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Abstract
The electromagnetic Casimir interaction between dielectric objects immersed in salted water
includes a universal contribution that is not screened by the solvent and therefore long-ranged.
Here, we study the geometry of two parallel dielectric cylinders. We derive the Casimir free energy
by using the scattering method. We show that its magnitude largely exceeds the thermal energy
scale for a large parameter range. This includes length scales relevant for actin filaments and
microtubules in cells. We show that the Casimir free energy is a universal function of the geometry,
independent of the dielectric response functions of the cylinders, at all distances of biological
interest. While multiple interactions exist between filaments in cells, this universal attractive
interaction should have an important role in the cohesion of bundles of parallel filaments.

1. Introduction

The electromagnetic Casimir or van der Waals attraction between dielectric particles immersed in salted
water [1–4] was recently shown to be stronger and of longer range than previously expected. This long-range
Casimir interaction was predicted as an effect of non-screened electromagnetic thermal fluctuations
confined between plane dielectric surfaces [5]. For spherical particles, the interaction is a universal function
of distance, independent of the dielectric response functions of the particles [6], and it overtakes
non-universal contributions at distances of the order of 0.1µm. On the other hand, such non-universal
contributions dominate the total interaction when probing the force between dielectric spheres at distances
in the nanometer range [7–9]. The existence of the non-screened universal Casimir force was proven
experimentally on a microsphere held by optical tweezers interacting with a larger rigidly held sphere at
distances above 0.2µm [10]. A long-ranged attraction at similar distances was also found for optically
trapped dielectric microspheres in salted water [11, 12].

Between spherical particles, this universal Casimir interaction only dominates the thermal energy scale
kBT associated to Brownian motion in the liquid when the distance between spheres is smaller than one tenth
of the smallest radius. However, there are other highly relevant geometries where this interaction should be
more significant. Here, we study the case of two parallel dielectric cylinders in salted water, where the force is
expected to be proportional to the length of the cylinders, itself much larger than the radial dimensions. We
show that the electromagnetic Casimir attraction in such configuration can indeed dominate the thermal
energy kBT at distances larger than the radii.
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Considering dielectric cylinders immersed in salted water allows us to address the following question:
Can the universal Casimir interaction play an important role in biological systems at the cell scale? Indeed,
filamentous structures are ubiquitous in cells. Cytoskeletal filaments, in particular actin filaments and
microtubules, play crucial parts in maintaining the integrity of eukaryotic cell shape, in its deformations, as
well as in multiple sub-cellular processes, by actively generating forces with the help of motor
proteins [13–15]. Actin filaments form bundles, where filaments are cross-linked by specific proteins into
parallel arrays. Microtubules, which are thicker and more rigid than actin filaments, also form bundles
cross-linked by microtubule-associated proteins [16]. Both in the case of actin filaments [17, 18] and in that
of microtubules [19–21], bundles of parallel filaments have been shown to form in vitro in the absence of
cross-linkers under certain experimental conditions. Beyond the cytoskeleton, several enzymes form
filaments in cells, with important biological functions, and these filaments also often self-assemble into
larger assemblies, especially bundles [22]. The Casimir interaction considered in this paper matters in
particular at dimensions relevant for bundles of actin filaments and of microtubules. Therefore, it should
have important implications in the self-assembly and cohesion of bundles of filaments at the cell scale [15].

Let us note that the configuration with metallic cylindrical surfaces separated by a vacuum gap was
proposed as a platform for precision Casimir experiments [23–26]. The Casimir force between crossed
cylindrical surfaces in air was measured for distances up to 0.1µm [27]. Theoretical results for metallic
cylindrical surfaces in vacuum were derived at zero [28–34] and finite temperatures [35, 36], as well as in a
non-equilibrium configuration [37].

This work is organized as follows. First, we illustrate by molecular dynamics simulations the fact that
transverse modes of the electromagnetic field are not screened by ions, which is crucial to the existence of a
long-range Casimir force. Then, we calculate the Casimir interaction between two parallel dielectric cylinders
immersed in salted water, using the scattering formalism, and we discuss its universality. Next, we apply our
results to bundles of biological filaments, focusing on the specific cases of actin filaments and microtubules.
Finally, we discuss the quantitative importance of the electromagnetic Casimir attraction in these biological
systems.

2. Transverse electromagnetic modes are not screened

Despite strong screening, the Casimir interaction includes a long-range unscreened part, due to the effect of
thermal electrodynamical fluctuations propagating in the medium without being screened [5]. To illustrate
this key point, while relying on a molecular description of the environment, we perform molecular dynamics
simulations, supported by a classical field theory calculation (see appendices A and B). We simulate pure
water using a classical rigid model for water molecules [38], as well as an electrolyte solution with
concentration 0.2 mole per liter of potassium bromide (KBr) (see figure 1). This is in the range of typical
cytoplasmic concentrations, and is thus relevant for our applications to bundles of biological filaments below.

We compute the static dielectric correlation spectrum in Fourier space for these two media. Longitudinal
and transverse correlation functions are expressed from the spatial distribution of the charges in the medium
and averaged on the simulation time (see appendix A.2 for details). Figure 2(a) shows the longitudinal
susceptibility for pure water (blue markers) and for the electrolyte (red markers) for wavevector norms
q⩽ 1.5Å−1 as we focus on long-range interactions. We observe that the longitudinal susceptibility of the
electrolyte significantly differs from the pure water one at low q. Figure 2(b) shows the transverse
susceptibility for water (blue markers) and for electrolyte (red markers) for q⩽ 1.5Å−1. We observe that the
transverse susceptibility is not affected by the salt, in agreement with a previous study [39].

