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Abstract

We generalize the celebrated results of Bernhard Riemann and Gaston Darboux: we give
necessary and sufficient conditions for a bilinear form to be flat. More precisely, we give
explicit necessary and sufficient conditions for a tensor field of type (0, 2) which is not
necessary symmetric or skew-symmetric, and is possibly degenerate, to have constant entries
in a local coordinate system.
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1 Introduction

In the paper [22] of 1861 Bernhard Riemann considered what is now called a Riemannian
metric, that is, a symmetric positive definite 2-form g = g;;(x). He asked and answered the
question under what conditions there exists a coordinate system such that g is given by a
constant matrix. He proved that such coordinates exist locally if and only if what is now called
the Riemann curvature tensor is identically zero. This result was announced in Riemann’s
famous inaugural lecture in 1854, see [24, Abschnitt 4]. Both the inaugural lecture and the
paper [22] are viewed nowadays as the starting points of Riemannian Geometry. Note that
[22] is written in Latin and its first part is not relevant to this question. An English translation
of the relevant second part, with a detailed discussion, can be found in [25, pp. 179-182].
In particular it is explained there (and was known before) that the assumption of positive
definiteness is not essential for the proof of Riemann: it is sufficient that the symmetric form
is nondegenerate. See also [23].

The case when the bilinear form is skew-symmetric was considered and solved by Gaston
Darboux [12]: he has shown that a nondegenerate differential 2-form @ = w;;(x) is given by
a constant matrix in a certain local coordinate system, if and only if it is closed. This result
lays at the foundation of Symplectic Geometry.

In the present paper we ask and give a complete answer to the same question for an arbitrary
bilinear form, that is a tensor field of type (0, 2), which may have nontrivial symmetric and
skew-symmetric parts that can be degenerate. Note that the case where the symmetric part is
nondegenerate can easily be reduced to the methods of Riemann (see e.g. [6] for a proof and a
discussion of boundary, smoothness and global issues). Indeed, the existence of coordinates
such that the components of the bilinear form g;; + w;; are constant implies the existence
of a symmetric (torsion free) connection V = (F; ) Whose curvature is zero and such that
the bilinear form is parallel. If the symmetric part g is nondegenerate, the only candidate
for the connection is the Levi-Civita connection; the necessary condition is then that its
curvature tensor vanishes. The other necessary condition is that the skew-symmeric part w is
parallel with respect to the Levi-Civita connection of g. These conditions are also sufficient.
Therefore, the results in the present paper are new only in the case where g is degenerate and
o is arbitrary.

Our results are formulated in a way that the hypothesis on g and w can effectively be
checked using only differentiation and algebraic manipulations, as was the case in the results
of Riemann and Darboux (in particular, if the entries of the bilinear forms are explicitly
given by elementary functions, or as solutions of explicit systems of algebraic equations with
rational coefficients, then the necessary and sufficient conditions for the the existence of flat
coordinates can be checked using a computer algebra system).

Our paper is organized as follows: in Sect. 2 we treat the case when @ = 0 and g is
(possibly) degenerate, see Theorem 2.2 and Theorem 2.9. In Sect. 3, we consider in Theorems
3.1 and 3.3 the case where the skew-symmetric part is nondegenerate; and the symmetric part
may be degenerate. In Sect. 4 we first treat the known case when the symmetric part is zero
(and the skew-symmetric part may be degenerate), see Theorem 4.1, and then the general
case, when both g and w are allowed to be degenerate, see Theorem 4.4.

Sections 2.1 and 3.2 are about regularity issues; the reader who is only interested in smooth
tensors can ignore them without any loss.
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Our proofs use a variety of ideas and methods coming from different areas of differential
geometry and the final Sect. 5 is an outlook of those methods.

Note that our investigation is mostly local (with the exception of the global statements
in Corollaries 2.7 and 2.8 and the related global questions discussed in the outlook Sect.
5). Whenever possible, we give two proofs. The first proof assumes that all objects are suf-
ficiently smooth, which allows for simpler and more geometric arguments and allows us
to use the simplest possible mathematical language. Such proofs would be understood by
Bernhard Riemann and mathematicians coming shortly after him, such as Sophus Lie, Gre-
gorio Ricci-Curbastro, Gaston Darboux, Tullio Levi-Civita and Ferdinand Georg Frobenius.
We recommend [25, Chaps. 4 and 5] or [13, Chaps. 3 and 4] for some background on the
notations we use and relation to other notations commonly used in differential geometry. We
also tried to give, whenever possible, a proof in a lower regularity.

2 The degenerate symmetric case

We consider a bilinear symmetric form g = g;;(x) and call it a (possibly, degenerate) metric

on a domain in R” with coordinates x!, ..., x". We view g as acovariant tensor field, meaning
that if y1 , ..., y" are adifferent coordinate system, then in these coordinates g has coefficients
ox" ox*
~' i = S x - . T e 2.1
2N = gr(x) 557 357 @.1)

r,s

Here, and throughout the paper, unless otherwise specified, all indexes run from 1 to n. A
coordinate system is called flat, if in this coordinate system g is given by a constant matrix;
our goal in this section is to give necessary and sufficient conditions for the existence of local
flat coordinate systems for a given degenerate metric g. Our first result will play a key role
in building such coordinates.

Theorem 2.1 Foreveryi, j, s consider

1 (0gjs = Ogis 0gij
[ o= — : b 2.2
A} ( oxt x| oxt 22)

(we call them Chrjstoﬁel symbols of the first kind). Then, at a point x there exist numbers
F;.k with Fljk = F,’(j (we call them Christoffel symbols of the second kind) satisfying

: A 98ij
> (Phisis + i) = 5ot 23)
if and only if the following condition holds:
Z [ijsv* =0 foreveryv® € R, 2.4)
N
where
R :=Rg(x) :=Kernel(g) :={ve TxM | g(v, -) =0}. 2.5)

If such numbers F; 1 exist, the “freedom” in choosing them is the addition of possibly several
terms of the form

VT withv € R and Tji = Ty;. (2.6)
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Moreover; if the rank of g is constant and (2.4) holds for every point x, then there exist
smooth functions F’j () with F; = F,’cj satisfying (2.3).

Proof We fix a point x and view (2.3) as a system of linear equations on unknowns I‘; > the
coefficients of this system come from g and partial derivatives of g. Remember now that a
linear system of equation

Ay =b 2.7)

(where Aisa N x N-matrix, y = (y1, .., yy) isanunknown vectorandb = (b1, ..., by) € RN
is a known vector) has a solution if and only if for every vector a = (ay, ..., ay) € RY such
that a’ A = 0 we have a’b = 0. We observe that the Eq. (2.3) is of the form (2.7) with
N = "2(”%1) By standard algebraic manipulations (known at least to Levi-Civita) one
reduces (2.3) to the system of equations

D el =Tij. (2.8)
N

Indeed, replacing Y " ggi Fj.k by [ ;and ) g4, by Lix, j in (2.3) we see that any solution
Fi/. « Of (2.3) solves (2.8) and vice versa, thus there are two equivalent linear systems. It remains
to observe that the condition a’b = 0 applied to (2.8) is just the condition (2.4), and then
for a linear system of equations (2.7) such that the coefficient matrix A and the free terms
b smoothly depend on x one can find a smooth solution provided a solution exists at every
point and the rank of A is constant. O

Remark The Christoffel symbols I' ’] «(x) from the previous Theorem will always be
considered to be the coefficients of an affine symmetric (torsion free) connection. This means
thatif y!, ..., y" is a different coordinate system, then the corresponding Christoffel symbols
1:; () should by definition be given by

~ ayk ax< dxb 82x°¢
k(v — Z T
L) = dxe¢ (Ff”’(x)ayi dyJ - dyloyl )’

This rule for the change of coordinate guarantees that the covariant derivative is a well defined
operation on any tensor field, independently of the chosen coordinates, that is if P = lel‘ ;k
is a tensor field of type (k, m), then

. ipedip l] g Slz iy l] 01803...0) l2 11130k —18 ik
lejlﬂ-jm axl Jl -Jm + Z( Ji-- ]mr +P]1 Jm r +- +P]l Jm F”)

_ 11 Ak 1.0k s 1.0k s
Z( $j2eedm lJl +P11v3 erlfz+ +P11 Jm— 1vrljm>

is a well defined tensor field of type (k, m + 1). This tensor field is called the covariant
derivative of P and denoted by V P, and we say that P is parallel if VP = 0. For instance
(2.3) just says that g is parallel with respect to V. The covariant derivative depends on the
freedom (2.6), but by construction the condition Vg = 0 does not.

