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ABSTRACT
Molecular dynamics simulations are performed to study the crystallization of formamidinium lead iodide. From all-atom simulations of the
crystal growth process and the δ-α-phase transitions, we try to reveal the formation of various stack-faulted intermediate defected structures
and report various polytypes of formamidinium lead iodide that are observed from simulations.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0165285

I. INTRODUCTION

Formamidinium lead iodide (FAPbI3)1,2 based perovskite solar
cells (PSC)3–8 have emerged as the most promising cheaper pho-
tovoltaic technology with certified solar to power conversion effi-
ciencies for single-junction 26.1%8–13 and perovskite-silicon tandem
solar cells reaching ∼34%.8,14–16 This material has two commonly
known phases: black phase and hexagonal yellow phase. Among
these, thermodynamically stable hexagonal-FAPbI3 is a photo-
inactive material and consists of face-sharing Pb–I octahedral chains
surrounded by FA+ cations. Alternatively, the metastable black-
FAPbI3 is made of corner-sharing Pb–I octahedra and a champion
photo-active material commonly used to make highly efficient and
stable PSCs. The phase transition temperature from the yellow to
black phase is ∼150 ○C. Over the past decade, one of the main quests
in perovskite photovoltaics has been to synthesize and stabilize
phase-pure or alloyed black-FAPbI3. A broad range of process-
ing methodologies and additives have been explored to make a
defects-free black-FAPbI3 and simultaneously avoid the formation
of hexagonal structures. Regardless of the abundance of experi-
ments, perovskite electronics suffer from the problem of limited
stability and reproducibility. It is apparent from regular research
papers of PSCs where control samples are shown to degrade within
hours during the solar cell operations. This is mainly due to the lack
of understanding and control over their synthesis process where one

of the critical challenges is to eliminate the formation of hexagonal
face-sharing structures and their alternative polytypes.17–25 There-
fore, it is necessary to study their formation process which can help
to make reproducible and stable FAPbI3 based PSCs. The tempo-
ral and spatial resolution required to study the dynamical process
of crystallization: limit the usage of current state-of-the-art exper-
imental techniques and a huge challenge to design and perform
experiments for these materials.26,27 An alternate approach of molec-
ular dynamics (MD) simulations23,28–36 can help better understand
the atomic level details of complex crystallization process. In this
work, we perform brute-force MD simulations and try to under-
stand the formation of intermediate polytypic structures of FAPbI3
which play an essential role in the efficiency and long-term sta-
bility of PSCs. Experimental synthesis of black-FAPbI3 involves
various steps, and conducting all-atom MD simulations of an entire
experimental process is a challenging task. This study is limited to
two cases: (a) crystal growth and (b) hexagonal (δ) to the cubic
(α)-phase transition of FAPbI3.

II. CRYSTAL GROWTH
We start with the growth process of FAPbI3 and carry

out seeded simulations.31,34 During the usual manufacturing pro-
cesses,38 solvents are expelled quickly to form thin films of per-
ovskites. This is commonly achieved either using typical coating
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techniques (for example, spin-coating), anti-solvents, and high-
temperature annealing. Removal of solvent molecules creates con-
ditions of very high supersaturation and leads to the onset of
multiple nucleation and growth events. We could only simulate
parts of this complicated growth process in this work. To set-
up our simulations, we prepare crystalline seeds of cubic and
hexagonal-FAPbI3 and interface them with a homogeneous mix-
ture of Pb2+, I− and FA+ ions, shown in Fig. 1(a). All atom
MD simulations are performed with an AMOEBA39–46 polariz-
able inter-atomic potential of FAPbI3, details are provided in the
supplementary information. From simulations, we observe a net
growth of crystalline phase over both {111}-facet of cubic phase
and {001}-facet of hexagonal phase, illustrated in Figs. 1(a)–1(d).
We analyse these simulations with the time evolution of different
types of Pb–I octahedra;47 see Fig. 1(e). This representation allows

to quantify the formation of hexagonal and cubic-FAPbI3 structures
with face-sharing and corner-sharing, respectively, where edge-
sharing are fingerprints of various precursor intermediate phases48

observed in experiments. We find that both face-sharing and corner-
sharing octahedra increase with the decrease of edge-sharing ones.
This is a direct observation of the formation of mixed 4H and
9R-like polytypes, see Fig. 1(d) and supplementary movie M1.
Similar intra-grain structures are also observed in electron micro-
scopic and X-ray experiments.24,49–52 However, experiments have
not established the crystallization mechanism of these structures.
Therefore, a key insight comes out from simulations is that
the mixed face-corner-sharing Pb–I structures possibly form dur-
ing crystal growth in perovskites on either {111}-face of cubic-
phase or unconverted hexagonal-phase of FAPbI3. To further
characterize the growth process, free energies surfaces (FES) are