In addition, we use classical field theory to compute the response functions of electrolytes. We express the
longitudinal and transverse response of pure water using the framework of nonlocal electrostatics [40, 41].
We adjust the two parameters of the model to fit the data of molecular dynamics (see appendix B.2 for
details). In water, for this range of q, the longitudinal susceptibility is constant (dashed blue line in
figure 2(a)) whereas the transverse one presents a Lorentzian decay (dashed green line in figure 2(b)). The
transverse susceptibility of the electrolyte is unchanged when compared to pure water, as seen in figure 2(b).
Conversely, the longitudinal one presents a Lorentzian decay induced by Debye screening in the electrolyte,
as shown by equation (A2). A very good agreement is obtained between field theory and simulations, as
shown by figure 2.

We checked the robustness of these conclusions by simulating an aqueous electrolyte using another water
model and NaCl ions instead of KBr. We indeed obtained similar results, see appendix A.

We thereby confirm that the longitudinal spectrum is modified by the presence of salt, due to the
screening of the correlations in electrolytes beyond the Debye length, whereas the transverse correlation
spectrum remains unaffected by the presence of salt. The absence of screening of the transverse modes by salt
allows the long-range Casimir force.
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Figure 1. Snapshot of our molecular dynamics simulation of an electrolyte solution. The red and white sticks represent water
molecules, the light blue spheres represent potassium K+ ions, and the purple spheres bromide Br− ions. The box is a cube with
side length L= 6.5nm. Periodic boundary conditions are used.

Figure 2. Susceptibilities for water and electrolyte. (a) Longitudinal susceptibility χ∥(q). (b) Transverse susceptibility χ⊥(q). In

both panels, susceptibility is shown as a function of the wavevector norm q (Å−1) for pure water (blue) and for a 0.2 mole per
liter KBr electrolyte solution (red). Markers correspond to results obtained from molecular dynamics simulations (MD, see
appendix A for details). Dashed lines correspond to field theory (FT) equations given respectively by equations (A2) and (B9) for
pure water and for the electrolyte, for parameter values K= 1/76, κt = 0.0145 Å2 (see appendix B for derivation). For the
transverse susceptibility, the same FT curve is found for both systems (green). The Debye length associated to the electrolyte
solution considered here is λD = 6.8Å.

3. Casimir interaction between two dielectric cylinders

We use the scattering formalism [42, 43] to calculate the Casimir interaction in salted water at room
temperature between two parallel dielectric cylinders with length L and different radii R1,R2 separated by a
distance d of closest approach. The cylinder-plane configuration is included in the calculation, for an infinite
second radius R2. We focus on cylinders much longer than the separation distance (L≫ d, see figure 3), thus
neglecting edge effects. We consider a salt concentration typical of biological media, with the Debye
screening length λD much smaller than the distance d. All electrostatic interactions, as well as contributions
to the Casimir energy arising from longitudinal modes [5, 44], are then efficiently screened. This is a first
reason why the resulting interaction will be independent of many details of the physical configuration. This
universal Casimir interaction arises from transverse modes, which are not screened, as discussed in the
previous section.

Another reason for this universality will become clear when describing the scattering formalism [42, 43]
employed to compute the Casimir interaction for arbitrary values of the geometrical dimensions. In general,
the interaction is given by a sum over Matsubara frequencies [45, 46]. The first Matsubara term overtakes all
other ones when thermal fluctuations dominate [47], which is the case for filaments at the cell scale at
physiological temperature. This first term corresponds to electromagnetic response functions evaluated at
zero frequency. As salted water features an ionic conductivity leading to a divergence of its contribution to

3
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Figure 3. Geometry studied in this paper. Two parallel cylinders of length L and radii R1 and R2 are separated by a distance d of
closest approach in salted water.

the dielectric response, the resulting interaction does not depend on the detailed dielectric function of the
cylinders.

Within the scattering approach, the zero-frequency term giving the thermal Casimir interaction energy is
written as an integral over the wavevector k along the z-axis of the cylinders (see figure 3)

F = kBTL

ˆ ∞

0

dk

2π
logdet [I −M(k)] . (1)

Here I is the unit matrix andM the round-trip operator after scattering on the two cylinders

M=R1T12R2T21 . (2)

The latter accounts for reflection operatorsRj on each cylinder (j = 1,2), the translation operator T21 from
the axis of cylinder 1 to the axis of cylinder 2, and the reciprocal translation operator T12 (from the axis of
cylinder 2 to the axis of cylinder 1).

The round-trip operatorM can be written in terms of cylindrical modes associated to given values of k
and of an integer numberm denoting the angular momentum component along the symmetry axis for each
cylinder. The zero-frequency term (1) giving the thermal Casimir interaction is calculated at the static limit
for all reflection operators. As a consequence of the Debye screening mechanism, only the
transverse-magnetic cylindrical modes contribute (TM modes with the magnetic field perpendicular to the
symmetry axis).

Due to the rotational symmetry of each cylinder, the reflection operators are diagonal in the
representation defined by the cylindrical modes. The corresponding matrix elements are evaluated by taking
into account the finite conductivity of salted water due to the ions in solution. As the dielectric permittivity
of salted water diverges in the limit of zero frequency, the matrix elements do not depend on the dielectric
response of the cylinder material. Using the known reflection matrix for cylinders [48], we derive for our
geometry (j = 1,2 for the two cylinders)

⟨m,TM|Rj|m,TM⟩=− ıπ
2

(−1)m
I ′m
(
kRj

)
K ′
m

(
kRj

) , (3)

where Im(x) and Km(x) are the modified Bessel functions of the first and second kinds, respectively
(section 10-25 in [49]).

