient smoothness and adver-
sarial robustness. Lemma 7, used in both these results, states that the ratio of gradient
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norms at nearby points can rise at most exponentially with distance between those
points in the worst case.

Lemma 7. For a function f satisfying maxx ′ C f (x ′) ≤ ν, points x and x+δ that are ∥δ∥2 = r

away,

∥∇ f (x +δ)∥2

∥∇ f (x)∥2
≤ exp(rν).

Proof. Let g (x) = log∥∇ f (x)∥2
2. Applying a first order Taylor series expansion with La-

grange remainder, for some ξ:

g (x +δ)− g (x) =∇g (x +ξ)⊤δ =⇒

log
∥∇ f (x +δ)∥2

2

∥∇ f (x)∥2
2

= 2
∇ f (x +ξ)∇2 f (x +ξ)⊤δ

∥∇ f (x +ξ)∥2
2

≤ 2
∥∇ f (x +ξ)∥2∥∇2 f (x +ξ)∥2∥δ∥2

∥∇ f (x +ξ)∥2
2

= 2C f (x)∥δ∥2

≤ 2rν.

Dividing both sides by two and exponentiating both sides gives the intended result.

5.B.1 Low Curvature =⇒ Robust Gradients: Proof of Theorem 9

Proof. Use the Lagrange form of the Taylor error: there exists some ξ with ||ξ|| ≤ ||δ||
such that

∇ f (x +δ)−∇ f (x) =∇2 f (x +ξ)⊤δ =⇒
∥∇ f (x +δ)−∇ f (x)∥2 ≤ ∥∇2 f (x +ξ)∥2∥δ∥2 =⇒
∥∇ f (x +δ)−∇ f (x)∥2

∥∇ f (x)∥2
≤ C f (x +ξ)∥∇ f (x +ξ)∥2

∥∇ f (x)∥2
||δ|| =⇒

∥∇ f (x +δ)−∇ f (x)∥2

∥∇ f (x)∥2
≤C f (x +ξ)exp(ν||ξ||)||δ||.
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To derive the simplified quadratic approximation, plug in ξ= 0, otherwise this quantity
is bounded above by ||δ||νexp(||δ||ν) by Lemma 7.

5.B.2 Curvature is Necessary for Robustness: Proof of Theorem 10

Proof. Now take a second order Taylor expansion with remainder: there exists some ξ
with ||ξ|| ≤ ||δ|| such that

f (x +δ)− f (x) =∇ f (x)⊤δ+ 1

2
δ⊤∇2 f (x +ξ)δ =⇒

∥ f (x +δ)− f (x)∥2 ≤ ∥∇ f (x)⊤δ∥2 + 1

2
∥δ⊤∇2 f (x +ξ)δ∥2

≤ ∥∇ f (x)∥2∥δ∥2 + 1

2
||∇2 f (x +ξ)||2 ×∥δ∥2

2

= ∥∇ f (x)∥2∥δ∥2

(
1+ 1

2

||∇2 f (x +ξ)||2
||∇ f (x)||2

∥δ∥2

)
= ∥∇ f (x)∥2∥δ∥2

(
1+C f (x +ξ)

||∇ f (x +ξ)||2
||∇ f (x)||2

∥δ∥2/2

)
.

To derive the simplified quadratic approximation, plug in ξ= 0, otherwise this quantity
is bounded above by ∥δ∥2∥∇ f (x)∥2

(
1+∥δ∥2ν×exp(∥δ∥2ν)/2

)
by Lemma 7.

5.C Experimental Settings

This section elaborates the hyper-parameter settings used for our tuning our models.
The standard ResNet-18 used standard hyper-parameter settings as indicated above,
and we do not modify this for the other variants. For LCNNs, the regularizing constants
are λβ = 10−4 and λγ = 10−5. For GradReg, λgrad = 10−3, and for LCNNs + GradReg,
λβ = 10−4, λγ = 10−5, λgrad = 10−3. We performed a coarse grid search and chose the
largest regularizing constants that did not affect predictive performance.
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5.D Additional Experiments

5.D.1 Ablation Experiments

This section presents ablation studies that introduce the proposed modifications
separately: models trained with only spectral norm for the convolution layers, γ-
Lipschitz Batchnorm or centered softplus. Table 5.4 shows that for the ResNet-18
architecture,

(1) spectral normalization had no effect of curvature as presumably the batchnorm
layers are able to compensate for the lost flexibility, and

(2) either penalizing the batchnorm alone or the softplus alone performs almost as
well as LCNN, or sometimes even better in terms of curvature reduction. The most
expensive computational step is the spectral norm of the convolutional layers, so
removing this operation may yield speedups without substantially different results.

Table 5.4: Ablation experiments to study effect of individual modifications to LCNN
architectures. Using only centered softplus or γ-BN suffices in practice to minimize
curvature, while spectral norm on the convolutional layers may not be necessary.

Model Closs ∥∇2loss∥2 ∥∇loss∥2 Accuracy (%)

ConvSpectralNorm only 358.86 8380.55 23.92 77.55
γ-BN only 65.78 1086.95 20.86 77.33
c-Softplus only 57.49 734.05 16.99 77.31

Standard 270.89 6061.96 19.66 77.42
LCNN 69.40 1143.62 22.04 77.30

While it appears that for ResNet-18 γ-Lipschitz or centered softplus alone suffices
for curvature reduction, it is necessary to regularize all components to avoid scale
restrictions in one layer being undone in another, as dictated by the upper bound. In
particular, penalizing only a subset of layers may not generalize to other architectures.

5.D.2 Robustness Evaluation on RobustBench / Autoattack

The attack presented in Section 5.5 was relatively “weak” – a network could be truly
susceptible to stronger adversarial attacks. Short of a comprehensive verification
(e.g. Katz et al. [87]), which is computationally intractable at scale, there is no fully
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satisfactory way to guarantee robustness. However, one common method to develop
confidence in a model is to demonstrate robustness in the face of a standard set of
capable attackers. This is done in Table 5.5, which uses the Robustbench software
(Croce et al. [36]) to evaluate both a white-box (having access to the internal details of
the model), and a black-box (using only function evaluations) attacks.

Table 5.5: Adversarial accuracy to standard attacks accessed via Robustbench (Croce
et al. [36]). “APGD-t” = the white box targetted auto PGD attack from Croce and Hein
[35], “Square” = the black-box square attack from Andriushchenko et al. [5].