Our first main result is the following

Theorem 2.2 Suppose rank' of g is cqnstant'and assume (2.4) is fulfilled at any point. Then,
Sfor any smooth functions F;‘k with Fljk = Fllcj satisfying (2.3) the functions

d
Rijee := D gis (ere s /HZ(FM@, %Fﬁ)) 2.9)
N
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do not depend on the freedom (2.6). Moreover, there exist flat coordinates for g if and only
if there exist smooth functions F;k (x) with F;k = F,’(j satisfying (2.3) such that!

Rijre =0 foreveryi, j, k, L. (2.10)
Proof In order to show that R;jx, does not depend on the freedom in choosing I", let us plug
f‘j.k = Fj.k + v/ Tjx with v € R instead of I in the formula (2.9) for R;jx¢. The terms of

the form v’ %Tjk, v’ &ij, V3 Tha f‘?j, V3T, f‘,‘(‘j vanish after contracting with g; so the
result differs from the initial formula for R;jx¢ by

o’
Zgi.vriiw + Y 0 ThaiTje — Zg”Tke Z V' le,iTjk.  (2.11)

s a s

Next, in view of condition ) gisv* = 0 we have that > g;sTj¢ S d - TjgvA ag”
which together with (2 2) imply that the sum of the first two terms of (2 11) is equal to

— Y TjeTkisv* (2 O Similarly, the sum of the last two terms is zero. The argument
proves that the freedom in choosing I does not affect R;ji¢ and therefore the condition
(2.10).

By the standard argument (due already to classics, see e.g. [25, Prop. 5 in Chapter 4]) we
know that R;ji¢ is a tensor field. Then, its vanishing in one coordinate system implies its
vanishing in any other coordinate system. Then, the existence of flat coordinates implies that
Rijke = 0, so the conditions listed in Theorem 2.2 are necessary.

Let us prove that they are sufficient. We first observe that for any smooth vector field
v € R the metric g is preserved by its flow. Indeed, the Lie derivative of the metric is given
by

0gij o’ v’
Loghj =Y (w Ly iy 4 8o
- xS axJ dx!
_ Z v agi./ ) 0gis ) ag./"?
. xS ax/ axt
—22 UsFijys =0.
s

Next, let us show that the distribution R is integrable, that is, for any two vector fields
v, u from this distribution its commutator [u, v] lies in the distribution. We obtain it by direct
calculations:

, ;v S ou' . i 5\ 08ij
Zi:gij[u, =Y <gu T —8i/vv@) == (”l”Y _”lvy) ax°

.0 s,i
= Z (vius - uivs) (Cis,j +Tjsi) = 0.
s,

Then, there exist coordinates (x', ..., x¥, y!, ..., y"%) such the distribution is spanned by

ail s ey 8y” ——. In these coordlnates the metric has the form

k
g= Zgijdxidxj.
ij

1 We stress that, unless g is non degenerate, Condition (2.10) is of course not equivalent to the vanishing of
i o i 0 i i ra i pa
RJkZ axk rje - erk +Z” (rkar r@ar]k>
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8; € R and therefore their flows preserve g, the components g;; are

independent of y-coordinates. We then may view g as a metric on a k-dimensional manifold

Since the vector fields

. . 1 k . . . l
with local coordinate system x ', ..., x*. Equation (2.3) implies that (ij>i’j‘m:1 """" L are

coefficients of the Levi-Civita connection of this metric (of dimension k). Without loss of
generality, because of the freedom (2.6), we may assume that all Fi.m with i > k are equal to
zero. Then, the formula for the components R; ¢y, of the curvature tensor (with lower indexes)
of this k-dimensional metric coincides, for i, j, £, m < k, with (2.9). Then, the problem is
reduced to the case when g is nondegenerate, which was already solved by Riemann (see
e.g. [23, Sect. 4.4.7]). O

As the following example shows, the condition (2.10) almost everywhere does not imply
that the rank of g is constant.

Example 2.3 We consider the function
¢: R =R, ¢(x,y) =x"+y’

and as g we take (d¢)>. Locally, in a neighbourhood of any point different from (0, 0) the
degenerate metric g has constant coefficients in any coordinate system such that ¢ is the first
coordinate. Its rank falls to zero at the point (0, 0) and is one otherwise. By direct calculation
one sees that any continuous solution Fj () of (2.3) (assuming l“; ) = F,i ; (x)) is not
bounded when approaches (0, 0).

The example can easily be generalised for any dimension and any rank. On the other hand, the
existence of continuous functions F’/. ¢ satisfying (2.3) implies that the rank of g is constant.

Remark 2.4 The book [15] of D. Kupeli studies degenerate metrics (Kupeli calls them “singu-
lar metrics”), the corresponding affine connections and their curvature tensors. The condition
(2.4) is equivalent to the stationarity condition [15, Def. 3.1.3]. This author did not study the
existence of flat coordinates but the invariance of R;jx, with respect to the freedom and the
Condition (2.6) are implicitly contained in his book.

Corollary 2.5 Assume g admits flat coordinates. Consider the following system of PDE:

0=Vju; = s)‘:j ~ > rus (2.12)
N

on the unknown functions uy(x), ..., u,(x), where Ffj is a (smooth) solution of (2.3). Then,
for every point X and for any initial data (it1, ..., u,) € R" such that for every v € R(X)
we have Zs v¥iuy = 0 there exists a unique solution uy, ..., u, of (2.12) with the initial
conditions u;(X) = ;. This solution has the property Y v us = 0 at every x and for every
v € R(x). Furthermore, for any such a solution uy, ..., Up the 1-form urdx' + ...+ u,dx"
is closed so there exists locally a function f such that g ){, = u;. Moreover, if a solution
vanishes at one point, it vanishes at every point.

Proof The equation (2.12) means that the 1-form udx' +... 4 u,dx" is parallel with respect
to the connection V. = (F’,. «)- In particular, the equation is invariant with respect to the

coordinate changes. Because R is invariant under parallel transport, if R C Kernel(u;dx" +
.. + upydx™) at the point X, then R C Kernel(uldx1_+ ... + u,dx™) at every point. In the
flat coordinates x ', ..., x” such that g = Z;:l i (dx)? (with &; € {—1, 1}) the Eq. (2.12)
ou;

reads
dax/

= 0. Then, if the initial data satisfy ZS v¥iiy = 0, then for any solution we have
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Upqy1 = -+ = U, = 0and first  functions u1, ..., u, satisfy g% = 0 which implies that they

are arbitrary constants. O

Remark 2.6 The case of rank one metric is special, the following statement is true: If g has
rank 1, then g = £60 ® 0 for a locally defined (non zero) I-form 0. Furthermore (2.4) is
equivalent to d6 = 0, and this holds if and only if g admits flat coordinates.

To see this, recall that g;; is symmetric of rank one if and only if there exists (ay, . .., au),
non vanishing, such that g;; = =a;a;. Suppose (2.3) holds for g = £6 ® 6 with 6§ =
ardx' + ... + a,dx". Clearly, in the flat coordinate system for g the components a; are
constant and 6 is closed. In the other direction, if Vg = 0 then V(6) = 0 implying d6 = 0.

So far we have worked on (an open subset of) R”, but because the conditions (2.3) and
(2.10) are coordinate invariant, they have a meaning globally on a smooth manifold M and
we can state the following

Corollary 2.7 If M is smooth closed manifold such that H}iR(M) = 0, then it does not admit
a degenerate metric g;; of constant Rank(g) > 1 such that R;jre = 0.