The distance between the axes of the two cylinders shown as dotted lines in figure 3 is D= d+R1 +R2.
Translations along the x-axis are described by the following matrix elements

⟨m ′,TM|T21|m,TM⟩=
−2ı

π
(−ı)m−m ′

Km−m ′ (kD) ,

⟨m ′,TM|T12|m,TM⟩=
−2ı

π
ım−m ′

Km−m ′ (kD) , (4)

where we used Graf ’s addition theorem for Bessel functions (section 10-23 in [49]).
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Figure 4. Universal function ϕu versus x= d/Reff. The parameter u takes values 0,0.04,0.1,0.25 respectively from the top curve
to the bottom one. The first and last cases correspond to cylinder-plane and equal-radii cylinders. The full results (solid curves)
agree with the proximity force approximation (PFA) expression (dashed line) at short separations and with approximations
discussed in the text (dotted and dash-dotted lines) at long distances. In the grayed out band, the value of |F| (calculated with
L/d= 103) is dominated by the Brownian motion energy scale kBT.

Explicit results for the Casimir free energy are obtained by combining (1)–(4). We write the result as
follows:

F =−kBT
L

d
ϕ(d,R1,R2) . (5)

The free energy F is thus proportional to the cylinder length L, with the latter measured as the dimensionless
number L/d. The dimensionless quantity ϕ only depends on the radial dimensions d,R1,R2 characterizing
the two-cylinder system. In fact, ϕ only depends on the two ratios of these three dimensions. Thus, F does
not depend on any material properties of the cylinders or of the surrounding fluid, and is universal. A
convenient representation is

ϕ ≡ ϕu (x) ,with u=
R1R2

(R1 +R2)
2 ,

x=
d

Reff
, Reff =

R1R2

R1 +R2
. (6)

The parameter u is a symmetrized ratio of the two radii. It runs from u= 0 in the cylinder-plane geometry to
u= 1/4 for equal radii. Meanwhile, x compares the distance d of closest approach to the effective radius Reff.
The latter is equal to the cylinder radius in the cylinder-plane geometry, and to R/2 for cylinders with equal
radii R. Note that the case of cylinders of equal radii corresponds to the quantity ϕu in equation (6)
calculated for u= 1/4, and written as a function of d/R≡ x/2.

In figure 4, we plot the function ϕu(x) for four different values of u. The Casimir interaction energy per
unit length F/L is obtained by multiplying ϕu by−kBT/d (note that F < 0 and ϕu > 0). We optimized the
numerical evaluation by expanding the round-trip operator in the plane wave basis rather than in the
cylindrical one [50, 51]. Explicit expressions for the scattering matrix elements in the plane wave basis are
readily derived from the results presented above. Since the wave-vector is a continuous variable, the
determinant in (1) is calculated with the help of Nyström discretization, as in the calculation of the Casimir
interaction between spheres [52]. To facilitate applications, we provide the numerical evaluations of ϕ on a
repository [53, 54] for the four values of u shown on figure 4, over the domain 0.1< x< 15, which should be
appropriate for most applications.

Our full numerical results hold for arbitrary values of distance. Let us compare them with the proximity
force approximation (PFA) or Derjaguin approximation [55] in the limit x≪ 1. This approximation
amounts to replacing the function ϕu by the result for parallel planes averaged over the local distances
between the cylindrical surfaces, yielding

ϕPFA (x) =
H

24

√
2

x
,with H=

3

4
ζ (3) kBT . (7)

The effective Hamaker coefficient H≈ 0.9kBT is the one calculated for dielectric surfaces separated by salted
water [5], with ζ(3)≈ 1.202 denoting Apéry’s constant. The PFA is indicated as a dashed line in figure 4, and
is indeed a good approximation of numerical results at short distances, whereas it increasingly overestimates
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the magnitude of the interaction energy as x increases. Note that the PFA expression (7) does not
depend on u.

Analytical results can also be derived in the opposite limit x≫ 1. Indeed, the single round-trip
approximation logdet(I −M)≈−TrM is then sufficient to get an estimate of the free energy (1). We thus
find two different results for the case of two cylinders (u> 0) and for the cylinder-plane geometry (u= 0)

ϕu (x)≈
891π

4096u2 x4
, x≫ 1 , u> 0 ,

ϕ0 (x)≈
7

64x2
, x≫ 1 , u= 0 . (8)

The comparison between these two long-distance results indicates that the reduction with respect to the PFA
limit is stronger for two cylinders than for a cylinder and a plane, as expected. Formulas in the first and
second lines of equation (8) are shown respectively as dotted (for u= 1/4) and dash-dotted lines in figure 4.

A key feature of the results obtained here is their universality. Our results are valid for whatever dielectric
response functions of the cylinders. They depend only on the dimensionless length-to-distance ratio L/d and
on the dimensionless ratios of the radial dimensions d,R1,R2. Furthermore, we show in appendix C that
most of the dependence on radial dimensions is captured by considering the dimensionless free energy ϕ as a
function of a conformally invariant geometrical parameter.