Model APGD-t (%) Square (%) Clean (%)

Standard 22.122 52.874 76.721
LCNN 23.709 52.179 76.602
GradReg 50.294 64.678 76.394
LCNN+GradReg 52.477 64.678 76.622

CURE 50.096 63.488 75.928
Weight decay 23.907 53.766 76.622
Adv Training 55.155 66.861 75.521

CURE + GradReg 60.810 67.357 74.192
LCNN + GradReg + Adv Training 59.222 66.861 75.382

These experimental results show overall that:

(1) LCNN + GradReg is still on par with adversarial training even against stronger
attacks such as APGD-t and Square, as they are with PGD.

(2) Combining LCNN + GradReg with adversarial training (in the last row) further
improves robustness at the cost of predictive accuracy.

(3) Combining CURE with GradReg (in the penultimate row) improves robustness at
the cost of further deteriorating predictive accuracy.

5.D.3 Additional Evaluations on other Architectures / Datasets

We present results on the following dataset - architecture pairs:

1. Table 5.6 presents results on SVHN dataset and VGG-11 model.

2. Table 5.7 presents results on SVHN dataset and ResNet-18 model.
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3. Table 5.8 presents results on CIFAR-100 dataset and VGG-11 model.

The results for each similar to those for CIFAR-100 with ResNet-18.

Table 5.6: Model geometry of VGG-11 models trained on the SVHN test dataset.

Model ∥∇loss∥2 ∥∇2loss∥2 Closs Accuracy (%)

Standard 2.87 158.29 54.24 96.01
LCNNs 4.04 83.34 30.05 95.61

GradReg 1.85 57.52 33.34 96.03

Adversarial Training 1.25 27.64 24.23 96.37

Table 5.7: Model geometry of ResNet-18 models trained on the SVHN test dataset.

Model ∥∇loss∥2 ∥∇2loss∥2 Closs Accuracy (%)

Standard 2.64 204.38 78.22 96.41
LCNNs 2.91 77.78 25.36 96.35

GradReg 1.63 68.22 39.55 96.57

Adversarial Training 1.05 22.96 24.48 96.64

Table 5.8: Model geometry of VGG-11 models trained on the CIFAR-100 test dataset.

Model ∥∇loss∥2 ∥∇2loss∥2 Closs Accuracy (%)

Standard 17.07 1482.16 85.81 73.33
LCNNs 15.88 282.06 41.14 73.76

GradReg 10.64 534.71 48.26 72.65

Adversarial Training 6.20 166.73 27.37 71.13

5.E Input-output Curvature and Parameter Curvature

This short section explores mathematically the relationship between input-output and
parameter curvature, discussed in Section 5.2.1. For a scalar DNN, with one hidden
unit at each layer, and no biases let ℓ0,ℓ1, . . . ,ℓk be linear layers that are of consistent
dimension, and let a1, . . . , ak be elementwise nonlinearities. ℓi is parameterized by θi .

Without loss of generality, the network is composed of alternating linear and nonlinear
layers: f (x,θ) = ℓn( fn(x,θ)) where fk = ak ◦ℓk−1 ◦ . . .◦a1 ◦ℓ0 for k > 0, where ℓ j = x 7→ θ j x
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(we adopt a “bilinear” notation, in which ℓ is a function of θ and x separately, thus
∇xℓ j = θ j ), a j are the nonlinear activations, and f0(x,θ) = x.

Equation (5.9) and Equation (5.10) give expressions for ∇x f and ∇2
x f (subscripts on the

∇ operation indicate with respect to which argument the derivative is being taken),
∇x f = θ0

∏n
k=1θk ×

∏n
k=1∇ak , and

∇2
x f = θ2

0

(
n∏

k=1
θk

)
×

(
n∏

k=1
∇ak

)
×

(
n∑

k=1

∇2ak

∇ak

k−1∏
j=1

θ j∇a j

)
. (5.26)

The derivatives with respect to the parameters are

∇θ f =


∇θ0 f

...
∇θn f

=



∏n
k=1θk ×

∏n
k=1∇ak × f0∏n

k=2θk ×
∏n

k=2∇ak × f1∏n
k=3θk ×

∏n
k=3∇ak × f2
...∏n

k=i θk ×
∏n

k=i ∇ak × fi−1
...

θn ×∇an × fi−1

fn


.

Thus, for r ≤ c without loss of generality (by symmetry)

∇θcθr f = fr ×
n∏

k=r+1
∇ak ×

n∏
k=r+1

θk ×hr c

where

hr c =


0 if r = c = n +1

ξc if r = c and r < n +1

ξc +1/θc otherwise,

and ξc = fc

n∑
k=c+1

∇2ak

∇ak

k−1∏
j=1

θ j∇a j .

(5.27)

This equation favors simplicity over numerical stability – in finite precision
∏

i θi (a +
b/θ j ) can be very different to

∏
i θi a +∏

i ̸= j θi b.
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5.E Input-output Curvature and Parameter Curvature

Comparing Equation (5.26) and Equation (5.27) we see that

∇θcθr f =∇2
x f × fr

θ2
0

×
(

1∏r
k=1θk

× 1∏r
k=1∇ak

× hr c

h00/ f0

)
. (5.28)

A similar expression holds for ∇θcθr f /∇θc f /∇θr f . To the best of our knowledge, such a
relationship connecting the second derivative of the input-output mapping to the logit
Hessian with respect to the parameters is novel. For example, θ2

0∇θ0θ0 f = x2∇2
x f , which

is intuitive enough since xθ0 is the input to the network, and a change in one term can
be straightforwardly adapted to another.

Equation (5.28) gives a sense in which lowering the input-output curvature reduces
parameter curvature, if the other terms do not more than offset the effect.
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Chapter 6

Future Developments and
Conclusion

Deep learning is here to stay: if progress stopped today, it would be decades before
mankind could fully digest all of the marvelous and scary things that such technology
enables. This final short chapter applies the ideas developed in this thesis to look at
what the future may hold.

One very apparent trend is the increased capability of DNNs outside of engineering
and scientific domains. Natural language modelling, for instance, has been completely
revolutionized by DNNs. For large language models (LLMs), it seems that wholly
different approaches to safety will need to be developed. This is partly pragmatic –
these models are large and implement mathematically diverse logic – thus a purely
computation-based approach faces considerable headwinds. But mostly, it reflects
different priorities and standards. Humans themselves are highly fallible users of
natural language, some degree of unsafe output may be acceptable in such systems,
and language is a dynamic societal contstruct. Thus it seems like a more empirical,
rather than almost-certain, standard of safety is more compatible as an acceptable
tradeoff of risk and benefit. The correct notions of control and understanding are not
purely technical issues and must be codetermined with the goals and attitudes of the
civilization with which it coexists. A further comparison of such systems to engineering
DNNs is in Appendix A.2.