Proof If Hle(M ) = 0, any closed 1-form is exact so the form ) ; uidx' given by Corollary
2.5 is the differential of a function. Then, it vanishes at the points where the function takes
its extremal values which gives a contradiction. O

Corollary 2.8 If the smooth closed manifold M admits a degenerate metric g of rank 1 such
that (2.4) holds, then M or its double cover is a fiber bundle over a circle.

Proof By Remark 2.6, we know that locally g = +6 ® 6 for a nowhere vanishing closed
1-form 6. Then 6 is either well defined globally on M, or it is well defined on a double cover.
The claim follows then from [26, Theorem 1]. ]

2.1 Optimal C"-regularity for Theorem 2.2

It is known that for a non degenerate metric, the following optimal regularity holds: if g is of
class C" with r € N and satisfies (2.4) and(2.10), then there exist flat coordinate systems of
class C"t! (if r = 1, then the curvature has to be interpreted in the sense of distributionsz).
We refer to [18] or [6, Theorem 8 and Remark 9] for a proof of this optimality result. In the
degenerate case, our proof of Theorem 2.2 loses one degree of regularity when we “factor
out” the kernel of g. Thus our proof of Theorem 2.2 assumes g to be of class C” with r > 2
and produces a flat coordinate system of class C”. Our next result states the existence of flat
coordinates in optimal regularity:

Theorem 2.9 Suppose g has constant rank and assume (2.4) holds at any point. If g € C r
for some r € N, then one can find l";k of class C™~! such that F".k = I"Ilcj and (2.3) holds.

Moreover, there exist flat coordinates of class C™ if and only if (2.10) is fulfilled.

Remark 2.10 In our convention the set N starts with 1. When » = 1, the condition (2.10)
has to be understood in the weak sense, see [14, Sect. VL.L.6]. In the present situation, this

2 Note that a similar result cannot hold for » = 0. In [9, Sect. 6], E. Calabi and P. Hartman have given an
example of a continuous metric which is locally isometric to the Euclidean metric but admits no flat coordinates
of class C1.
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conditions means that forany k, £ € {1, ..., n} and any smooth 1-formu = (u;) =) ; w;dx!
with compact support such that R, C Kernel(u), we have

duyg dug
/Z( Yoo D e+usZ(rgargj—rga jk)>dx=o.

This condition is independent of the freedom (2.6).

Proof The proof that (2.10) holds if there exist flat coordinat¢s is similar to the proof of the
analogous statement in Theorem 2.2. Also the proof that l"’j « can be chosen of regularity

C"~! is the same as in Theorem 2.2. In order to prove the existence and smoothness of flat
coordinates assuming (2.10), let us consider a n x (n — m)-matrix-valued function B (x)
such that its columns are basis vectors of Rg. Since R, is given by a system of linear
equations of constant rank whose coefficients are of class C", we may assume that B is of
regularity C". Next, without loss of generality we may assume that the last n — m rows of
B form a nondegenerate matrix (of dimension (n — m) x (n — m)). Then, there exists a
unique m x (n — m)-matrix-valued function F such that for every x the vector (uy, ..., u,)

whose first components uy, ..., u,, are arbitrary and the other components u, 1, ..., U, are
constructed by uy, ..., u,;, via matrix-multiplication
(Umt1s oes tty) = (U1, ooy ) F (2.13)

the following condition? is fulfilled:
(U1, ...,up)B =0. (2.14)

The matrix F can be explicitly constructed as follows: if we denote by B’ the submatrix of
B containing the first m rows of B and by B” the submatrix of B containing the last n — m
rows by B”, then B” is an invertible square matrix by hypothesis and F is explicitly given
by F = —B’(B”)~!. In particular F is of class C".

In what follows we denote the i component of the left hand side of (2.13) by F(u)+i-

and we consider the following system of m x n PDEs on m unknown functions u1, ..., 4y,
of the variables (x!, ..., x™):
au- m n
=Y T+ Y ThF. (2.15)
s=1 s=m+1

where 1 <i <mand 1 < j < n.It follows from (2.6) that the system (2.15) is independent
of the choice of connection F;‘/ satisfying (2.3). We observe the following facts concerning
the system (2.15): '

(i) The system (2.15) is of Pfaff-Frobenius—Cauchy type, in the sense that all derivatives
of unknown functions are linear expressions of unknown functions whose coefficients
are functions of the position.

(ii) If g is of class C”, with r > 1, then the coefficient of (2.15) are of class C" L. This is
due to the fact that (2.3) is a linear system of constant rank with coefficient of class C”
(see the proof of Theorem 2.1 for an explanation). One can therefore find 1"; ¢ Of class
C~! satisfying (2.3).

(iii) The compatibility conditions for (2.15) are equivalent to (2.10) (see e.g., [14, Sect.
VLIL6)).

3 Geometrically, (u1, ..., u,) should be viewed as a covector, i.e., as the 1-form uldx' + ... + updx™. The
condition (2.14) is just the condition Kernel(uldxl + .. Fupdx™) 2 Ryg.
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(iv) If the compatibility conditions are satisfied, there exists, for any point p and any initial
conditionu(p), ..., u, (p),aunique (local) solution of (2.15) with this initial condition.
Furthermore, if the coefficients of (2.15) are of class C” ~1 for some r € N, then this
solution is of class C” (if r = 1 the compatibility condition has to be interpreted n the
weak sense). This statement is proved in [14, Chap. VI, Corollary 6.1].

Let us now show that if | (x), ..., u,, (x) is a solution of (2.15), then the differential form
whose first components are u(x), ..., U, (x) and the remaining (n —m) components are given
by (2.13) is parallel with respect to any symmetric connection V = (I':. ) Whose coefficients
satisfy (2.3). Indeed. fori € {1, ..., m} the condition V;u; = 0is clearly equivalent to (2.15).
To deal with the case i € {m + 1, ..., n} we need the following additional statement: for any
vector field v = v € R of class C" and any vector field z/ we have

Z(zfv.,-ui) € Ry 2.16)

J

Indeed,

0=> /5% (ng,vsw’> = gew Vvt + ) g ' Viw'
j S,r

§,r,] §.r.]

=0 for veRg

0); z/V;v* is a linear combination of the vectors from R,.
Using (2.16), we obtain that for any v € R and any z (both of class C") we have

Zvizjvj'ui = ZZjVj (Zuivi) - Zuizjvj‘vi =0—-0=0.
i,J

j i,j

1

Then, the covector whose components are given by

szvjul’ veey ZZJVJ‘M"
J J

satisfies (2.14), so its last n — m components are determined by its first m components via
(2.13). Since the first m components are zero, as we proved above, also the last n — m
components are zero.

Thus, we have shown that for any point p and for any initial values u1(p), ..., u,(p)
such that Kernel(uidx! + ... + up,dx™) 2 Rg(p) there exists a unique 1-form u;(x) =
w1 (x)dx! + ...+ u, (x)dx" of class C" such that it is V —parallel, moreover, this form has the
condition Kernel(u;dx! + ... + u,dx") 2 R¢(p) at every point. This form is automatically
closed. We take m linearly independent 1-forms of such type and denote by f!, ..., f™ their
primitive functions. At the point p, there exists a m x m symmetric nondegenerate matrix
cij such that at p we have g = Y_}";_ ¢;jdf'df/. Since by construction g and each of the
forms df' are parallel, this condition holds at any point so every coordinate system such that
the first m coordinates are the functions f', ..., ™ is flat for this metric. m}

Corollary 2.11 Suppose g has constant rank and satisfies (2.4) everywhere. Suppose also

g€ C*withr € Nand 0 < o < 1, then there exists a flat coordinate system of class
C™t1% if and only if (2.10) holds.
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12 Page 10 of 25 S. Bandyopadhyay et al.