4. Application to bundles of biological filaments

How relevant is the universal Casimir attraction between dielectric cylinders in biological systems? To
address this question, it is important to compare the magnitude of the Casimir free energy to the thermal
energy scale kBT. For actin filament bundles and for microtubule bundles, the filament length L will be in the
micrometer range while the inter-filament distance d will be in the nanometer range (see below). Thus,
typically, the ratio L/d of cylinder length over separation distance is of the order of 103 for bundles in cells.
With such a value of L/d, finite-size (edge) effects are expected to be negligible, which is consistent with our
assumptions. The grayed out band on the lower part of figure 4 shows the domain where the Casimir free
energy F is overtaken by kBT for L/d∼ 103. Importantly, we find that the Casimir binding energy is larger or
of the same order as the thermal scale in a broad range, namely x< 5, as indicated by figure 4. As expected
from the fact that the Casimir energy is proportional to the length of the cylinders, the range where the
Casimir force plays an important role is much broader in the two-cylinder geometry (x< 5) than in the
two-sphere geometry (where it was evaluated as x< 0.1 at the end of [6]).

The values of x corresponding to the case of the filament bundles in cells discussed below are such that
the Casimir force should play an important role in these systems. In addition, these practically relevant
values of x also lie right in the crossover between the PFA and the long-distance limits shown in figure 4. In
this intermediate range, both short- and long-distance approximations overestimate the exact energy that we
computed numerically by approximately one order of magnitude. This highlights the importance of our
calculation and of our full numerical results for these applications. The results obtained here are therefore of
importance for the self-assembly and cohesion of filament bundles in cells, with implications for cellular and
molecular biology.

Let us now assess more precisely the magnitude of this interaction in the specific case of actin bundles.
Actin filaments are double helices of homopolymers of monomeric actin. They can be approximately
described as cylinders with a radius R around 3nm. They form bundles in cells, where actin filaments are
cross-linked by specific proteins into arrays of parallel filaments. In parallel actin bundles, which support
projections of the cell membrane such as microvilli, microspikes or filopodia, actin filaments (assembled
with fimbrin, fascin or villin) are approximately d= 6nm apart (note that we use the closest approach
distance d here and throughout) [56, 57]. In this case, equation (5) yields a Casimir binding free energy per
unit length of |F|/L= 0.33kBT/µm, giving the substantial value |F|= 5kBT for a length L= 15µm, which
is on the order of the size of a cell and of the persistence length of actin filaments [58]. Such a value,
significantly larger than the scale kBT of thermal fluctuations, demonstrates the practical relevance of the
Casimir interaction between actin filaments in the physiological configuration of parallel bundles. In
contractile bundles, which are present in stress fibers, and in the mitotic contractile ring, actin filaments
(assembled with alpha-actinin) are separated by d= 33nm [57], yielding a smaller value of |F| ∼ 10−2 kBT
for a length L= 15µm, which is not relevant as it is well below the scale kBT of thermal fluctuations. In
figure 5, we show the Casimir binding free energy |F|=−F versus the separation d for actin filaments with
L= 15µm. The Casimir interaction then exceeds the scale of thermal fluctuations for separations d≲ 10nm,
which includes parallel bundles but not contractile bundles.

6
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Figure 5. Casimir binding free energy between actin filaments. The Casimir binding free energy |F|=−F (from equation (5)) is
shown versus the separation distance d (nm) for two parallel actin filaments. Each filament has a radius 3nm and length 15µm.
|F| is expressed in units of kBT, and the zone where |F|< kBT is shaded in gray. Casimir binding free energies above the gray
zone are expected to matter in practice, including in the physiological case of parallel actin bundles (red marker). Inset: schematic
of two actin filaments (blue) in a parallel actin bundle. Cross-linkers are shown in red.

Figure 6. Casimir binding free energy between microtubules. Same as in figure 5, but in the case of two parallel microtubules,
each with radius 12nm and length 50µm. The physiological cases of parallel fiber axons and spinal cord axons are shown by red
markers. Inset: schematic of two microtubules (blue) in a bundle. Cross-linkers are shown in red.

Another biologically important system where Casimir interactions between filaments are relevant regards
microtubule bundles. Microtubules can be viewed as cylinders with a radius of about 12nm. They can grow
as long as 50µm and their persistence length is around 1mm [59]. They form bundles where the separation
between neighboring microtubules is set by microtubule-associated proteins, of which various types
exist [16]. Plant cells often possess large arrays of parallel microtubules, whose alignment is maintained
over the whole cell, and where separations are similar to the microtubule diameter [60, 61]. Microtubule
bundles are also present in neurons, where they play important roles, and the separations between
adjacent microtubules in Purkinje cell dendrites, parallel fiber axons and white matter spinal cord axons
were found to be 64± 10nm, 22± 10nm and 26± 10nm, respectively [62]. For d= 22nm, we find
|F|/L≈ 0.112kBT/µm, giving |F|= 5.6kBT for L= 50µm and |F|= 1.7kBT for L= 15µm. In figure 6, we
show the Casimir binding free energy |F| versus the separation d for microtubules with L= 50µm. The
Casimir interaction then exceeds the scale of thermal fluctuations for separations d≲ 35nm, which includes
the physiological separations found in parallel fiber axons and white matter spinal cord axons, as well as in
plant cells, but not in Purkinje cell dendrites.

