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Abstract
We generalize the celebrated results of Bernhard Riemann and Gaston Darboux: we give
necessary and sufficient conditions for a bilinear form to be flat. More precisely, we give
explicit necessary and sufficient conditions for a tensor field of type (0, 2) which is not
necessary symmetric or skew-symmetric, and is possibly degenerate, to have constant entries
in a local coordinate system.
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Hamiltonian vector fields · Curvature · Pfaffian systems · Darboux theorem · Pullback
equation · Hartman Theorem
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1 Introduction

In the paper [22] of 1861 Bernhard Riemann considered what is now called a Riemannian
metric, that is, a symmetric positive definite 2-form g = gi j (x). He asked and answered the
question under what conditions there exists a coordinate system such that g is given by a
constant matrix. He proved that such coordinates exist locally if and only if what is now called
the Riemann curvature tensor is identically zero. This result was announced in Riemann’s
famous inaugural lecture in 1854, see [24, Abschnitt 4]. Both the inaugural lecture and the
paper [22] are viewed nowadays as the starting points of Riemannian Geometry. Note that
[22] is written in Latin and its first part is not relevant to this question. An English translation
of the relevant second part, with a detailed discussion, can be found in [25, pp. 179–182].
In particular it is explained there (and was known before) that the assumption of positive
definiteness is not essential for the proof of Riemann: it is sufficient that the symmetric form
is nondegenerate. See also [23].

The case when the bilinear form is skew-symmetric was considered and solved by Gaston
Darboux [12]: he has shown that a nondegenerate differential 2-form ω = ωi j (x) is given by
a constant matrix in a certain local coordinate system, if and only if it is closed. This result
lays at the foundation of Symplectic Geometry.

In the present paperwe ask and give a complete answer to the same question for an arbitrary
bilinear form, that is a tensor field of type (0, 2), which may have nontrivial symmetric and
skew-symmetric parts that can be degenerate. Note that the case where the symmetric part is
nondegenerate can easily be reduced to the methods of Riemann (see e.g. [6] for a proof and a
discussion of boundary, smoothness and global issues). Indeed, the existence of coordinates
such that the components of the bilinear form gi j + ωi j are constant implies the existence
of a symmetric (torsion free) connection ∇ = (�i

jk) whose curvature is zero and such that
the bilinear form is parallel. If the symmetric part g is nondegenerate, the only candidate
for the connection is the Levi-Civita connection; the necessary condition is then that its
curvature tensor vanishes. The other necessary condition is that the skew-symmeric part ω is
parallel with respect to the Levi-Civita connection of g. These conditions are also sufficient.
Therefore, the results in the present paper are new only in the case where g is degenerate and
ω is arbitrary.

Our results are formulated in a way that the hypothesis on g and ω can effectively be
checked using only differentiation and algebraic manipulations, as was the case in the results
of Riemann and Darboux (in particular, if the entries of the bilinear forms are explicitly
given by elementary functions, or as solutions of explicit systems of algebraic equations with
rational coefficients, then the necessary and sufficient conditions for the the existence of flat
coordinates can be checked using a computer algebra system).

Our paper is organized as follows: in Sect. 2 we treat the case when ω = 0 and g is
(possibly) degenerate, see Theorem 2.2 and Theorem 2.9. In Sect. 3, we consider in Theorems
3.1 and 3.3 the case where the skew-symmetric part is nondegenerate; and the symmetric part
may be degenerate. In Sect. 4 we first treat the known case when the symmetric part is zero
(and the skew-symmetric part may be degenerate), see Theorem 4.1, and then the general
case, when both g and ω are allowed to be degenerate, see Theorem 4.4.

Sections 2.1 and 3.2 are about regularity issues; the reader who is only interested in smooth
tensors can ignore them without any loss.
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Our proofs use a variety of ideas and methods coming from different areas of differential
geometry and the final Sect. 5 is an outlook of those methods.

Note that our investigation is mostly local (with the exception of the global statements
in Corollaries 2.7 and 2.8 and the related global questions discussed in the outlook Sect.
5). Whenever possible, we give two proofs. The first proof assumes that all objects are suf-
ficiently smooth, which allows for simpler and more geometric arguments and allows us
to use the simplest possible mathematical language. Such proofs would be understood by
Bernhard Riemann and mathematicians coming shortly after him, such as Sophus Lie, Gre-
gorio Ricci-Curbastro, Gaston Darboux, Tullio Levi-Civita and Ferdinand Georg Frobenius.
We recommend [25, Chaps. 4 and 5] or [13, Chaps. 3 and 4] for some background on the
notations we use and relation to other notations commonly used in differential geometry. We
also tried to give, whenever possible, a proof in a lower regularity.