Section 1.5 compared the historical development of the probability to current progress
in deep learning. By continuing into the present of probability theory, we can attempt
to glean some insights about the future of deep learning.
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Hard takeoff? The recent trajectory of deep learning is of rapid (and arguably ac-
celerating) progress. Following considerable advances in the 1800s, progress
in probability theory did eventually plateau – the basic framework appears to
have changed little since Kolmogorov in the 1930s. The level to which progress
on DNNs will begin converging remains to be seen, but knowing that progress
should decelerate eventually is itself comforting.

Derivative fields The tempering of progress on probability is partially explained by
observing that probabilitistic thinking birthed entirely new fields. For example,
one can productively navigate the statistical analysis of data or monte carlo
methods for simulation with a fairly shallow understanding of the foundational
field. New fields are already being created, such as natural language methods for
interacting with LLMs, image and video synthesis, and DNN-based combinatorial
optimization.

Human institutions The gambling analogy shows how theoretical possibility can
transpose itself to human institutions. Blackjack survived the widespread dif-
fusion of card counting, despite making it theoretically unprofitable. Online
poker is a healthy industry despite it being simple to develop a poker engine that
is sufficiently superhuman to overcome the “rake” and automate its gameplay.
Simple countermeasures can suffice practically to give a sustainable equilibrium.
This is to say that the ability and willingness of human institutions to subvert
mathematical rationality should not be underestimated.

Education My academically unremarkable high school in mid 2000s rural America
required all students to learn the rudiments of probability. Japanese school
children today attend compulsory courses in computer programming ([137]). It
appears that future children might be obliged to learn the basics of deep neural
networks in a direct continuation of this trend.

The primary forecastable sources of uncertainty about the future progress of deep
learning are around scaling data and compute. Humanity has an impressive record
of both increasing computational resources and reducing the necessary complexity
of large computations. And observations about continual improvements in comput-
ing are supported by a most necessary items becoming more economical over time,
through conservation, increased production, or substitution of related inputs. Since at
least Malthus, predictions of unavoidable scarcity have been repeatedly shown wrong.
Thus, I am optimistic about the future of the compute dimension, however continued
growth in data and data-efficiency seems more challenging. There are fundamental
– hopefully immutable – limits arising from privacy and ethical considerations on
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how far data collection about humans might progress. In this respect, it warrants
noticing that engineering DNNs tend not to “run out” of data, thus it is my belief that
the engineering DNNs will continue to become a more relevant class of models.

The famous “AI Effect” was pithily summarized by John McCarthy as “As soon as it
works, no one calls it AI anymore” (Vardi [164]) with reference to earlier breakthroughs
such as superhuman chess playing. With deep neural networks, this paradigm seems
to have been convincingly broken: systems that underlie our daily lives “work”, but we
still cannot guarantee many elementary properties about its behavior. With research
of the sort presented in this thesis, I believe that there is some hope of engineering
DNNs no longer being called AI.

The future is bright, if we can make it there. But: it starts with understanding and
controlling small, simple DNNs.
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Appendix A

Further Discussion of the Role of
Engineering DNNs in Society

A.1 Examples

The application of DNNs to science and engineering has not captured the public’s at-
tention like work in natural language or image generation. But away from the spotlight,
significant successes can be seen using DNNs as learned, general function approx-
imators. For instance, in 2019 more than half of 73 top European manufacturers
surveyed by CapGemini were using at least one AI model in their production process
(see CapGemini Research Institute [23]). This progress is welcome because in the
physical world, although progress has also been significant, robots still struggle to
navigate uneven terrain or smoothly open a door.

A quick aside on computer vision: Most DNNs taking images as inputs should probably
not be considered engineering DNNs. Their inputs are generally not interpretable
to people, performance was not typically very good prior to the adoption of deep
learning, and architectures can be complicated and large. However, a DNN that takes
homogeneous inputs from a controlled environment (fixed lighting, background,
resolution, etc.) to predict very narrow outcomes, has flavors of an engineering DNN.
A related modelling problem are computer vision models that operate on synthetic
data – say generated using a video game graphics engine. DNNs used in optical
character recognition, fault detection of manufactured items, or some medical imaging
applications, have flavours of engineering DNNs.
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A.1.1 Example #1: Quadripedal robot locomotion

Tan et al. [154] describes an application of DNNs to optimize the efficiency of a
quadripedal robot. By utilizing the technical specifications and actual observations
of the component’s material properties the authors are able to develop a bottom-up
software simulation of the actual hardware. The model is parameterized by physical
constants such as coefficients of friction, mass, battery voltage, and response latency.
Within each such model of the robot’s operations, they are able to understand how
sensor readings such as the roll, pitch, and velocities of each component map into the
actuators controlling the position of each leg.

By formulating a reward function that favors fast and energy-efficient locomotion,
reinforcement learning can be used to optimize this mapping, where the policy func-
tion is a two hidden layer neural network. And finally, by randomizing over many
configurations of the assumed physical constants that govern the in-silico simulation,
they are able to develop superior trotting and galloping algorithms to those furnished
by the manufacturer, when transposed to the actual hardware.

A.1.2 Example #2: AlphaDogfight Trials

Pope et al. [125] presents the AlphaDogfight Trials: a competition hosted by the United
States’ military research arm, DARPA. The competition entailed quantitative modellers
and human pilots competing in a series of military “dogfights” (singular air to air
combat) simulated with high fidelity in software.

Agents, human or silicone, had access to the state of the system such as the fuel,
health, position and velocity, of their own and opposing planes, and emitted actions 50
times / second to a simulated F-16 (US military fighter jet)’s aileron, elevator, rudder,
and throttle controls, with a goal of reaching a favorable attack configuration. Pope
et al. [125] and others were able to solve this as a reinforcement learning problem and
develop DNN agents that were able to best highly-trained human fighter pilots.