5. Discussion

Actin bundles and microtubule bundles are typically held in place by cross-linking proteins in cells. However,
in electrolyte solutions containing polycations e.g. Mg2+, actin filaments can form bundles in vitro in the
absence of cross-linking proteins [17, 18]. Microtubule bundles can also self-assemble in vitro above a certain
concentration of multivalent cations [19, 20]. This demonstrates that the tendency of these filaments to
self-assemble is quite generic. In this light, cross-linkers could help maintain spacing between filaments [63].
Interestingly, beyond cytoskeletal proteins, multiple enzymes form filamentous structures within cells, which
then assemble into large-scale self-assembled structures (foci, rods, rings, sometimes called cytoophidia),

7
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which are membraneless and reversible. Enzyme filamentation is associated to multiple functions in cells,
including determining cell shape or regulating enzyme activity [22]. Enzymes that form filaments and
higher-order structures in cells include acetyl CoA carboxylase (ACC), CTP synthetase (CtpS) [64, 65],
inositol monophosphate dehydrogenase (IMPDH) [66, 67], and many others [22]. Beyond enzymes, it was
recently shown that mutating proteins that spontaneously form symmetric homo-oligomers can lead to
polymerization in a quite generic manner. Furthermore, these mutant proteins very often form larger
structures such as fibers or foci, and some were shown to bundle [68, 69]. These findings hint at a general
trend of filaments to self-assemble into higher-order structures in cells.

While the universal attractive interaction discussed here should play a key role in these various bundles,
these systems are complex and involve many other interactions. Electrostatic interactions are screened at the
usual separations involved in actin bundles and microtubule bundles, but they matter at shorter separations.
For instance, the surface of filamentous actin is overall negative, with a highly heterogeneous charge
distribution, leading to subtle collective dynamics of counterions close to actin filaments [70]. In addition,
the depletion interaction [71–74], which arises from excluded volume effects on crowding agents, is
important in cells due to how crowded the cytoplasm is. Indeed, around 30% of its volume is estimated to be
occupied by macromolecules [74–76], with notable heterogeneities [77, 78]. The range of the depletion
interaction is given by the diameter of a typical depletant, which corresponds to macromolecules such as
globular proteins in cells, with diameters of order 5nm [74]. Depletion interactions have been studied
experimentally in controlled in− vitro systems where the concentration of depletant polymers can be tuned.
For instance, an adhesion strength of 7kBT/µmwas measured between sickle hemoglobin fibers in a solution
of monomeric hemoglobin [79], while the attractive interaction between two actin filaments in a solution of
depletant polymers was found to be of order of a few times 10kBT/µm [80], and a similar value was found
between two microtubules [81]. Thus, this interaction is strong between parallel filaments in a cell, but it is
also very short-ranged, with a range of order 5nm.

What sets the Casimir interaction we calculated apart from electrostatic and depletion interactions, and
to our knowledge, from all other interactions at equilibrium, is its long range, which arises from the lack of
screening of transverse electromagnetic fluctuations. An out-of-equilibrium long-range fluctuation-induced
interaction was recently predicted between neutral objects immersed in electrolytes subject to an external
electric field [82]. This force can be of importance at the cell scale, e.g. for ion channels. More generally,
Casimir forces present interesting out-of-equilibrium properties [83, 84]. Such effects could be all the more
important for cytoskeletal filaments that the cytoskeleton is an active system [85–87]. Here, we showed that
an equilibrium long-range universal interaction exists between filaments in cells.

The Casimir interaction is highly dependent on the geometry of the interacting objects because it arises
from the perturbation of electromagnetic fluctuations by the interacting objects. Here, we showed that its
magnitude is several times the scale of thermal fluctuations in the geometry of two parallel filaments whose
length (micrometer-scale) is much larger than their radius and separation (nanometer-scale). This is stronger
than between two spheres [6], because long cylinders have a stronger confining effects on electromagnetic
fluctuations than spheres. Accordingly, within a cell, the Casimir interaction can be strong between long
semi-rigid biopolymers such as those considered here, but is weak between globular proteins. Note that
similar geometric effects exist for other fluctuation-induced interactions, e.g. in the case of Casimir-like
interactions induced by the thermal fluctuations of the shape of a biological membrane: these interactions
are stronger between long parallel rods adsorbed on a membrane [88, 89] than between circular or point-like
inclusions modeling transmembrane proteins [90, 91]. Critical Casimir forces can also be important for
cylindrical particles immersed in critical binary mixtures [92–94]. In addition to parallel cylinders, another
biologically relevant case where the electromagnetic Casimir interaction should matter regards stacks of lipid
membranes. Modeling them by parallel dielectric planes immersed in salted water, the Casimir binding free
energy between two lipid membranes is |F|= 2.4× 10−2kBTA/d2, where A is the area of the planes and d
their separation [5]. It should thus oppose the repulsive Helfrich and hydration interactions [95–101].

6. Summary and conclusion

The long-range part of the Casimir attraction has a universal form between two dielectric objects immersed
in salted water. Here, we calculated the Casimir interaction in the case of two long parallel dielectric cylinders,
using the scattering formalism. We demonstrated that this interaction takes values substantially larger than
the scale of thermal fluctuations, in the important biological cases of actin bundles and microtubule bundles.

The long range of the Casimir interaction we calculated arises from the lack of screening of transverse
electromagnetic fluctuations, which we confirmed by molecular dynamics simulations. It is this long range
that makes the Casimir interaction quantitatively important e.g. between actin filaments at the physiological
separation found in parallel bundles. It also sets it apart from other equilibrium interactions present in these

8



New J. Phys. 26 (2024) 013009 B Spreng et al

structures. The Casimir interaction should thus play an important part in the self-assembly of filament
bundles in cells.
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Appendix A. Molecular dynamics computation of the longitudinal and transverse
dielectric susceptibilities for pure water and electrolytes

A.1. Molecular dynamics simulationmethods
We consider a cubic water box of side length L= 6.5nm composed of Nw = 8967 water molecules. We
simulate both pure water and a 0.2 moles per liter aqueous solution of KBr. The electrolyte solution contains
33 ion pairs in the box. Figure 1 shows the simulation box. Our focus is on dielectric properties. Thus, rather
than simulating a complex solution matching the cytosol composition, we consider a simple solution whose
permittivity is well tabulated [38, 102] and matches the cytosolic one. Its Debye length, λD = 0.68nm, is in
the typical range of biologically relevant solutions.