Proof Arguing as in proof of Theorem 2.9, we consider the system (2.15), whose solutions
correspond to the differentials of the first m flat coordinates. We know that the solutions
are of class C". We also see that the derivatives of the solutions are linear expression in the
solutions with coefficients at least of class C" 1%, Therefore, the derivatives of the solutions
are of class C"~1:% and the solutions of (2.15) are therefore of class C™*%. This implies that
the flat coordinates are of class C 12, O

Remark 2.12 The proof of Theorem 2.9 shows that the metric g has a flat coordinate sys-
tem if and only there exist functions f!, ..., f™ (with m = Rank(g)) such that g =

Yli—icijdftdf7 with constant c;j, furthermore the 1-forms df* are parallel and the flat

coordinate system x!, ..., x™ can be chosen such that x! = fifor1 <i < m.Furthermore,

if g of of class C™%, then on can chose f' of class C" 1@

3 On flat coordinates for the pair (degenerate metric, symplectic
structure)

3.1 Existence of flat coordinates

In this section we obtain necessary and sufficient conditions for the existence of flat coor-
dinates for the bilinear form g 4+ @ with nondegenerate skew-symmetric part w. Obvious
necessary conditions are that g has flat coordinates and w is a closed form. We will prove the
following result:

Theorem 3.1 Let g be a a symmetric (possibly degenerate) bilinear form such that there
exist flat coordinates for it and o = w;; be a symplectic form. Then, there exists a coordinate
system such that the components of both g and w are constant if and only if the equation

D &P P4 Viwpe =0 3.1
a,b,c,d

holds for every i, j, k, where P/ is the inverse matrix of wjj

: , 1 ifi=j
Y Pl =6 = lfl A
P : 0 ifi#j,

and V is any connection compatible with g, i.e. satisfying (2.3). Condition (3.1) does not
depend on the chosen connection.

Remark 3.2 (i) The matrix P = P/, inverse of w; j represents a contravariant tensor field.
This means that under a change of coordinates, the transformation rule is given by the rule
dual to (2.1):

8yi 8yj

ax" xS’

Pl(y) =Y P"(x)

r,s

(ii) Another possible formulation of Condition (3.1) can be written using the (1, 1) tensor
J such that g(X,Y) = w(JX,Y), thatis Ji] = —) i 8k PX Using this tensor, we define
a differential (skew symmetric) 2-form o by «(u, v) := g(u, Jv). Condition (3.1) is then
equivalent to Vo = 0.
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Before proving Theorem 3.1, we first give necessary and sufficient conditions for the
existence of a local coordinate system in which both g and P have constant components:

Theorem 3.3 Let g = g;; be a symmetric (possibly degenerate) bilinear form such that there
exist flat coordinates for it near a point p € R" and P = PY be a skew-symmetric tensor
field of rank n at p. Then, there exists a local coordinate system near p such that both g and
P have constant components if and only if the following conditions hold:

(1) PU generates a Poisson structure, that is

0 . .0 . .0 .
> P-Ykﬁp’f + P @Pﬂ‘ + P @P’“ =0. (3.2)
s
(2) The following holds for every i, j, k:
g pab
> uigi s+ 2 (P Thsy + P ) = 0. (3.3)
a,b s

where P,* =" . gic P and st =) .8jcP*, andTjj ¢ are asin (2.2).

Proof Let us first observe that conditions (3.2) and (3.3) are geometric. Indeed (3.2) is just
the condition that the bilinear operation {-, -} defined on functions by

af oh ..
{f, h) = Z a){i EP”, (3.4)
L]

satisfies the Jacobi identity and is therefore a Poisson bracket. The condition (3.3) says that
the tensor obtained by lowering both upper indexes in

VP = P Y (TP 4 TP, (35)
N

by gi; vanishes. In particular (3.3) does not depend on the choice of the connection Fj. X
satisfying (2.3). Furthermore, both (3.2) and (3.3) are tensorial conditions, that are obviously
satisfied in a flat coordinate system. So if there exists flat coordinates for both g and P, then
then (3.3) and (3.2) hold in any coordinate system.

In order to prove Theorem 3.3 in the other direction, let us consider smooth functions
fl, ..., f™ such that g = Z;":l si(df")2 with €1, ..., &, € {—1, 1}. We assume that the
differentials of these functions are linearly independent in every points which implies m =

rank(g). Furthermore V(df B = (Vk ng;) = 0. The existence of such functions follows

from the existence of flat coordinates.
We claim that (3.3) is equivalent to the condition that forany i, j € {1, ..., m} the Poisson
bracket { f*, f/} is a constant. Indeed, using (3.5) and

i 2 4 j
Ve (%> B L)

9xa ) ~ dxkaxe ka gxb
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we obtain
S afiaf
Vil f =Y Vi PP
AVOEDY k< axaaxb>
a,b
af afl b af! pdf! af!
=) V(P PV, PP v (=
2 Vi ) 9xa b +Z Bx“ dxP > axa F\ ax?
a,b a,b
=0.
Next, consider the vector fields X F1s s X ym whose components are given by:

_ ari
Xflj _ZPM axs ’

s

(they are called the Hamiltonian vector fields of f7). The condition (3.2) implies that they
commute. Indeed, the commutator of the vector fields X s« and X yv is given by

Z (Pasafu 8 <szaf:> _Pasafv a <Pb18f:>>
= ax4 9xs 0x dx4 ox* ax

_ Z<Pasafﬂpb,- 0 pas S AP O

ox¢ xbaxs ax¢ xS dxb

(X, Xpo)

a,b,s

_ Pas

x4 axboxs dxa x5 Jxb

Y pi O°F" pas0F” P 3f“>

(3.2) g 0
= P —_— M, v :O.
D it

Let us show that there exists a function f”*! such that the differential df™*! is lin-
early independent (at the point in whose small neighbourhood we are working in) from
the differentials of the functions df L ..d f™ and such that for every i = 1,...,m
the function df™+1(X i) is a constant. In order to do it, we consider the coordinates
@, ., gt ”) such that in these coordinates for every i = 1, ..., m the vector
ﬁeld X /i is equal to . The coordinates exist by the (simultaneous) Rectlﬁcatlon Theorem.

Chose now an arbltrary 1-form 6 with constant entries in this coordinate system which is
linearly independent from df!, ..., df™. Clearly d@ is closed and we can choose f*! such
that df™*! = 6. It is clear from the construction that { f"*+!, fi} = (X i) is constant for
all i.

We consider then the symmetric bilinear form

Gext 1= g + (df™T1)?

It has constant rank equal to m + 1 and its entries are constant in the coordinate system
D= gl xmtl = pmtl yom+2 0 xm). Moreover, the (natural analog of the) condition
(3.3) is satisfied for this metric. Indeed, this condition is equivalent to the condition that

afta
(1) = 0 UL o
a,b

is constant for every i, j = 1, ..., m + 1, which is clearly the case by the construction.
Then, we can enlarge the rank of g further and in n — m such steps come to the coordinate
system 1, ..., f" in which both the metric and the tensor P have constant components. O
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We can now prove the main Theorem of the section.

Proof of Theorem 3.1 1t is well known that the dual P of a symplectic form w is a Poisson
structure, thus condition (3.2) is satisfied. We clgim that (3.1) and (3.3) are equivalent condi-
tions. To prove this claim, recall that 3;- =Y, P"w;j,is a parallel tensor for any connection,
therefore

0= V() = Vi (Z P‘”am) =Y (i P®)oy + Y P Vo,
N s N

we thus have

Vi P =Y PPV Py = — Y PY PP Vi

t,s t,s
Lowering both upper indexes in this identity by g gives the equivalence (3.1) < (3.3).

Theorem 3.3 gives us now the existence of coordinates in which both g and P have constant
entries. Clearly w is also constant in these coordinates. O

The following example provides a simple instance where Theorem 3.3 implies the exis-
tence of flat coordinates for g + w. However, directly establishing the existence of such
coordinates may not be straightforward.