2 The degenerate symmetric case

We consider a bilinear symmetric form g = gi j (x) and call it a (possibly, degenerate) metric
on a domain inRn with coordinates x1, ..., xn . We view g as a covariant tensor field, meaning
that if y1, ..., yn are a different coordinate system, then in these coordinates g has coefficients

g̃i j (y) =
∑

r ,s

grs(x)
∂xr

∂ yi
∂xs

∂ y j
. (2.1)

Here, and throughout the paper, unless otherwise specified, all indexes run from 1 to n. A
coordinate system is called flat, if in this coordinate system g is given by a constant matrix;
our goal in this section is to give necessary and sufficient conditions for the existence of local
flat coordinate systems for a given degenerate metric g. Our first result will play a key role
in building such coordinates.

Theorem 2.1 For every i, j, s consider

�i j,s := 1

2

(
∂g js

∂xi
+ ∂gis

∂x j
− ∂gi j

∂xs

)
(2.2)

(we call them Christoffel symbols of the first kind). Then, at a point x there exist numbers
�i

jk with �i
jk = �i

k j (we call them Christoffel symbols of the second kind) satisfying

∑

s

(
�s

jk gis + �s
ik g js

)
= ∂gi j

∂xk
(2.3)

if and only if the following condition holds:
∑

s

�i j,sv
s = 0 for every vs ∈ R, (2.4)

where

R := Rg(x) := Kernel(g) := {v ∈ TxM | g(v, ·) = 0}. (2.5)

If such numbers �i
jk exist, the “freedom” in choosing them is the addition of possibly several

terms of the form

vi Tjk with v ∈ R and Tjk = Tkj . (2.6)
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Moreover, if the rank of g is constant and (2.4) holds for every point x, then there exist
smooth functions �i

jk(x) with �i
jk = �i

k j satisfying (2.3).

Proof We fix a point x and view (2.3) as a system of linear equations on unknowns �i
jk ; the

coefficients of this system come from g and partial derivatives of g. Remember now that a
linear system of equation

Ay = b (2.7)

(where A is a N×N -matrix, y = (y1, .., yN ) is an unknownvector andb = (b1, ..., bN ) ∈ R
N

is a known vector) has a solution if and only if for every vector a = (a1, ..., aN ) ∈ R
N such

that at A = 0 we have atb = 0. We observe that the Eq. (2.3) is of the form (2.7) with

N = n2(n+1)
2 . By standard algebraic manipulations (known at least to Levi-Civita) one

reduces (2.3) to the system of equations
∑

s

gsk�
s
i j = �i j,k . (2.8)

Indeed, replacing
∑

s gsi�
s
jk by� jk,i and

∑
s gs j�

s
ik by�ik, j in (2.3) we see that any solution

�i
jk of (2.3) solves (2.8) and vice versa, thus there are two equivalent linear systems. It remains

to observe that the condition atb = 0 applied to (2.8) is just the condition (2.4), and then
for a linear system of equations (2.7) such that the coefficient matrix A and the free terms
b smoothly depend on x one can find a smooth solution provided a solution exists at every
point and the rank of A is constant. ��

Remark The Christoffel symbols �i
jk(x) from the previous Theorem will always be

considered to be the coefficients of an affine symmetric (torsion free) connection. This means
that if y1, . . . , yn is a different coordinate system, then the correspondingChristoffel symbols
�̃i

jk(y) should by definition be given by

�̃k
i j (y) =

∑

a,b,c

∂ yk

∂xc

(
�c
ab(x)

∂xa

∂ yi
∂xb

∂ y j
+ ∂2xc

∂ yi∂ y j

)
.

This rule for the change of coordinate guarantees that the covariant derivative is a well defined
operation on any tensor field, independently of the chosen coordinates, that is if P = Pi1...ik

j1... jm
is a tensor field of type (k,m), then

∇i P
i1...ik
j1... jm

= ∂

∂xi
Pi1...ik
j1... jm

+
∑

s

(
Psi2...ik
j1... jm

�
i1
si + Pi1si3...ik

j1... jm
�
i2
si + · · · + Pi1i3...ik−1s

j1... jm
�
ik
si

)

−
∑

s

(
Pi1...ik
s j2... jm

�s
i j1 + Pi1...ik

j1s j3... jm
�s
i j2 + · · · + Pi1...ik

j1... jm−1s
�s
i jm

)

is a well defined tensor field of type (k,m + 1). This tensor field is called the covariant
derivative of P and denoted by ∇P , and we say that P is parallel if ∇P = 0. For instance
(2.3) just says that g is parallel with respect to ∇. The covariant derivative depends on the
freedom (2.6), but by construction the condition ∇g = 0 does not.