A.1.3 Anti-Example #1: Limit Order Book models

Financial markets are where financial assets such as stocks and futures are traded.
The most important markets are centralized around a double auction mechanism,
where participants continually post prices at which they are willing to buy and sell the
asset, and whenver someone is willing to purchase for more than someone is willing
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to sell (or sell for less than someone is willing to buy), a trade occurs. Some market
participants attempt to profit by forecasting the future direction of prices by looking
at summaries of the limit order book, which contains a full tabulation of the prices
(“level”) and quantities (“depths”) that all participants have indicated a willingness to
transact at. For example, if there are 1000 shares of a stock for sale at 12.34 CHF and
an offer to purchase only one share at 12.33 CHF, then we would suspect that the next
distinct price would be 12.33 since otherwise 1000 shares would have to be removed
from the sell side before 10 shares were removed from the buy side. Sirignano [146]
posits predicting one second ahead price changes of large American equiities using
the book depth at many relative levels.

Interestingly, using only order book data does imply a simple relationship: putting aside
spoofing, data errors, hidden orders, or other exceptional situations, more offers to sell
at any level must – by the construction of a market equilibrium – be bearish for prices,
and more offers to buy bullish. A priori monotonicity relationships like this are exactly
what is meant in Figure 1.1. However, forecasts can be improved by including more
inputs in the prediction, such as the price changes of related assets and derivatives,
trade volume, and order cancellations, and the direction of the predictability of these
features must be estimated.

Another difference between limit order book modelling and engineering DNNs is data
scarcity. Market participant’s efforts to exploit limited inherent predictability over short
horizons (an oracle able to forecast which assets will rise in price soon would purchase
those assets now and eliminate the anticipated price rise, making the markets even
less forecastable to others) make signals very weak and time-varying in nature. Not
overfitting limited data is the fundamental problem in this type of modelling, and to a
well-resourced participant in financial markets, new data can only be acquired with
the passage of time. This is the opposite of problems in engineering, where data can
be acquired with a modest marginal cost.

A.2 Some Asides on Engineering DNNs in Society

Chapter 1 has shown a top-down view of how science progresses human welfare, and
Appendix A.1 gave bottom-up examples of engineering DNNs. This section fleshes
out the middle, with further justification for research on engineering DNNs informed
by real-world events affecting our lives in 2023. Appendix A.2.1 shows that DNNs as
weapons systems is not an abstract possibility, but is a reality today. The essence of
Appendix A.2.2 is that engineering DNNs have some claim on the moral or ethical high
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ground within the space of DNNs.

A.2.1 Military Applications

As shown in Appendix A.1, engineering DNNs clearly could impact the battlefield. This
is not hypothetical, but rather a current and ongoing reality.

Scharre [140] describes the Harpy, a “loitering munition” that can be launched and
stay airborne for hours before deciding autonomously (without a human in the loop)
when and where to strike. Put simply: a Harpy could be launched, and eight hours
later someone could be violently killed by the automated decisionmaking of a machine
learning model (the Harpy is an “anti-radiation” weapon designed to target radar
installations, so this is not the primary anticipated target). The legal and ethical
principles demonstrated by the Harpy are profound. For a readable introduction to
autonomy on the battlefield, see Kott and Stump [91]. A more recent anecdote comes
from a 2022 SEC filing by Nvidia Corporation [118]

On August 26, 2022, the U.S. government, or USG, informed NVIDIA Cor-
poration, or the Company, that the USG has imposed a new license re-
quirement, effective immediately, for any future export to China (including
Hong Kong) and Russia of the Company’s A100 and forthcoming H100 in-
tegrated circuits. DGX or any other systems which incorporate A100 or
H100 integrated circuits and the A100X are also covered by the new license
requirement. The license requirement also includes any future NVIDIA
integrated circuit achieving both peak performance and chip-to-chip I/O
performance equal to or greater than thresholds that are roughly equivalent
to the A100, as well as any system that includes those circuits. A license is
required to export technology to support or develop covered products. The
USG indicated that the new license requirement will address the risk that
the covered products may be used in, or diverted to, a ‘military end use’ or
‘military end user’ in China and Russia.

This is not a minor technicality or quirk of policy. This is the government of the world’s
largest economy ordering one of the largest companies in the world not to export its
flagship product to the world’s second largest and eleventh largest economies because
they do not want it to be used (to train DNNs, presumably) for military purposes. And
this is clearly a substantive embargo: there has by now been several iterations of the
export ban being updated and NVIDIA adapting their offerings (e.g. offering a detuned
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version to comply with this regulation). It is not hyperbolic to say that the age of deep
neural networks becoming literal weapons of war is already upon us.

A.2.2 The Human Harm of Deep Learning

Online platforms maximize revenue by maximizing engagement. And the conse-
quences for the mental and physical health of individuals, and the quality of public
discourse and governance of a populace, that is “extremely online” can be negative.

Dattani et al. [39], gives analytics on the spatial and temporal dynamics of mental
health, and shows that anxiety disorder prevalence appears to increase with GDP per
capita, and is getting generally worse for all countries over the 1990 to 2019 period.
To the extent that deep learning enables the subjugation of people’s preferences, it is
harmful. And we know that deep learning is being used in this endeavor. Meta (for-
merly Facebook), for instance, have numerous large and well resourced teams working
on deep learning. Similarly for alphabet (formerly Google), X (formerly Twitter), Net-
flix, and others, as well as the Chinese corollaries of these companies. The abstract
modelling of social media, search engines, and the like, are decidedly incompatible
with Figure 1.1.

A worrying trend is DNNs becoming comparatively better at relatively “good” tasks.
Consider two important consumption categories of a modern resident of a developed
city: (1) music, movies, literature, visual art, poetry, therapy, and philosophy, and (2)
food delivery, cleaning services, agricultural products, garbage collection, and taxi
services. Both classes of goods are being automated by DNNs, though only the first
would be considered by most to be psychically interesting and satisfying to produce. It
would be a utilitarian nightmare if large numbers of creative and empathic workers
were replaced by DNNs, though this is what unfortunately appears to be occuring.

Put bleakly: a growing number of jobs amount to acting as dextrous actuators or
capable classifiers for a computer program, for example independent food delivery,
ride-hailing apps, data annotation, content moderation, and warehouse logistics.
Amazon employs upwards of 1.5 million people ([151]) and it appears that the majority
work in “fulfillment”, doing the fine-grained tasks around packing, sorting, and manip-
ulating orders that cannot be more directly automated. Any particular instance may be
a fine organization, the simple principle of an algorithm having considerable control
over people with minimal direct oversight is undeniably risky.