Example 3.4 Let us consider the following tensors in R* :
g= (dxl)2 + (dxz)2 and o =dx' Adx®+a-dx® Adx® +dx3 A dx®,

where a = a(xz, x3) is a smooth, non constant function of x2 and x°. Since g is constant
we will choose V to be the standard connection on R*. A tensor is then parallel for V if and
only its entries are constant. In matrix notations, the tensors g, w and P are

1000 0 -1 0 0 01 0 a
lo1o0o0 |1 0 —a 1 _|-10 0 0
C=loo0o0o0| ©%=|o 4 o —1| ™ P=R"=|, ¢ ¢
0000 00 1 0 —a 0 -1 0
The tensor
0
1
GPG =

1 00
-1 000
0 00O
0 00O

is constant. By Theorem 3.3, we know that there exists a local coordinate system in some
neighborhood of any point of R* such that g, P and w have constant components.
One should note however that

J=-PG=(GP)' =

S O oo
[=Nelele)

1
0
0
0

Q OoO= O

is not constant, hence not parallel for the connection V.
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Remark 3.5 In the proof of Theorem 3.3, we have used several times the (simultaneous)

Rectification Theorem, which states that if X, ..., X are k linearly independent vector
fields in a domain of R” such that [ X;, X ;] = 0, then there exist local coordinates xl "
in a neighborhood of any points such that X; = % fori = 1, ..., k. Furthermore, if the

fields are of class C"% withr > 1 and 0 < o < 1, then the coordinates are also of class
C”“. Indeed, by standard results from the theory of ordinary differential equations, we know
that a vector field of class C"“ generates a flow of class C"“ (see e.g. [11, Theorem 12.2]).
Therefore, the proof of Theorem 3.1, shows that if one assumes that g and w are of class
C"% with r > max{(n — m), 1}, then there exists a coordinate system of class Crtltm—na
that is flat for both g and w. The reason is that in the proof of Theorem 3.3, we loose one
class of regularity at each step of the construction (note that by Remark 2.12, the functions
FL. ..., f™areof class C"+1-¢ and the proof requires n —m steps, so the resulting coordinates
are indeed of class C" 1+ A better regularity result will be given in next section.

Finally, note that the arguments in our previous proof also show that the following state-
ment is true:

Theorem 3.6 Let w be a symplectic form of class defined on a domain U C R". Suppose there
exists f1,..., f™ € C"(U) such that df", ..., df™ are everywhere linearly independent

and the Poisson brackets { f', f7} are constant on U forany i, j € {1,...,m}. Ifr > p =
n — m, then there exists a coordinate system y', ..., y" of class in some neighborhood of
any point in U such that y' = f' fori =1, ..., m and w has constant coefficients w;; in

these coordinates.

Note in particular that the case m = 0 gives an alternative proof of Darboux’ Theorem.
We are not aware of such a proof in the literature.

3.2 On the regularity of flat coordinates for the pair (degenerate metric, symplectic
structure)

By Theorem 2.9 and Corollary 2.11, if the (degenerate) metric g is of class C"-“, then the flat
coordinate system, if it exists, is of class C"+1. A similar phenomenon holds in the purely
skew-symmetric case, when g = 0 and w is nondegenerate. Indeed, it has been proved in [4,
Theorem 18] that given a symplectic form w of class C"™* with0 < o < 1 and r € NU {0},
there exists local coordinate systems of class C’ 1 in which w has constant entries. In view
of these results, one might hope that if g and w are of class C"“, then a flat coordinate system
of class C" 1 should exists for g + w. The following example ruins such hope.

Example 3.7 We consider R? with the coordinates (x, y) and the bilinear form g +  with
g = dx?and w = h(x)dx Ady with h # 0. Then, the condition (3.1) holds, and up to a C"%-
coordinate change, the flat coordinates are given by (x, u(x, y)) with the function u satisfying
the equation % = h(x). The general solution of this equation is u(x, y) = 4(x) + yh(x)
with an arbitrary function z(x). If /2 is not of class C"%, then u(x, y) is also not of class C"¢,
which implies that flat coordinates cannot be of class C” 1,

The next result improves Theorem 3.1: if the bilinear form is of class C"™“ with3 <r € N
and 0 < & < 1, then one can find flat coordinates of class C"~2,

Theorem 3.8 Under the hypothesis of Theorem 3.1, if the condition (3.1) is fulfilled and the
bilinear form g + w is of class C"* with3 <r € Nand 0 < « < 1, then there exists a flat
coordinate system of class C"~>%.
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The rest of the section is devoted to proving this Theorem; the proof is quite involved and
can be omitted with no damage for the understanding of the rest of the article. For the proof,
we will need the following two statements, which are known in folklore, but for which we
did not find explicit references. We sketch the ideas leading to the proof.

Lemma 3.9 (Poincaré Lemma with parameters) Let ws be a family of closed m-forms on a
ball U™ with coordinates x', ..., x", where s = (s!, ..., s*) are some parameters. Assume
that the dependence of the components of wg on x and on s is of class C"* withr € N and
0 < o < 1, then, there exists a family 6; of (im — 1)-forms, such that their dependence on
(x, 8) is of class C™% and such that for every s we have df; = w;.

Indeed, the standard proof of the Poincaré Lemma (such as written in [1]) is based on
a purely algebraic construction followed by an integration along a selected coordinate. The
first operation obviously does not affect the regularity of the form with respect to any set
of parameters and the integration also preserves the C™* regularity, thanks to the Lebesgue
dominated convergence Theorem.

Lemma 3.10 (Darboux Theorem with parameters) Let w; be a family of symplectic 2-forms
on a ball U with coordinates x', ..., x*", where s = (sl, e sk) are some parameters.
Assume that the dependence of the components of ws on x and on s is of class C"* withr € N
and 0 < « < 1. Then, there exists a family ¢ of local diffeomorphisms ¢s : U?" — R
such that their dependence on (x, s) is of class C"™* and such that for every s the form wy is

the pullback under ¢ of the standard symplectic form on R*".

Idea of the proof: The proof via the “Moser trick” requires the Poincaré Lemma and stan-
dard facts about the existence and regularity of systems of ordinary differential equations.
This allows one to keep track of how the change of coordinate system depends on the param-
eter s. Indeed, the Moser trick is based on a construction of a (time depending) vector field
such that its flow at time r = 1 gives us the required diffeomorphism. The construction of
the vector field uses the Poincaré Lemma, and applying the previous Lemma one can check
that the vector field and its flow are of class C™“ with respect to both the space variables x
and the parameter s. See [21, Sect. 3.2] for more details on Moser’s proof.

Proof of Theorem 3.8 By Corollary 2.11 there exist functions f!, ..., £ of class C" ¢ with
m = Rank(g) such that g = Zf" j=1Ci jdf idf7 for some constant nondegenerate symmetric
m X m-matrix (c;;). By (3.3), the Poisson bracket of any two these functions is constant. We
may assume without loss of generality that there exist k', k" with 2k’ + k” = m such that

LTy = Ty = fori < K

and such that for any other pair of functions f' its Poisson bracket is zero. Next, as in Sect.
3, we consider the commuting vector fields X ;i ; they are of class C "¢ By the Rectification

Theorem, there exists a coordinate system (x1, ..., x™) of class C"® such that the following
holds:

(A) The first 2k’ + k” coordinates are x! = f1, ..., x2K'+k" = f2K'+k"
(B) The first k' vector fields X i, i = 1, ..., k', are given by: X i = 0

T axk
(C) The next k’ vector fields Xpiyi= k' +1, ..., 2k', are given by: Xpi= dx%k
(D) The next k” vector fields X ;i, i = 2k + 1, ..., 2k’ + k", are given by: X ;i =

9
Qxitk” "
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Let us explain the existence of this coordinate system. Consider the local action of R+

generated by the flows of commutative linearly independent vector fields X ;1, ..., X FH AR

Take a transversal n — 2k’ — k”-dimensional submanifold to the orbits of this action such
that on this transversal the values of f 1., f 2" are equal to zero. We may do it without
loss of generality since adding a constant to £’ changes nothing.

The functions f W+ f K+ restricted to any transversal have linearly independent
differentials since they are constant on the orbits of the action of R %" We take a coordinate
system on the transversal such that its first k” coordinates are f 2"/"'1, e f 24k

Next, consider the coordinates (¢!, ..., f2K'+¥" y2K+K"+1 " yny coming from the Recti-
fication Theorem, constructed by these vector fields, by this transversal, and by this choice of
the coordinates on the transversal. Recall that these coordinates have the following properties:
The vector fields X ;i are the vectors %

The coordinates (¢!, ..., 2K+ y2K+K"+1 " "yn) after the following reorganisation and
proper changing the signs are as we require in (A—D): we consider the coordinates

(x! = e S e B ST ST e/ o yzk’+k”+1, o x 2KHE
_ 2K 2K
=y R
’ " a a " ! " ! " ’ "
B e B S T
Let us explain that by the construction of the coordinates the first m = 2k’ + k” coordinates
are the functions f ., f™ as we require in (A). Indeed, at our transversal the values of the
. . . . !
coordinates x, ..., xp; are zero and therefore coincide with that of f L f 2K Next, by the
assumptions

—1ifl <i<kandj=~k+1i,
Xpu(fH=Pl=(f =1 1ifl<j<kKandi=k+j,
0 otherwise.

implying (A). Finally, observe that the ith column of P is the vector —X
(B,C, D).