Simulations are performed using the GROMACS 2021 molecular dynamics simulation package [103]. We
employ ion force field parameters optimized for ion solvation and ion–ion interaction [102]. We use
Lorentz–Berthelot mixing rules with respect to solvent Lennard–Jones (LJ) parameters. The integration time
step is set to∆t= 2fs. We further checked that a time step of∆t= 1fs yields similar results for this system,
thus confirming that our time step is small enough. Periodic boundary conditions are used in all directions.
Long range electrostatics are handled using the smooth particle mesh Ewald (SPME) technique. LJ
interactions are cut off at a distance rcut = 0.9nm. A potential shift is used at the cut-off distance. All systems
are coupled to a heat bath at 300K using a v-rescale thermostat with a time constant of 0.5ps. We use the
Python library MDAnalysis to treat the trajectories. After creating the simulation box, we perform a first
energy minimization. Specifically, we equilibrate the system in the NVT ensemble for 200ps, and afterwards
in the NPT ensemble for another 200ps using a Berendsen barostat at 1bar. Production runs are then
performed in the NVT ensemble for 20ns.

We performed simulations with the TIP4P/ϵ water model [38], a 4 interaction site, three point-charges
and one Lennard Jones reference site model. The LJ center is placed on the oxygen atom. Charges are placed
on the hydrogen atoms and on an additional interaction site, M, carrying the negative charge. The ions (K+

and Br−) were treated according to the force field developed in [102].
As a check, we also performed a simulation with the broadly used SPC/E water model of a 0.15 moles per

liter aqueous solution of NaCl, using the force fields in [102]. We followed the protocol described above. The
corresponding results are presented in figure 7. Panel (a) confirms the screening of longitudinal modes by the
salt, and panel (b) shows that transverse modes remain unaffected. This is fully consistent with our results in
figure 2. Therefore, our results are robust to changing the electrolyte and the water model.

A.2. Computation of the susceptibilities
To compute the dielectric susceptibility χ(q) in Fourier space, we use the fluctuation-dissipation theorem,
relating χ(q) to the fluctuations of the polarization fieldP , as follows,

⟨P (q)P (−q)⟩= ϵ0kBTχ(q) . (A1)
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Figure 7. Susceptibilities for SPC/E water and NaCl electrolyte. (a) Longitudinal susceptibility χ∥(q). (b) Transverse susceptibility

χ⊥(q). In both panels, susceptibility is shown as a function of the wavevector norm q (Å−1) for pure water (blue) and for a 0.15
mole per liter NaCl electrolyte solution (red). Markers correspond to results obtained fromMD simulations. Dashed lines
correspond to field theory (FT) equations given respectively by equations (A2) and (B9) for pure water and for the electrolyte, for
parameter values K= 1/68, κt = 0.0145Å2 (see appendix B for derivation). These parameters were adjusted to reproduce the
dielectric properties of SPC/E water. For the transverse susceptibility, the same FT curve is found for both systems (green). The
Debye length associated to the electrolyte solution considered here is λD = 7.5Å.

Using the isotropy and the homogeneity of the medium, the susceptibility can be decomposed in a
longitudinal part χ∥(q) and a transverse part χ⊥(q) as follows:

χij (q) = χ∥ (q)
qiqj
q2

+χ⊥ (q)

(
δij −

qiqj
q2

)
where (i, j) ∈ {x,y,z}2 . (A2)

A.2.1.Longitudinal susceptibility
The local partial charge ρ of water obeys ρ(r) =−∇ ·P(r). Using this relation, one can express the
longitudinal susceptibility as a function of the charge structure factor S(q):

χ∥ (q) =
S(q)

q2ϵ0kBT
. (A3)

The charge structure factor in Fourier space can be decomposed into an intramolecular and an
intermolecular part,

S(q) = Sintra (q)+ Sinter (q) . (A4)

The intermolecular contribution reads

Sinter (q) =
4nwz2e2

q2
[hMM (q)+ hHH (q)− 2hHM (q)] , (A5)

where z denotes valency, e the elementary charge, nw the molecular number density, while hIJ is the Fourier
transform of gIJ(r)− 1, gIJ(r) being the radial distribution function associated with the atom couple IJ. Next,
the intramolecular contribution can be written as

Sintra (q) =
4nwz2e2

q2

(
sin(qdHH)

qdHH
− 4

sin(qdHM)

qdHM
+ 3

)
(A6)

where dIJ is the intramolecular distance between atoms I and J. At low q, the accuracy of this expression of the
structure factor decreases, because the function hIJ(r) is obtained at a finite range, imposed by the box size.
To solve this problem, we proceed as follows. For q< 2.5 Å−1, we take into account the periodicity of the
system by calculating the charge structure factor for discretized values of the wavevector norm q, namely

q= 2π
√
n2x + n2y + n2z/L, where (nx,ny,nz) are non-negative integers. We then compute directly the charge

structure factor from the charge distribution ρ̃(q) in Fourier space and its correlations [104].