Historically, less desirable tasks were easier to automate, aligning the moral and eco-
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nomic considerations, but in a world of highly competent non-engineering DNNs,
this is becoming less true. Scientifically, it may be simpler and more economical to
develop a computer that can diagnose illnesses in natural language than it is to design
a program that can clean toilets, but – humanistically – I have a strong preference to see
dangerous, dirty, and difficult tasks displaced first. Concern about DNN capabilities
becoming “imbalanced” is another reason to prefer advances in engineering DNNs, if
indifferent.
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Polytope Calculations

B.1 Introduction

Polytopes are curious objects: their description is simple and their intuition is clear,
but their mathematical analysis is quite complex and subtle. It is possible to have a
long career doing applied math and yet remain clueless about polytopes (I am proof).
This note collects some useful methods – some only found in recent research papers –
from my work with polytopes. Some bits of this “cookbook” are modestly interesting or
cool, but really nothing here stands on its own scientifically for its novelty – I include
it my thesis because I want a convenient, persistent collection of these facts. One can
think of this as an effort to make polytopes easier to work with “without thinking”, in
the words of Whitehead [170].

The overarching principle is to be useful and simple. This means being very concrete
and simple, and not relying on abstract mathematics. This necessary comes at the
expense of generality and elegance. Secondarily, the methods I propose largely work
for unbounded polytopes in high dimensions, and ignores many results optimized for
three or four dimensional results arising in computer graphics or physics simulations.
I also provide pointers to software and discuss numerical stability.

A great resource (that I refer to often) is https://people.inf.ethz.ch/~fukudak/
polyfaq/. Phrased as a “FAQ” (frequently asked questions) it is a better introductory
resource, with more math, and written by a genuine master in the area. This section
is complementary in that it is probably more useful to someone looking to model
productively with polytopes and is willing to forego some of the deeper concepts.
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Appendix B. Polytope Calculations

B.2 H and V Representations of Polytopes

First, the most prominent aspect of computing with polytopes: two equivalent formu-
lations as (1) a system of linear inequalities parameterized by A,b: {x : Ax ≤ b} and (2) a
nonnegative combination of vertices parameterized by V ,R

{
V µ+Rλ :λ≥ 0,µ≥ 0,

∑
i
µi = 1

}
. (B.1)

Definition 1, as well as Lemma 3 and Lemma 4 worked with what is known as the H
representation (or form) of a polytope. Equation (B.1) is called the V representation.
The “Minkowski-Weyl Theorem” (Fukuda [54]) states that these are equivalent and
demonstrates the idea for moving between them.

In words: A, b give the weight and limits in a formulation as the intersection of hyper-
plane (also called facets), and the columns of V ,R in Equation (B.1) characterize the
elements of the Minkowski sum of (1) a convex combination of vertices (columns of
V ), and (2) a conic combination of some rays (columns of R).

Some examples of things that are generally easier in V form:

• Compute the image of a polytope under a linear mapping

• Computing the dimension of a polytope

• Sampling from a polytope

• Proving uniformity of a sign (if all vertices have a positive coordinate, then the
polytope does not cross the origin in that coordinate)

• Computing the volume of a polytope

Some examples of things that are generally easier in H form:

• Invoking optimization software

• Describing simple sets such as the d dimensional unit cube (as 2d inequalities)

• Compute the preimage of a polytope under a linear mapping

124



B.3 Unary Operations

• Compute the distance between two polytopes

• Intersect two polytopes

• Checking if a point is contained in a polytope.

More examples of operations which are simple in one form and difficult in the other
will be given subsequently.

The H and V formulations are equivalent in the sense that given one there are well-
studied and nicely implemented methods for converting it to the other. Unfortunately,
this is challenging, both theoretically and practically. Analyzing formally the com-
putational complexity of the problem is complicated, because the complexity of the
algorithm depends on both the size of the input and output, and small changes to the
input can have very large effects on the output.

In general, there are no known algorithms that have polynomial running time in the
input and output size. For some polytopes, there are algorithms that have polynomial
time and space complexity in the input and output. However, but this is still expo-
nentially large in the dimension of the polytopes, again because output size can be
exponentially large in the input size.

More details are in Fukuda [54, Section 9].

B.3 Unary Operations

This section describes some useful operations on a single polytope.

B.3.1 Redundancy Removal

When modelling, it is very possible to have V ,R or A,b pairs that are “too large”, in the
sense that there are other matrices of smaller size that represent the same polytopes.
For the H representation, one ad hoc method is to compute the correlation matrix
between the rows of

(
b A

)
and remove any rows that are perfectly correlated to others.

A more principled method is given by Fukuda [54, Section 8.2].

For the V representation, convex hull software, for example Barber et al. [10] or Fukuda
and Prodon [55], may give a representation without redundancies, though this can be
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slow (see Appendix B.3.3). A method akin to that used for the H representation should
be quite doable, if a convex hull is not required and speed is a consideration.

B.3.2 Applying Linear Mappings

Applying a linear mapping to a polytope is a polytope, and this section gives equations
for the linearly transformed polytope. Fundamentally, there are two problems:

• The application problem: {W x +a : x ∈ P }.

• The preimage problem: {x : W x +a ∈ P }.

For each of these problems, there are two basic cases: from and to the V and H repre-
sentations. The easy cases are (1) given the V representation of a polytope and want
the V representation of its image:

{W x +a : x ∈ P }

=
{

W x +a : x =∑
i

viλi +
∑

j
r jν j ,λi ≥ 0,ν j ≥ 0,

∑
i
λi = 1

}

=
{

W

(∑
i

viλi +
∑

j
r jν j

)
+a :λi ≥ 0,ν j ≥ 0,

∑
i
λi = 1

}

=
{∑

i
(W vi +a)λi +

∑
j

W r jν j :λi ≥ 0,ν j ≥ 0,
∑

i
λi = 1

}

and (2) given the H representation of a polytope and want the H representation of its
preimage:

W x +a ∈ P ⇐⇒ A(W x +a) ≤ b ⇐⇒ x ∈ {x ′ : AW x ′ ≤ b − Aa}.

Next, we look at the preimage problem for V representations. We suppose that W is full
(column)-rank, and let W † be its pseudoinverse and W ⊥ be a basis for the nullspace
(with kth column W ⊥

k ) then, for λi ≥ 0,ν j ≥ 0,
∑

i λi = 1:
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W x +a =∑
i

viλi +
∑

j
r jν j ⇐⇒

x =∑
i

W †(vi −a)λi +
∑

j
(W †r j )ν j +

∑
k

W ⊥
k γk

=∑
i

W †(vi −a)λi +
∑

j
(W †r j )ν j +

∑
k

W ⊥
k γ

+
k +∑

k
(−1×W ⊥

k )γ−k

where γ−k ≥ 0,γ+k ≥ 0.