In this coordinate system the matrix of the Poisson structure P is given as follows (since

P is skew-symmetric it is sufficient to describe the entries P/ with i > j only): Its ﬁrst K

columns are the vectors The next k” columns are the vectors —

i» which gives us

f
Era i axk"
Moreover, all entries of the matrix P'/

areof class C"~ "% and independent of the coordinates x! . x2K" and of the coordinates

xM L x™ K" Indeed, it is known and follows from the Jacobi identity that any Poisson
structure is preserved by the flow of any Hamiltonian vector field. Then, our Poisson structure
P is preserved by the flows of the vector fields 7 and 3x2k/(jr/‘// T e é}x2k?+2k”
2k'+k"+1 2k +2K"

_9d
PICENIAL 2k’
The next k” columns are

3
2k HKTH1 0 g Dk 2k
l,a

9

1 Y 5

implying that its entries are independent of x!, ..., x? K and of x

For example, the general form of such a matrix P with k' = 1, k” = 2, n = 8 is as
follows:

0 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0

1o o o o 0 -1 0 0

Pr=1o o 1 0 0 ps6 ps7 p38 (3.6)

0 0 0 1 _p>56 0 po7 pos
0 0 o o —p7 _pY 0 p78
0 0 o o -—p3¥* _ps8 _pm 0
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where the components Pl with4 < i < Jj < 8 are functions of the variables 3 x* X7, X8

only.
Calculating the inverse matrix (w;;) = (P71 we see that in these coordinates it is given
by
_ K . k/-‘r. 2k’+k” . k/,+. 2k/+k// B . .
=)y dx! Adx¥TH 3T T dxt Adxt T+ Zi,j=1+2k’ uijdx' Adx/ 37
2k"+k" n i n :
+ Zi:Zk’+1 ZM=2k’+2k"+l Uiudxl Adx™ + Zu,u=2k’+2k”+l w,wdx“ AdxV.
The functions u;;, vi¢ and wypg are explicit algebraic expressions in the entries of P,
Therefore, they are of class C’ ! and are independent of the coordinates x, ..., x2¥" and of
. ’ " / "
the coordinates x2K tK"+1 | x2ZK'+2K" Note also that the (n — 2k’ — 2k") x (n — 2k’ — 2k"')-
matrix wyg is skew-symmetric and nondegenerate.
For example, the inverse of the matrix (3.6) is as follows:

0 1 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 u 1 0 V37 V38
0 0 —u 0 0 1 V47 V48
YiTlo o -1 0 0 0 0 ol 3-8)
0 0 0 —1 0 0 0 0
0 0 —vV37 —V47 0 0 0 w
0 0 —v3g —U48 0 0 —w 0

where the functions v;;, u, w may depend on X3 xt X7, x8 only and are of class cr—le,

Let us view now the last sum in (3.7), namely @ = ZZ,ﬁ:Zk’+2k”+l wyvdxh A dx,
as a 2-form on a (n — 2k’ — 2k”)-dimensional neighborhood with local coordinates
(x2K'+2K"+1 - xm). The coordinates (x', ..., x2X*+2K") are now viewed as parameters and
we actually know that the form @ does not depend on the coordinates xi 2K and on the
coordinates x2K K1y 2K+ 6 effectively the parameters are x2X 1, . x2K'+K" The
form o is closed and non-degenerate; i.e., it is a symplectic form.

By Lemma 3.10, there exists a coordinate change (depending on the parameters)

2K 42k 41 2k 2K +1 2k +1 2k +k" 2k 2k +1 n
old = Xnew (x e X * Xold seees Xpra)s (3.9)
no_ .n 2k'+1 2Kk 2k +2k"+1 n ’
Xp1d = Xy (X sy X s Xo1d s X1

such that after this coordinate change @ has constant entries. Then, after the coordinate
change of class C" 1@ which leaves the first coordinates (x!, ..., xzk/“k”) unchanged and
transforms the remaining coordinates (ka/“k”“, ..., x™) by the rule (3.9), we achieve that
the components w,, , in (3.7) are now constants. Note that this coordinate change does
otherwise not affect the structure of w given by (3.7).

Next, we use that the form (3.7) is closed. The coefficient of dx’ Adx* Adx" in dw is given

by (dd‘;“ — g;f;) foranyi € (2k/+1, ..., 2K'+k"}and jt, v € (2K'+2k"+1, ..., n}. We thus

see that forevery i = 2k'+1, ..., 2k’ +k” the 1-form 6; := ZZ:Zk/+2k”+l v dxt, viewed as
2k'+2k" +1 )

a 1-form on a neighborhood of dimension n — 2k’ —2k” with coordinates (x
with coefficients depending on parameters ka/“, ka/Jrk”, is closed. Then, by Lemma
3.9, there exist functions V; of class C"~2¢ such that gx—v,j = Viyu.

We consider now the following coordinate change of class C"~2®. The coordinates

Y ’ " . . 1
xl, L x2K KT gnd x2K+2KTHL 4! remain unchanged and the coordinates x2X K+
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’ "
x2K+2K" are changed by the rule:
2k'+k"+i 2k k" +i LV (3 10)
Xold = Xnew L :

This coordinate change does not affect the previous improvements; that is: The structure of
w is still given by (3.7) and the terms w,,,, are still constant. But now the terms v;,, are zero.
’ " . .
Finally, we consider the term kajilzck, 41 Uijdx' A dx? of (3.7). Calculating the differ-
ential of the 2-form w we see that u;; may depend on the coordinates x2k’+1, e X 2K
/ " . .
only, and that the 2-form lekjilzck, 41 Uijdx' A dx/ viewed as a 2-form on a k”-dimensional

neighborhood with coordinates xzk/"'l, e x2K+k" iq closed. The components of this form

are of class C"~>*_ and by [11, Theorem 8.3], there exist functions Uay/ 41, ..., Usg/ 447, Of
. . ’ ’ "
class C" 2., depending on the coordinates xZK+1 2K such that

2k/+k// 2k/+k//
Z ujjdx' Adx?! = Z d (U,-dx’).
i, j=2k'+1 i=2k'+1
. . . . ’ "
We use the functions Uj; in the last coordinate change: the coordinates xb, L, x2K KT and
’ " . . ’ ” ’ "
x2KH2THL %" remain unchanged and the coordinates x2X K +1 | x2K'+2K" are changed
by the rule:
2k +k" +i 2k"+k" +i

X4 T=x, 4 Ui (3.11)

This coordinate change does not affect the previous improvements; i.e., the structure of @
is still given by (3.7), the terms wy,,, are still constant, the terms v;,, are still zero but now
also the terms u;; are zero. Thus, the coordinates are flat for g and for w. This completes the
proof of the Theorem. O

4 The general case

In this section, we consider a bilinear form g+ where both the symmetric and skew-symetric
part may be degenerate.

4.1 The case when the symmetric part is zero.

We first assume w is degenerate and g = 0, and discuss the existence of a flat coordinate
system.

Theorem 4.1 There exists a smooth flat coordinate system for a given smooth skew-symmetric
2-form w = w;j = ij wijdx" A dx’ if and only if w has constant rank and dw = 0.

Although this theorem is known, see e.g. [1, Theorem 5.1.3], we give a short proof for
selfcontainedness and because we use certain ideas of the proof later.

Proof If w has maximal rank, then this result is the classical Darboux Theorem. Let us reduce
to it the case of smaller rank. We denote by

Ro={veTyM|w, ) =0} 4.1)
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the kernel of w. Because w has constant rank, R, is a smooth distribution. Furthermore, the
condition dw = 0 implies that it is integrable; indeed, for any vector fields u, v € R,, and
arbitrary vector field w we have

0=2Ly (0, w)) = (Lyw) (u, w) + w((v, u], w) + w(u, [v, w]).