10
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A.2.2.Transverse susceptibility
The transverse susceptibility is computed following [105]. The polarization of the medium in Fourier space,
namely

P(q) =
∑
j

pj (q)e
−ıq·rj , (A7)

can be written as a sum over the molecular polarization pj(q) of molecule j, which reads

pj (q) =
1√
V

∑
α

ezα δrαj
ıq · δrαj

(
1− e−ıq·δrαj

)
, (A8)

where δrαj denotes the distance between the charge α and the center of mass of the molecule. We then take
the transverse part of the polarization P⊥(q) = q×P(q)/q, and compute the transverse susceptibility as

χ⊥ (q) =
⟨P⊥ (q) ·P⊥ (-q)⟩

2kBTϵ0
. (A9)

Note that we replace
(
1− e−ıq·δrαj

)
/(ıq · δrαj ) by 1 if q · δrαj < 10−5 to prevent numerical errors.

For the longitudinal and transverse susceptibilities, the error bars shown in figure 2 were derived
following the reblocking method [106].

Appendix B. Classical field theory interpretation

To better understand why longitudinal and transverse fluctuations are differently affected by salt, we use a
classical field theory model for water and electrolytes.

B.1. Water as a nonlocal dielectric medium
We describe water as a continuous nonlocal and linear dielectric medium [40]. The electrostatic energy Uel of
the medium is written as a functional of the polarization fieldP as follows:

Uel [P ] =
1

2

ˆ
drdr ′

∇r ·P (r)∇r ′ ·P (r ′)

4πϵ0|r− r ′|
+

1

2ϵ0

ˆ
dr
[
KP (r)2 +κt (∇×P (r))2

]
(B1)

where the second term has been be expanded following a Landau–Ginzburg approach to encode the
correlations of the fluid at the nanoscale. K is a parameter defining the bulk (q= 0) properties of the
medium, and κt a Landau–Ginzburg parameter encoding the transverse correlation length of the fluid. The
dielectric susceptibility χ(r− r ′) of the system is defined as

Uel [P ] =
1

2ϵ0

ˆ
drdr ′P (r) ·χ−1 (r− r ′) ·P (r ′) ,

=
1

2ϵ0

ˆ
drdr ′

(
P∥ (r) ·χ−1

∥ (r− r ′) ·P∥ (r
′)+P⊥ (r) ·χ−1

⊥ (r− r ′) ·P⊥ (r ′)
)
, (B2)

where we have split the polarization field into a longitudinal partP∥ and a transverse partP⊥, which
respectively satisfy∇r×P∥(r) = 0 and∇r ·P⊥(r) = 0. The susceptibility can also be decomposed into
longitudinal and transverse components (see equation (A2)).

Inverting equation (B1), we find that the longitudinal and transverse susceptibilities are equal to

χ∥ (q) =
1

1+K
, χ⊥ (q) =

1

K+κtq2
. (B3)

Figure 2 compares results for pure water obtained with molecular dynamics (MD) simulations and with
the model presented in equation (B3). On panel (a), the longitudinal susceptibility χ∥ is plotted as a function
of q. The longitudinal susceptibility is found to be constant and equal to the bulk susceptibility in MD
simulations (blue markers). Furthermore, it is well described by equation (B3) (dashed blue line). Note that

the permittivity of the medium obeys ϵw =
(
1−χ∥(0)

)−1
= 1+ 1/K.

Panel (b) presents the transverse susceptibility χ⊥(q). The two parameters of the field theory model,
namely K and κt , were adjusted to fit MD simulations (dashed green line). The model then predicts well the
behavior observed at low q in MD simulations (blue markers).

11



New J. Phys. 26 (2024) 013009 B Spreng et al

B.2. Response function of electrolytes in the field theory framework
The partition function for N+ monovalent cations and N− monovalent anions of respective charges e and
−e solvated in this medium can be written as

Z =
1

N+!

1

N−!

[
N+∏
i=1

ˆ
dri

]N−∏
j=1

ˆ
drj

ˆ D [P ] exp

[
− β

2ϵ0

ˆ
drdr ′P (r) ·K(r− r ′) ·P (r ′)

]

× exp

[
−β
2

ˆ
dr

ˆ
dr ′ [ρi (r)−∇r ·P (r)]v(r− r ′) [ρi (r ′)−∇r ′ ·P (r ′)]

]
, (B4)

where β = 1/(kBT) and v(r− r ′) = 1/(4πϵ0|r− r ′|) denotes the Coulomb potential, while

ρi (r) =
N+∑
i=1

eδ (r− ri)−
N−∑
j=1

eδ
(
r− rj

)
(B5)

denotes the ionic charge density. Introducing an auxiliary field Φ and performing a Hubbard–Stratonovich
transform to get rid of the long-range Coulomb potential [107], we can compute the partition function in
the grand-canonical ensemble as

Ξ =

ˆ
D [P ]D [Ψ]e−βFu[Ψ,P] , (B6)

where we have defined the action

Fu [Ψ,P ] =
1

2ϵ0

ˆ
drdr ′P(r) ·K(r− r ′) ·P(r ′)− 2n

β

ˆ
drcosh(βeΨ)

− 1

2

ˆ
dr
[
ϵ0(∇rΨ(r)2 − 2Ψ(r)∇r ·P(r)

]
, (B7)

with n the ionic density defined as n= cNa, c being the electrolyte concentration andNa the Avogadro
number. The mean fields (ψ, P) minimizing the action both vanish.