FIG. 1. Crystal Growth: Figures (a)–(d) display the atomistic picture of the time evolution of a typical growth process, where (a) is the initial configuration of the homogeneous
mixtures of precursor ions in between seeds of hexagonal (face-sharing in middle) and cubic-FAPbI3 (on corners). Figure (b) highlights the initial nucleation on face-sharing
seed. Figure (c) shows the growth of polytype and figure (d) depicts the complete formation of polytypes. All figures are generated with the VMD software.37 Pb–I configurations
are depicted as orange octahedra with green iodine at corners. Violet color Pb–I octahedra in figure (b) are shown to guide the eye. FA+ cations are shown with balls and
sticks configuration. Figure (e) shows the time evolution of edge-sharing, corner-sharing and face-sharing Pb–I octahedra during crystallization process. Figure (f) and (g)
are the pseudo free energy profiles.
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FIG. 2. Crystal Growth: Figures (a) and (b) shows the crystallization of corner-sharing Pb–I octahedra on {100}-α-FAPbI3, where (a) is the initial configuration of the
homogeneous mixtures of precursor ions interfaced with cubic-FAPbI3. Figure (b) shows the newly grown perovskite. Figure (c) shows the time evolution of edge-sharing
and corner-sharing Pb–I octahedra during the growth process. Figures (a) and (b) are created with the VMD software.37 Pb–I configurations are depicted as brown color
octahedra with orange iodine spheres at corners. FA+ cations are shown with balls and sticks configuration.

constructed with equation53–55 F = −kBT log p(Otype of Pb–I octahedra),
where p(Otype of Pb–I octahedra) is the probability distribution of the
face-sharing, edge-sharing and corner-sharing octahedra. From
these 2D pseudo-FES in Figs. 1(f) and 1(g), it can be noticed that
the polytype layers are separated by free energy barriers. Now, upon
careful observations of the simulated trajectories, we recognize that
the polytype growth starts from the nucleation of corner-sharing
structure on seed of hexagonal-phase and face-sharing structures
on seed of cubic-phase. To further characterize this phenomena,
we calculate the free energy profile for the growth of a single layer
of polytype, see supplementary Fig. 1(c). As can be noticed from
supplementary Fig. 1(c), that the growth of one layer is separated
by a free energy barrier from its starting configuration. There-
fore, indicating that once a two-dimensional type nucleation starts
to form complete Pb–I octahedra on surface of respective seeds
[see Fig. 1(b)], in-plane polytype layer forms with a continuous
growth, see supplementary Fig. 1(c). This feature is also broadly
present in the free energy surface in Fig. 1, where multiple free
energy minima are associated with the polytype layers, see Figs. 1(f)
and 1(g). Furthermore, we also realize that defects can form during
this growth process which may act as degradation centers during the
operation of PSCs. A defected interface structure can be directly seen
in Fig. 1(d) with the unconverted Pb–I octahedra. Therefore, the
crystallized structures from this study can be further used to under-
stand defects56,57 and their effects on degradation of FAPbI3. Apart
from {111}-facet of cubic-phase, we carry out simulations of seeded
growth on {100}-facet, however we did not observe formation of any
hexagonal-face-sharing structures, see Fig. 2.

III. δ TO α-PHASE TRANSITION OF FAPbI3
In the course of synthesis process, thermodynamically sta-

ble δ-phase is frequently crystallized first and later converted to
perovskite.9,12 It is essential to comprehend the atomic-level details
of this process. Previously, Professor JB Goodenough and co-
workers19,59,60 have experimentally demonstrated that face-sharing
perovskite structures can transform into various polytypes and

eventually convert to fully corner-sharing structures during high-
pressure synthesis. On the basis of these experimental observations,
we carry out MD simulations of direct phase transitions from face-
sharing to corner-sharing phases of FAPbI3. However, solid-solid
nucleation/phase-transitions are often characterized as rare events,
meaning required simulation times may go beyond the capabili-
ties of the current computational architecture. To overcome this
problem, we take inspiration from earlier computer simulations
of polytypes20,61 and explore the potential energy surface by alter-
ing potential energy surface.62–67 All simulation details are pro-
vided in the supplementary information. We start with an initial
configuration where a few corner-sharing structures are inserted
in a sizeable face-sharing structure of FAPbI3; see supplementary
Fig. 2(a). Brute-force MD simulations are performed at accelerated
temperatures.54,68–71 With increasing temperatures, face-sharing
octahedra transform into corner-sharing ones either by sliding of
Pb–I layers or melted-like intermediates, see supplementary Fig. 2.
This gives rise to the formation of various hexagonal 4H, 6H, 8H,
10H, 12H, and 9R-like perovskite polytypes,24,72–76 their mixtures
and stacking faults,50 see atomic dynamics in supplementary movies
M2 and M3. We identify their structures based on ratio of cubic(c)
to hexagonal(h) stacking for example 4H(chch),19 and 6H(cchcch),24