The first term on the right hand side vanishes because of the Cartan magic formula, the third
term because u, w € R,. Then, [v, u] € R, and the distribution is integrable.

Assume now the distribution has dimension n — p, where p = rank(w), and consider a
coordinate system xt, ., xP, yl, ..., Y"7P such that the distribution R, is spanned by the
vector fields ﬁ, e dy:,—’,p In this coordinate system, we have

w= Z wjj (x)dxi Adx’.

i<j=<p

Since dw = 0, the components w;; do not depend on the variables y', ..., y"7P (indeed,
suppose for instance that wi depends on y! then dw would contain the nonzero term

35”7'12 dy' A dx' A dx? which does not cancel with any other term). The problem is then
reduced to the classical Darboux Theorem in dimension p, which completes the proof of the
Theorem. O

Remark 4.2 1t has been proved in [4, Theorem 18], see also [11, Theorem 14.1], that if w is a
symplectic form (that is non degenerate and close) of class C"* withr € Nand 0 < o < 1,
then the previous result still holds and the obtained flat coordinates are of class C”+1¢,

For a closed 2-form of constant rank < 7, one can still find flat coordinates of class C"%.
See [5, Theorem 3.2] and the extended discussion in [11, §14.3]. The degenerate case is
proved by reducing it to the symplectic case, taking into account that factoring out the kernel
of w reduces one degree of regularity,

4.2 A necessary and sufficient condition in the general case

We consider the tensor field g;; + w;; with g;; symmetric and w;; skew-symmetric and study
the existence of a flat coordinate system. This is equivalent to the existence of a symmetric
affine connection V = (F; &) such that its curvature is zero and such that both g and w are
parallel, meaning that

0gij

ok = 2 &siTh + g 4.2)
N

awij — N N 43

ok T Za)sjl*ik—i—a)isl“jk. 4.3)
)

We view (4.2, 4.3) as a linear inhomogeneous system of equations where the unknown
quantities are the Fj &~ Algebraic compatibility conditions of each of the Egs. (4.2) and (4.3)
have a clear geometric interpretation. Indeed, as we understood in Sect. 2, the algebraic
consistency condition of (4.2) is (2.4) and the freedom in choosing I" satisfying (4.2) once
(2.4) is satisfied is the addition of (possibly several expressions of the form)

VITj withv € Rg and Tji = Ty;. 4.4)

Concerning the second set of equations, we have the following
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Lemma 4.3 Suppose w is of class C', then there exists Ffj such that Ff‘j = F]/?i and (4.3)
holds if and only if w is a closed 2-form. '

Proof If w is of class C1** for some 0 < « < 1, then the Lemma immediately follows from
Theorem 4.1. Since we only assume the C'-regularity of w, a purely algebraic argument is
needed. Observe first that a necessary condition is

dwij  dwjr  dwg
dxk ox! dx/
Indeed, if one relabels the index in (4.3) by the schemes (i — j — k — i) and (i —
k — j — i), and add the obtained equations to the initial equation, one obtains (4.5). The
geometric interpretation of (4.5) is clear: it holds at every point if and only if w is a closed
form.
Observe now that, assuming (4.5) holds, the system (4.3) is algebraically equivalent to
the following system of linear equations:*

) 1 [dw;ji  Jdwi
D iy = 3 ( 8xlk] + 8xl/ > + Tiji, (4.6)
s

where Tjji is totally symmetric. This linear system is always compatible if (4.5) holds.
Indeed, the compatibility condition for the equations (4.6) is as follows: for any v € R,, the

expression
[ 0wsj  dwgk
v’ + -
; < dxk axJ

should be symmetric in j <— k. We see that this condition is always fulfilled. We conclude
that (4.5) are sufficient conditions for compatibility of (4.3). O

=0. 4.5)

Unfortunately, we do not have an easy geometric interpretation for compatibility condi-
tions of the whole system (4.3, 4.2).
We now state our main result:

Theorem 4.4 Let g + w be a smooth (here we assume C for simplicity) bilinear form on
a domain U C R" (where g is symmetric and w is skew-symmetric). Suppose there is a flat
coordinate system for g and w, then there exist smooth functions I‘; & Such that both (4.2) and
(4.3) are fulfilled; in particular w is closed and has constant rank. Moreover, (2.10) holds.
Conversely, if there exist smooth functions l"j.k such that (4.2) and (4.3) are fulfilled and
(2.10) holds, then there exists a flat coordinate system.

Proof The direction “=" is clear. Indeed, the conditions (4.2) and (4.3) are geometric and
are trivially satisfied in a flat coordinate system for Fi,.k = 0, therefore they hold in any
coordinate system. Let us prove the non trivial direction.

We assume the existence of smooth functions I‘; « defined on U, such that (4.2) and (4.3)
hold. We view these functions as coefficients of a connection V. The parallel transport with
respect to this connection preserves g and w. In particular g and w have constant rank. We
set m = rank(g) and p = rank(w). We also assume that condition (2.10) holds.

Our first step is to show that one may assume without loss of generality, R N R, = {0}
at one and therefore at every point. Indeed, it is integrable and we can consider a coordinate

1

system x, ..., xk, yl, s y”’k such that R, N R, is spanned by 337 i)v%' ‘We know

4 In the symplectic case (When w is nondegenerate) (4.6) is known [7].
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that both g and w are preserved along the flow of any vector field v € R, N R,,. Indeed, for
g we proved this in Sect. 2 and for w in Sect. 4.1. Then, in the coordinate system g and w are
given by

k
g = Z g,-jdxidxj, w = Z a)i_,-dxi /\dxj
i,j=1 i<j<k

such that g;; and w;; do not depend on the y-coordinates. We see that the situation is reduced
to an analogous situation on a k-dimensional manifold such that R, N R,, is trivial. Note
that the existence of smooth functions I': ¢ satisfying (4.3) and (4.2) is not affected by this
reduction since the freedom (4.4) with v € R¢ N'R,,, affects neither (4.2) nor (4.3). For the
rest of the proof we may and will assume that Rg NR,, is trivial.

Because of (4.3), the distribution R,, is integrable and invariant under parallel transport.
We assume that w has rank p, so R,, has dimension n — p. Taking in account (2.10) and
Theorem 2.2 we obtain the local existence of functions f L f™, where m = rank(g) and
such that the differentials df are linearly independent and parallel, and

m
g= Y cydfidf/, 4.7)
i,j=1
where ¢ = (c¢;;) is a constant nondegenerate symmetric m X m matrix. Without loss of

generality, we may also assume that

(a) The functions f!, ..., f7 have the property Kernel(d f 1 DRy
(b) No nontrivial linear combination of the remaining functions f"*+!, ..., f” has this prop-
erty.

Indeed, if a function f has property V;V;f = 0 at all points, then the property
Kernel(df) 2 R, at one point x implies this property at all points. To see it, we chose a
smooth path ¢(#) joining a base point x to an arbitrary point y and denote by v(¢) € R (c(2))
the parallel transport of the vector v € R, (x) along this curve. We then have

k
% (dfe(0(@)) = Z " (df(v)) = Z (v ViVsf + ;—fsvkv ) % =04+0=0.

Observe now that the hypothesis R, N'R,, = {0} implies thatr < pandn =p+m —r.
Furthermore the functions f"T!, ..., ™ restricted to any integral submanifold of R,, define
local coordinates on this submanifold. Indeed, no nontrivial linear combination of their
differentials annihilates R,,.

We denote by U=U /R the quotient manifold of U by the flow of all vector fields in
R (we identify points of U lying on the same integral submanifold of the distribution R,).
The manifold U is of dimension p = rank(w), let us fix some coordinates (z', ..., z”) on
U (concretely they are provided by any coordinate system on a manifold transverse to R,).