(B.2)

So, W x+a ∈ P ⇐⇒ x is contained in a polytope which has V representation with vertices
W †(vi −a) and rays (W †r j ),W ⊥

k ,−1×W ⊥
k .

Lastly, we investigate the H form of the application of a linear mapping to a polytope
in H form. As before, we assume that W has full column rank, so that W †W = I , and

x ∈ P ⇐⇒ Ax ≤ b ⇐⇒ AW †W x ≤ b ⇐⇒ AW †(W x +a) ≤ b + AW †a

⇐⇒ W x +a ∈
{

x ′ : AW †x ′ ≤ b + AW †a
}

.

B.3.3 Volume and Dimension

This section concerns operations on the volume and dimension of polytopes.

Volume is a stronger concept than dimension: having a positive volume necessarily
implies full-dimension (and any full dimensional polytope must have positive volume)
but, volume conveys more information besides.

Compute Polytope Dimension

The dimension of a polytope is the maximum number of affinely independent points
it contains, minus one (Fukuda [54]). Given a polytope in the form of Equation (B.1),
the dimension is

rank

(
V R

1⊤ 0⊤

)
−1. (B.3)
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Given a polytope in H representation, {x : b − Ax ≥ 0}, let κ⋆ be the criterion achieved in
the optimization problem

maximize κ subject to Ax +


1
...
1

κ ≤ b,κ ≤ 1. (B.4)

The conformable column vector of ones, representing the intuition that it is possible
to loosen all inequality conditions by a strictly positive amount, meaning that there
is some volume interior to the polytope. The ancillary condition that κ ≤ 1 is used to
keep the problem well-conditioned.

If κ⋆ > 0, then the polytope has the dimension of x. If κ⋆ < 0 then Ax ≤ b is totally
infeasbile, and the polytope is empty, thus its dimension is zero. If 0 =κ⋆, then we can
eliminate some implicit equalities in the definition of the polytope and then reattempt
to determine if the polytope is full-dimensional in a lower-dimensional space. Fukuda
[54, Section 8.3] contains more details on this intuitive process.

Projected Polytopes: Form and Dimension

Projecting a polytope, or interpreting a polytope as a projection of a higher-dimensional
space, can be quite useful. Unfortunately, the notation is quite heavy and not really
justified by the limited degree to which we use it. Thus, I will just briefly introduce
the concept and the idea, and describe a few of the results from Balas and Oosten [9],
which is a quite thorough treatment of the concept.

For a polytope P = {(x1, x2) ∈Rd1+d2 : A1x1 + A2x2 ≤ b}, the projection onto x2 space is the
set {x2 ∈Rd1 : (x1, x2) ∈ P for some x1 ∈Rd1 }.

Balas and Oosten [9] gives various useful facts about the projection of a polytope,
including a formulation as a polytope itself:

{
x2 ∈Rd1 : (x1, x2) ∈ P for some x1 ∈Rd1

}
= {

x2 : (vB)x2 ≤ vb for all v ≥ 0 such that v A = 0
}

.

And moreover gives an equation for the dimension of a polytope projection in terms of
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the parameters of the original polytope.

Computing Polytope Volume

Evaluating the volume of a polytope is difficult in general. Put simply, if a polytope
⊆ Rd is written in the form of Equation (B.1) with R = 0, no redundant columns in
V =

(
V1 V2 . . . Vd+1

)
(meaning that for all V ′ comprised of a strict subset of rows of

V the implied polytope of V ′ is different than that implied by V ), with d +1 vertices,
then the volume of this polytope is

det
(
V2 −V1 V3 −V1 . . . Vd+1 −V1

)
. (B.5)

As put by Büeler, Enge, and Fukuda [20], “All known algorithms for exact volume
computation decompose a given polytope into simplices [the polytope described
above], and thus they all rely, explicitly or implicitly, on [Equation (B.5)].”

The computation of volume is closely related to the convex hulls, and shares the same
fundamental difficulty of representing a general polytope as the union of simplies, and
computing the convex hull using the quickhull algorithm (Barber et al. [10]), which
is built into scipy as scipy.spatial.ConvexHull gives the volume of the polytope as
a byproduct of the computation. Computing either is intractable at scale (both in
number of points and dimension) in general.

Maximum Volume Inner Box

Given a polytope full-dimensional polytope in H form P = {x : Ax ≤ b}, suppose that
want to compute the largest box [ℓ,u] ⊆ P . For example, this would give a quick and
dirty lower bound on the volume of a polytope.

Bemporad, Filippi, and Torrisi [13] show that for [x⋆, x⋆+ y⋆] is a maximum volume
inner box for P , where

x⋆, y⋆ = argmax
x,y

∑
i

log yi subject to Ax +ReLU(A)y ≤ b. (B.6)
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Equation (B.6) is not a LP, but it is convex, and thus although more general and difficult
to analyze, it is not more conceptually or computationally difficult.

Minimum Volume Outer Box

Suppose that you want to find a box that encloses a polytope P = {x : Ax ≤ b}, one fast
way to do this is to solve the 2n optimization problems:

ℓ j = min ι′j x subject to Ax ≤ b (B.7)

u j = max ι′j x subject to Ax ≤ b (B.8)

Then by construction P ⊆ [ℓ,u]. An encompassing box can be a useful diagnostic since
it is trivially simple to reason about.

Similarly, the method lends itself to summarizing multiple polytopes: a box that en-
compasses all Pi = {x : Ai x ≤ bi } for multiple i can be constructed by solving the same
problem with all constraints applied simultaneously.

B.4 Binary Operations

B.4.1 Checking if a Point is in a Polytope

Determining when some x is in P is trivial if P is in its H representation: by construction
x ∈ P if Ax ≤ b. This is a simple matter of a matrix multiplication and a comparison.

When P is given by its V representation, we can also reason directly from the definition
of P . The simplest way that to do this is to solve the optimization problem

min
µ,λ

||V µ+Rλ−x|| subject to
∑

j
µ j = 1,µ≥ 0,λ≥ 0. (B.9)

And to conclude that that x ∈ P iff this optimization program achieves a zero value.
Which norm is chosen in the criterion should be dictated by the availability of software,
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for example the one and infinity norm problems can be solved using a LP solver. If
quadratic programming software is available, the L2 norm may be preferable for some
problems. This approach has the benefit of being fully constructive, in that it proves
the inclusion with the weights that construct it.

https://en.wikipedia.org/wiki/Point_in_polygon details some methods that do
not use a numerical solver.