see supplementary Fig. 3. Here, Figs. 3(a)–3(i) shows the identi-
fied crystalline structures for the supercell of 1296 atoms. Similar
structures are also detected from simulations of larger supercells
up to 5000 atoms. In addition, we carry out finite-temperature
ab initio MD simulations of these structures with the density
functional theory,77–79 and find that the observed structures are
also stable in their original configurations at finite-temperature
DFT potential energy surface. Therefore predicted polymorphs
have a high probability of formation during the crystallization of
FAPbI3. Most notable 4H, 6H, 8H polytypes and stack-faulted intra-
grain defects seen here in simulations: are already verified with
experiments.24,76,80 This substantiates our simulations and encour-
ages experimentalists to synthesize the predicted higher-order poly-
types towards a complete understanding of the phase diagram
of FAPbI3.
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FIG. 3. δ to α-phase transition: Figures (a)–(i) show the predicted structures of various polytypes during the phase transitions of a supercell of 1296 atoms. All figures are
made with the structures from AIMD simulations using VESTA software.58 Pb–I configurations are depicted as octahedra with iodine at corners. FA+ cations are shown with
balls and sticks configuration.
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IV. DISCUSSIONS
We have taken elementary steps in understanding the crys-

tallization of FAPbI3. First, our simulations reveal that the 4H
and 9R-like polytypes could form on {111}-facet of black FAPbI3.
Whereas, {100}-facet is found to be primarily dominated by the
growth of the perovskite corner-sharing octahedra. It could be one
of the crucial insights that emerged from simulations. To simplify
this observation: it is well established that the efficiency and sta-
bility of FAPbI3-based electronic devices directly depend on the
amount of corner-sharing octahedra. Therefore, to extract the max-
imum solar power from a stable FAPbI3, one might have to design
synthesis recipes that limit the formation of {111}-orientation and
maximize the {100}-FAPbI3. We note that our current work has been
limited for guiding the experiments, however simulation methodol-
ogy presented here can be comfortably extended to study the effect
of various additives and therefore help in designing better exper-
imental recipes. Secondly, we simulate the phase transition from
δ to α-phase of FAPbI3 and found that various polytypes/stack-
faulted structures can crystallise going from hexagonal (2H) to
cubic(3R/3C)-FAPbI3. These phases are found to have complicated
stacking sequences of mixed corners and face-sharing octahedra.
We report the crystal structures of the higher-order polytypes and
the mixed long-ranged stack-faulted structures. The reported struc-
tures can help to provide a better understanding of the complete
phase diagram of FAPbI3. At first, it is essential to obtain the
phase diagram of FAPbI3 with respect to temperature, because high-
temperature annealing is an important step for the production of
PSCs. Secondly, to make reproducible PSCs, it is critical to com-
prehend the impact of frequently employed additives (for example
cesium,81 chloride,82 bromide,83 and methylenediammonium84,85)
on the stabilization of various polytypes of FAPbI3. Furthermore,
despite a plethora of experiments, it is not yet established why PSCs
manufactured by the direct conversion of δ to α phase yield infe-
rior efficiencies and poor stability compared to the ones produced
by using additives in the crystallization process. Our simulations
identified that the defects are associated with the crystallization
of polytypes, either from the growth process or direct solid-solid
(δ-α) phase transitions. In the end, we note that previously Profes-
sor Daan Frenkel and co-workers86 calculated that the stabilization
of stack-faulted structures could also depend on the size of thin-
films, and it may also require longer times to anneal out these
structures in FAPbI3 thin-films. Moreover, polytypism is widely
present in nature87,88 and industrial materials89 with applications
ranging from transistors90 to quantum computing91 to spin-glasses75

to superconductivity.92–94 Especially, previous fundamental research
on polytypism in silicon-carbide95 and oxide perovskites96 have
demonstrated the stabilization of meta-stable cubic phases: one of
the central topics for PSCs. Therefore, to produce highly stable
industrial-scale FAPbI3 based PSCs, a great deal of future fundamen-
tal research is needed and an in-depth understanding of the effects
of commonly used additives10,12,13 on the crystallization of these
structures.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about the methodol-
ogy to perform force field based MD simulations and ab initio MD

simulations, atomistic movies extracted from MD simulations, and
input files are provided for running MD simulations.
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