The inverse susceptibility of the medium is given by:(
ϵ0χ

G χG
P,ψ

χG
ψ,P

χG
ψ,ψ

ϵ0

)
(r1,r2) =

(
δ2Fu

δP i(r1)δP j(r2)
(ψ,P) δ2Fu

δP i(r1)δΨ(r2)
(ψ,P)

δ2Fu
δΨ(r1)δP i(r2)

(ψ,P) δ2Fu
δΨ(r1)δΨ(r2)

(ψ,P)

)−1

. (B8)

Performing the functional derivative of Fu in Fourier space and inverting the matrix, we obtain

χij (q) = χ∥ (q)
qiqj
q2

+χ⊥

(
δij −

qiqj
q2

)
, χ∥ (q) =

ϵw − 1

ϵw

ϵw
λ2
D
+ q2

1
λ2
D
+ q2

, χ⊥ (q) =
1

K+κtq2
, (B9)

where λD =
√
ϵ0ϵw/2βne2 is the Debye length. These expressions show that the longitudinal susceptibility of

the medium is now a function of the salt concentration via the Debye length. Conversely, the transverse
susceptibility is not affected by the presence of the salt.

Appendix C. Approximate conformal invariance

In the main text, we discussed the dependence of the function ϕu on geometry by varying the dimensionless
parameter x= d/Reff, while keeping constant the dimensionless parameter u representing the ratio of radii,
yielding the four curves shown on figure 4. Let us now discuss another representation of this dependence, in
terms of a conformally invariant geometric parameter that we will call y. This representation is inspired by
results obtained in the case of two spheres [6], and is still relevant in the present case of two cylinders. It
shows an interesting universality property of the Casimir attraction versus geometrical dimensions.

In order to discuss this property, we first define the conformally invariant geometric parameter [108]

y=
(d+R1 +R2)

2 −R2
1 −R2

2

2R1 R2
. (C1)
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Figure 8. Universal function ϕ versus the conformally invariant geometric parameter y− 1. Conventions and color codes are the
same as in figure 4. The full results (solid curves) drawn for various values of u are much closer to each other in this
representation than versus x (figure 4). They agree with the PFA expression (dashed line) at short separations and with
approximations discussed in the text (dotted and dash-dotted lines) at long distances. In the grayed out band, the value of |F|
(calculated with L/d= 103) is dominated by the Brownian motion energy scale kBT.

In figure 8, we show the same curves representing ϕu for four values of u as in figure 4, but versus y− 1
instead of x. We observe that these four curves are much closer to each other when drawn versus y− 1 rather
than versus x. In fact y− 1 is a stretched version of the parameter x, with a stretching factor depending on x
and u:

y− 1= x
(
1+

ux

2

)
, (C2)

and this stretching makes the four curves almost indistinguishable in figure 8. There remains however a small
residual dependence of ϕu(y− 1) on u, which is discussed below.

The PFA expression (7) can be written as a function of y only

ϕPFA (y)≈
H

24

√
2

y− 1
, y− 1≪ 1 . (C3)

However, the two long-distance expressions (8) show a dependence on u when written in terms of y:

ϕu (y)≈
891π

16384(y− 1)2
, y≫ 1 , u> 0 ,

ϕ0 (y)≈
7

64(y− 1)2
, y≫ 1 , u= 0 . (C4)

These two long-distance results exhibit the same dependence on y, and only differ by a factor of order unity,
namely 1792/(891π)≃ 0.64. Furthermore, this long-distance result does not depend on u for u> 0.
Formulas in the first and second lines of equation (C4) are shown respectively as dotted and dash-dotted
lines in figure 8.

More details and references regarding the significance of this approximate conformal invariance [109] are
given for the case of spheres in [108]. Figure 8 shows that the representation in terms of y is also relevant in
the case of two cylinders discussed in the present work, where conformal invariance now corresponds to the
geometry of circles in the 2d plane orthogonal to the axis of cylinders. The residual dependence of ϕu(y− 1)
on u is visualized in figure 9, where the ratio of ϕu(y− 1) to ϕ1/4(y− 1) is plotted versus y− 1. Note that we
take u= 1/4 as the reference because it corresponds to the case of two identical cylinders, which is the
relevant one for our application to biological filaments (see main text).

The main plot shows this ratio for the four values of u considered in figures 4 and 8, over the domain
where the Casimir interaction is larger than kBT (the plot is drawn for L/d= 103). The inset shows a broader
range of distances, allowing us to visualize the long-distance limit y− 1≫ 1. All curves corresponding to two
cylinders with finite radii are superimposed in both the short- and the long-distance limits. Furthermore,
they remain close to each other over the whole domain of variation of y− 1 (for instance, the relative
difference never exceeds 8% for u= 0.1). The curve corresponding to the plane-cylinder case (u= 0) is the
most different from the reference of two identical cylinders, and tends to 1792/(891π)≃ 0.64 in the
long-distance limit, thus leading to a relative difference of 36% in this case.
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Figure 9. Ratio of the function ϕu for a given aspect ratio u to the reference function ϕ1/4 corresponding to identical cylinders
(u= 1/4). Curves are drawn versus the conformally invariant distance y− 1. The main figure shows the domain where the
Casimir interaction is larger than the thermal scale kBT (see figure 8). The inset presents a broader distance range (same axes as in
the main plot, but extended abscissa range). It shows that all curves corresponding to two cylinders with finite radii have the same
asymptotic values at long distances, whereas the curve corresponding to the plane-cylinder geometry has an asymptotic value
differing by a factor≃ 0.64, as discussed in the text (horizontal dashed line). (Colors are the same as in figures 4 and 8.)
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