B.4.2 Checking Polytope Containment

As a generalization of Appendix B.4.1, it is possible to see whether one polytope con-
tains another as follows.

H Representation ⊆ H Representation?

If both polytopes are in H representation, we can use the approach described at [1].
For P1 = {x : A1x ≤ b1},P2 = {x : A2x ≤ b2} if

max
x

A1i x −b1i subject to A2x ≤ b2 is ≤ 0 for all i

then P1 ⊆ P2. Farkas’ Lemma (e.g., Carver [26]) can also be used to put this problem
into a dual form which requires only a single feasibility check.1

V Representation ⊆ H Representation?

A formulation similar to Appendix B.4.1 can be used. If

max
µ,λ,x

Ai x −bi subject to x =V µ+Rλ,
∑

j
µ j = 1,µ≥ 0,λ≥ 0 is ≤ 0 for all i .

then the polytope with V representation characterized by (V ,R) is a subset of the
polytope with H representation characterized by (A,b).

1See https://math.stackexchange.com/q/2097261.
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This requires the solution of only as many linear programs as there are hyperplanes
defining the possibly enclosing polytope.

H Representation ⊆ V Representation?

A simple approach is to put V represntation into its H representation then apply
Appendix B.4.2.

Freund and Orlin [52] shows that the original problem is NP-complete, thus this naïve
approach will not render intractable an otherwise soluble problem.

B.4.3 Compute Distance Between Polytopes

The distance between polytopes P1,P2 is the minimum distance ||p1 −p2||, p1 ∈ P1, p2 ∈
P2. This quantity can be computed directly from the definition for a variety of convex
norms using the formulations of polytope containment from Equation (B.9).

B.4.4 Intersect Polytopes

Given the H representation of polytopes, computing the H representation is easy: stack
them up.

Given the V representation of polytopes, computing the V representation is hard:
https://people.inf.ethz.ch/fukudak/polyfaq/node25.html.

An important special case where more can be said is finding a single point in the
intersection two affine spaces. This problem arises, for example, in the computation
of the preimage of a point through a ReLU mapping via the algorithm presented by
Carlsson, Azizpour, and Razavian [25].

Suppose that we want to find a point in the intersection of two affine spaces, {c1 +V1µ :∑
j µ j = 1,µ j ≥ 0} and {c2 +V2µ :

∑
j µ j = 1,µ j ≥ 0}. This means finding a w1, w2 so that

x = c1 +V1w1 = c2 +V2w2. For this, observe that:
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x = c1 +V1w1 = c2 +V2w2 ⇐⇒ 0 = c1 − c2 +V1w1 −V2w2

⇐⇒ c1 − c2 =
(
−V1 +V2

)(
w1

w2

)

⇐⇒
(

w1

w2

)
=

(
−V1 +V2

)†
(c1 − c2).

B.4.5 Test Whether Two Polytopes in H Representation are Equal

Matrices are useful for representing polytopes, but they are imperfect in that many
different matrices can represent the same polytope. In order to determine whether two
polytopes are equal, reducing false negatives is useful.

The two frequent sources of indeterminacy are (1) multiplying rows of the inequality
Ax ≤ b by positive constants, and (2) reordering the rows of Ax ≤ b. And one method to
resolve both is to first scale each row in a consistent convention, then second compare
de-ordered rows for example as sets of rows (vectors) – since sets have no order all row
permutations will be considered equal.

A complete approach can be performed at greater cost by applying Appendix B.4.2 in
both directions.

B.4.6 Unioning Two Polytopes

Let P1 = {x : A1x ≤ b1} and P2 = {x : A2x ≤ b2}. Is P1 ∪P2 a polytope? And can it be written
as a function of A1, A2,b1, and b2 if so? This section summarizes Bemporad, Fukuda,
and Torrisi [14].

Let A12,b12 be the rows of A1,b1 that also respect the constraints of A2,b2, and similarly
let A21,b21 denote the rows of A2,b2 that also respect the constraints of A1,b1. And let
ENV(P1,P2) = {x : A12x ≤ b12, A21x ≤ b21} denote the “envelope” of P1 and P2. ENV(P1,P2) is
clearly a polytope, and P1∪P2 ⊆ ENV(P1,P2). And moreover, P1∪P2 is convex if and only if
P1 ∪P2 = ENV(P1,P2). The idea is demonstrated schematically in Figure B.1. Bemporad,
Fukuda, and Torrisi [14] uses this intuition to furthermore give an algorithm which
solves an LP for each pair (one from each of P1 and P2) of excluded constraints in order
to find out whether it is possible to violate both whilst staying within ENV(P1,P2) as an
algorithm for determining if P1 ∪P2 is convex.
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Figure B.1: Two polytopes in orange and green whose union is not convex, and their
envelope given by the union of all three colored components. The plot on the left is
inspired by Bemporad, Fukuda, and Torrisi [14, Figure 1] and gives a sense that the
blue component = ENV(P1,P2)\(P1 ∪P2) is minimal, since the envelope is the convex
hull of the union, however, this is not the case on the right, which slightly perturbs one
vertex and results in an unbounded envelope.

For the V representation Bemporad, Fukuda, and Torrisi [14, Lemma 1] states: If P1 has
V representation given by V1 and R1 and P2 has V representation given by V2 and R2,
then if (and only if, though this is perhaps less useful) P1 ∪P2 is convex then it has V
representation given by

(
V1 V2

)
and

(
R1 R2

)
.

B.4.7 Minkowski Sum

The Minkowski sum of two polytopes can be written as a polytope by using Ap-
pendix B.3.2 with A blockwise diagonal, and W =

(
+I −I

)
. In turn, this can be used

to compute the convex hull of a Minkowsi sum, via the fact that the convex hull of a
Minkowski sum is the Minkowski sum of the convex hulls.
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Software used

I wish to gratefully acknowledge the teams behind:

• cdd [55]

• git

• bokeh [15]

• biblatex, and biber [124]

• cleverhans [120]

• hydra [172]

• LATEX

• matplotlib [82]

• pandas [111]

• pydev debugger https://github.com/fabioz/PyDev.Debugger

• python [163]

• pytorch [121]

• torchvision [106]

• seaborn [168]
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• pytest [95]

• scikit-learn [21]

• TikZ and pgf [155]

• vim (Rest in Peace to Bram Moolenaar, who sadly passed away during the writing
of this thesis)

When it is straightforward to cite a definite author, I have done so :). Not open source,
but generously offering academic licenses are Gurobi [69] and Mosek [6].