Observe that the functions f!,..., f" are constant on any mtegral manifold of R, and
therefore induce well defined functlons on U we denote them by [, 1l f " L1kew1se the
form w induces a well defined 2- form & on U, which is clearly a symplectlc form on U. We
denote by P the dual Poisson structure of &. We claim that for any 1 < u, v <r,the Poisson
bracket

. P afmgfur
o =y pu 20
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is constant. Indeed, this quantity is scalar and constructed by linear algebraic operations from
the triple (w, df", ) (viewed now as objects on U) and all the objects in this triple are
parallel with respect to V.

We then know from Theorem 3.1, that there exists a coordinate system y1 ,...,yPon U
such that y/ = f Jfor j =1,...,r and & has constant components in this coordinate. We
thus have proved that the coordinate system on U defined by

Gl =Gy P L

is flat for both g and w. m}
‘We conclude this section with a few remarks:

Remark 4.5 (i) Let us stress that verifying the hypothesis of Theorem 4.4 requires only
differentiation and linear algebraic operations. The main computational difficulty is to
decide if the combined linear system containing (4.2) and (4.3) is solvable.

(ii) In the proof of Theorem 4.4 we assumed that all objects are as smooth as we need for the
proof. We need them to be C™% with r > 4 and 0 < o < 1. The flat coordinate system
is then of class C”~3%. We do not have an example demonstrating that the regularity
is optimal, and in fact rather tend to believe that it is not optimal.

(iii) The proof of Theorem 4.4 shows that if g has constant rank 1, then there locally exists
flat coordinates for g + w if and only if the following conditions are satisfied:

(a) g = +6 ® 0 for a closed 1-form 6.
(b) w is closed and has constant rank.
(¢) R NRy has constant dimension.

5 Ideas used in our proofs, conclusion and outlook

We solved, for an arbitrary bilinear form, the problem stated by Riemann: we found necessary
and sufficient conditions for a bilinear form to have constant entries in a local coordinate
system. Our results generalize the special cases solved by Riemann himself (when the bilinear
form is symmetric and nondegenerate) and by Darboux (when it is skew-symmetric and
nondegenerate).

Our proofs in the smooth case use methods and, whenever possible, notations which
were available to, and used by, Riemann, Darboux and other fathers of differential geometry.
These methods include basic real analysis, basic linear algebra and the standard results on
the existence and uniqueness of solutions of systems of ordinary differential equations.

We also employ a fundamental idea used in particular by Riemann in [22], and which is one
of the main reasons for many successful applications of differential geometry in mathematical
physics: if one works with geometric (covariant, in the language used in physics) objects,
then one can work with them in a coordinate system which is best adapted to the geometric
situation.

The ideas behind the proofs are based on concepts that appeared later. Let us comment on
them and relate our proofs to these concepts.

The first one is the concept of parallel transport, it was introduced by Levi-Civita and
was effectively used by Elie Cartan. Recall that for any connection V = (Fj. 1) the parallel
transport along the curve c : [0, 1] — M is a linear mapping 7. : Tc(oyM — T.)yM. It it

defined via the differential equation ) d”;,(t) V,Vi(c(r)) = 0 and can also be extended to
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arbitrary tensors replacing the differential equation by ) d‘ (t) Vs P/l]' 'jk (c(t)) = 0. The
parallel transport is compatible with all geometric operations on tensors.

The condition that a (possibly, degenerate) metric g is parallel with respect a given con-
nection V = (I':. k) is equivalent to (2.3), and it means that the parallel transport preserves
the metric. This 1mphes that the distribution R, = ker(g) is invariant by parallel transport.
It is then integrable and the flow generated by any vector fields belonging to this distribution
preserves g (in other words, the vector fields in R are Killing vector fields). This was a key
argument to reduce the proofs of Theorems 2.2 to the nondegenerate case, which was solved
already by Riemann.

A similar reasoning shows that in the situation discussed in Theorem 4.4 one can “quotient
out” first the joint kernel of w and g and then the kernel of w, so the situation is reduced to the
one discussed in Theorem 3.3. Indeed, the parallel transport preserves R (R, respectively)
so the distributions of R, (R, respectively) are integrable; moreover, g (w,respectively) is
preserved along the flow of any vector fields lying in R (R, respectively). This allowed us
to reduce the proofs of 4.1 and Theorems 3.3 to the Darboux Theorem and to Theorem 3.3.

The second concept is the idea of the holonomy (group). This concept was successfully
used already by Cartan and is still an active object of study. For an affine connection V =
(F; ) and a fixed point p, the holonomy group generated by parallel transports along curves
c 1 [0,1] — M starting and ending at p (the so-called loops). The situation studied in
Theorem 2.2 suggests that we consider the holonomy group restricted to the anihilator

R(p) :=1{§ e T,M | Kemel (§) 2 Rg(p)}.

This space is invariant with respect to parallel transport along the loops since it is defined
via R which is parallel and therefore is invariant. The Ambrose-Singer Theorem [2], states
that the holonomy group is generated by the curvature and is trivial if the curvature is zero.
Now, (2.10) implies that the curvature (of the connection V viewed as the connection on the
subbundle R? of T*M) vanishes. This implies the existence of sufficiently many parallel 1-
forms belonging to this bundle. They are automatically closed and give rise to flat coordinates.

The third concept came from the theory of integrable Hamiltonian systems and was crys-
tallized in the 1970’s; the standard references are [1, 3]. The key observation is that for any
two functions f, h we have [X ¢, X;] = X(y ), where {, } is a Poisson structure and X, ,
X ¢ are the Hamiltonian vector fields corresponding to f and &. The condition that { f, &} is
constant implies then that vector fields X y and X, commute, which was the key point in the
proof of Theorem 3.3.

‘We have mostly used the “old-fashioned” language and notations for two reasons. We wish
our proofs to be available to any mathematician, even without special training in differential
geometry and integrable systems. Our declared goal is to present the proofs in the form the
fathers of Riemannian Geometry and Symplectic Geometry could understand them, and we
believe that we achieved this goal, at least partially. In addition, we expect that our results
may have applications outside of differential geometry.

The second reason is that we aim at understanding the lowest regularity assumptions on
g and w under which our results holds. The “modern” differential geometrical ideas touched
in this section require, as a rule, higher regularity than it is necessary. The point is that the
so-called “invariant notations” that are highly successful in dealing with global differential
geometry on manifolds are, by nature, non-transparent about regularity.

For example, the proof of Riemann works under the assumption that the metric is of class
C? (of course for Riemann himself all functions were real analytic by definition). Later,
alternative proofs appeared which allowed to find the optimal regularity assumption for the
result of Riemann, see e.g. [6, 16, 18, 19]. Other examples include the Darboux theorem
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(under optimal regularity assumptions it was proved in [4] and [11]) and also the optimal
regularity results for isometries of Riemannian (see e.g. the appendix to [20] for an overview)
and Finsler metrics [17, 20].

As an illustration, our proof of Theorem 3.3 requires the bilinear forms to be of rather high
regularity, see Remark 3.5. By contrast, the proof of Theorem 3.8 produces flat coordinates
of class C" 2,

Though our results are local, they may open a door to a global investigation of flat bilinear
forms. We already have several relatively easy global results, Corollaries 2.7 and 2.8. We
also allow ourself to formulate the following conjecture:

Conjecture 5.1 Suppose a closed manifold M has a flat (possibly degenerate) non-negative
definite metric g of rank m. Then, it is finitely covered by a manifold which is diffeomorphic
to a fiber bundle over a m-dimensional torus.

Note that in the nondegenerate case m = n = dim M, the Conjecture is equivalent to
Bieberbach’s Theorem, see e.g. [8]. In this situation one can find m parallel forms 6y, ..., 6,,
on a finite cover M of M such that the lifted metric § writes as g = DN j€ij0ifj, with
a constant symmetric positively definite matrix c;;. Note also that by [10], if a manifold
admits m closed forms such that in every point they are linearly independent, the manifold
is diffeomorphic to a fibre bundle over a m-torus.

Note also that some of our results can be easily generalized for the nonflat case. Say,
one can define degenerate metrics of constant curvature k € R by the equation R;jx¢ =
k(giegjk — gikgj¢) and degenerate symmetric space by the formula V,, R;;r¢ = 0. Neither
formula depends on the freedom (2.6).
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