136



Bibliography

[1] Michael Grant (https://math.stackexchange.com/users/52878/michael-grant).
How to check whether a convex polyhedron is contained in another convex poly-
hedron? Mathematics Stack Exchange. URL: https://math.stackexchange.
com/q/1344131 (cit. on p. 131).

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. “Learning and Generalization
in Overparameterized Neural Networks, Going beyond Two Layers”. In: Pro-
ceedings of the 33rd International Conference on Neural Information Processing
Systems (2019). URL: https://dl.acm.org/doi/10.5555/3454287.3454840
(cit. on p. 60).

[3] Dario Amodei et al. “Concrete problems in AI safety”. In: arXiv e-prints (2016).
URL: http://arxiv.org/abs/1606.06565 (cit. on pp. 13, 22).

[4] Maksym Andriushchenko and Nicolas Flammarion. “Towards Understanding
Sharpness-Aware Minimization”. In: ICML. Proceedings of Machine Learning
Research 162 (July 2022). Ed. by Kamalika Chaudhuri et al., pp. 639–668. URL:
https://proceedings.mlr.press/v162/andriushchenko22a.html (cit. on
p. 87).

[5] Maksym Andriushchenko et al. “Square Attack: A Query-Efficient Black-Box
Adversarial Attack via Random Search”. In: Computer Vision – ECCV 2020 (2020),
pp. 484–501. URL: https://doi.org/10.1007/978-3-030-58592-1_29 (cit. on
p. 108).

[6] MOSEK ApS. MOSEK Optimizer API for Python 10.1.11. 2022. URL: https://
docs.mosek.com/latest/pythonapi/index.html (cit. on pp. 47, 136).

[7] Stuart Armstrong and Benjamin Levinstein. “Low impact artificial intelligences”.
In: arXiv e-prints (2017). URL: http://arxiv.org/abs/1705.10720 (cit. on
pp. 12, 13, 18, 21, 22).

137

https://math.stackexchange.com/q/1344131
https://math.stackexchange.com/q/1344131
https://dl.acm.org/doi/10.5555/3454287.3454840
http://arxiv.org/abs/1606.06565
https://proceedings.mlr.press/v162/andriushchenko22a.html
https://doi.org/10.1007/978-3-030-58592-1_29
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
http://arxiv.org/abs/1705.10720


Bibliography

[8] Emanouil I. Atanassov. “On the Discrepancy of the Halton Sequences”. In:
Mathematica Balkanica 18 (2004), pp. 15–32. URL: http://www.math.bas.bg/
infres/MathBalk/MB-18/MB-18-015-032.pdf (cit. on p. 40).

[9] Egon Balas and Maarten Oosten. “On the dimension of projected polyhedra”.
In: Discrete Applied Mathematics 87.1 (1998), pp. 1–9. URL: https://doi.org/
10.1016/S0166-218X(98)00096-1 (cit. on p. 128).

[10] C. Bradford Barber et al. “The Quickhull Algorithm for Convex Hulls”. In: ACM
Trans. Math. Softw. 22.4 (Dec. 1996), pp. 469–483. URL: http://doi.acm.org/
10.1145/235815.235821 (cit. on pp. 125, 129).

[11] Kinjal Basu and Art B. Owen. “Transformations and Hardy–Krause Variation”.
In: SIAM Journal on Numerical Analysis 54.3 (2016), pp. 1946–1966. URL: https:
//doi.org/10.1137/15M1052184 (cit. on p. 39).

[12] Jens Behrmann et al. “Analysis of Invariance and Robustness via Invertibility of
ReLU-Networks”. In: arXiv e-prints (June 2018). URL: http://arxiv.org/abs/
1806.09730 (cit. on p. 27).

[13] Alberto Bemporad, Carlo Filippi, and Fabio D. Torrisi. “Inner and outer approx-
imations of polytopes using boxes”. In: Computational Geometry 27.2 (2004),
pp. 151–178. URL: https://doi.org/10.1016/S0925-7721(03)00048-8 (cit. on
pp. 31, 129).

[14] Alberto Bemporad, Komei Fukuda, and Fabio D. Torrisi. “Convexity recognition
of the union of polyhedra”. In: Computational Geometry 18.3 (2001), pp. 141–
154. URL: https://doi.org/10.1016/S0925-7721(01)00004-9 (cit. on pp. 133,
134).

[15] Bokeh Development Team. Bokeh: Python library for interactive visualization.
2018. URL: https://bokeh.pydata.org/en/latest/ (cit. on p. 135).

[16] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. 1st. USA: Oxford
University Press, Inc., 2014. ISBN: 0199678111 (cit. on p. 4).

[17] Y-Lan Boureau, Jean Ponce, and Yann LeCun. “A Theoretical Analysis of Fea-
ture Pooling in Visual Recognition”. In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. ICML’10 (2010),
pp. 111–118. URL: https://dl.acm.org/doi/10.5555/3104322.3104338 (cit.
on p. 52).

[18] Steven Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004. URL: https://web.stanford.edu/~boyd/cvxbook/bv_
cvxbook.pdf (cit. on p. 75).

[19] Greg Brockman et al. “OpenAI Gym”. In: arXiv e-prints (2016). URL: http:
//arxiv.org/abs/1606.01540 (cit. on pp. 30, 43, 44).

138

http://www.math.bas.bg/infres/MathBalk/MB-18/MB-18-015-032.pdf
http://www.math.bas.bg/infres/MathBalk/MB-18/MB-18-015-032.pdf
https://doi.org/10.1016/S0166-218X(98)00096-1
https://doi.org/10.1016/S0166-218X(98)00096-1
http://doi.acm.org/10.1145/235815.235821
http://doi.acm.org/10.1145/235815.235821
https://doi.org/10.1137/15M1052184
https://doi.org/10.1137/15M1052184
http://arxiv.org/abs/1806.09730
http://arxiv.org/abs/1806.09730
https://doi.org/10.1016/S0925-7721(03)00048-8
https://doi.org/10.1016/S0925-7721(01)00004-9
https://bokeh.pydata.org/en/latest/
https://dl.acm.org/doi/10.5555/3104322.3104338
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540


Bibliography
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