Our first main result is the following

Theorem 2.2 Suppose rank of g is constant and assume (2.4) is fulfilled at any point. Then,
for any smooth functions �i

jk with �i
jk = �i

k j satisfying (2.3) the functions

Ri jk� :=
∑

s

gis

(
∂

∂xk
�s

j� − ∂

∂x�
�s

jk +
∑

a

(
�s
ka�

a
� j − �s

�a�
a
jk

))
(2.9)
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do not depend on the freedom (2.6). Moreover, there exist flat coordinates for g if and only
if there exist smooth functions �i

jk(x) with �i
jk = �i

k j satisfying (2.3) such that1

Ri jk� = 0 for every i, j, k, �. (2.10)

Proof In order to show that Ri jk� does not depend on the freedom in choosing �, let us plug
�̃i

jk = �i
jk + vi Tjk with v ∈ R instead of � in the formula (2.9) for Ri jk�. The terms of

the form vs ∂
∂xm Tjk , vs ∂

∂xk
Tjm, vsTka�̃a

� j , v
sT�a�̃

a
k j vanish after contracting with gis so the

result differs from the initial formula for Ri jk� by

∑

s

gisTj�
∂vs

∂xk
+

∑

a

va�ka,i Tj� −
∑

s

gisTk�
∂vs

∂x j
−

∑

a

va��a,i Tjk . (2.11)

Next, in view of condition
∑

s gisv
s = 0 we have that

∑
s gisTj�

∂vs

∂xk
= −∑

s Tj�v
s ∂gis

∂xk
,

which together with (2.2) imply that the sum of the first two terms of (2.11) is equal to

−∑
s Tj��ki,sv

s (2.4)= 0. Similarly, the sum of the last two terms is zero. The argument
proves that the freedom in choosing � does not affect Ri jk� and therefore the condition
(2.10).

By the standard argument (due already to classics, see e.g. [25, Prop. 5 in Chapter 4]) we
know that Ri jk� is a tensor field. Then, its vanishing in one coordinate system implies its
vanishing in any other coordinate system. Then, the existence of flat coordinates implies that
Ri jk� = 0, so the conditions listed in Theorem 2.2 are necessary.

Let us prove that they are sufficient. We first observe that for any smooth vector field
v ∈ R the metric g is preserved by its flow. Indeed, the Lie derivative of the metric is given
by

(Lvg)i j =
∑

s

(
vs

∂gi j
∂xs

+ gis
∂vs

∂x j
+ g js

∂vs

∂xi

)

=
∑

s

(
vs

∂gi j
∂xs

− vs
∂gis
∂x j

− vs
∂g js

∂xi

)

= −2
∑

s

vs�i j,s = 0.

Next, let us show that the distribution R is integrable, that is, for any two vector fields
v, u from this distribution its commutator [u, v] lies in the distribution. We obtain it by direct
calculations:

∑

i

gi j [u, v]i =
∑

s,i

(
gi j u

s ∂vi

∂xs
− gi jv

s ∂ui

∂xs

)
= −

∑

s,i

(
vi us − uivs

) ∂gi j
∂xs

=
∑

s,i

(
vi us − uivs

)
(�is, j + � js,i ) = 0.

Then, there exist coordinates (x1, ..., xk, y1, ..., yn−k) such the distribution is spanned by
∂

∂ y1
, ..., ∂

∂ yn−k . In these coordinates the metric has the form

g =
k∑

i, j

gi j dx
i dx j .

1 We stress that, unless g is non degenerate, Condition (2.10) is of course not equivalent to the vanishing of

Rijk� = ∂

∂xk
�i
j� − ∂

∂x� �i
jk + ∑

a

(
�i
ka�a

� j − �i
�a�a

jk

)
.
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Since the vector fields ∂
∂ yi

∈ R and therefore their flows preserve g, the components gi j are
independent of y-coordinates. We then may view g as a metric on a k-dimensional manifold

with local coordinate system x1, ..., xk . Equation (2.3) implies that
(
�i

jm

)

i, j,m=1,...,k
are

coefficients of the Levi-Civita connection of this metric (of dimension k). Without loss of
generality, because of the freedom (2.6), we may assume that all �i

jm with i > k are equal to
zero. Then, the formula for the components Ri j�m of the curvature tensor (with lower indexes)
of this k-dimensional metric coincides, for i, j, �,m ≤ k, with (2.9). Then, the problem is
reduced to the case when g is nondegenerate, which was already solved by Riemann (see
e.g. [23, Sect. 4.4.7]). ��

As the following example shows, the condition (2.10) almost everywhere does not imply
that the rank of g is constant.

Example 2.3 We consider the function

φ : R2 → R, φ(x, y) = x2 + y2

and as g we take (dφ)2. Locally, in a neighbourhood of any point different from (0, 0) the
degenerate metric g has constant coefficients in any coordinate system such that φ is the first
coordinate. Its rank falls to zero at the point (0, 0) and is one otherwise. By direct calculation
one sees that any continuous solution �i

jk(x) of (2.3) (assuming �i
jk(x) = �i

k j (x)) is not
bounded when approaches (0, 0).

The example can easily be generalised for any dimension and any rank. On the other hand, the
existence of continuous functions �i

jk satisfying (2.3) implies that the rank of g is constant.

Remark 2.4 The book [15] of D. Kupeli studies degeneratemetrics (Kupeli calls them “singu-
lar metrics”), the corresponding affine connections and their curvature tensors. The condition
(2.4) is equivalent to the stationarity condition [15, Def. 3.1.3]. This author did not study the
existence of flat coordinates but the invariance of Ri jk� with respect to the freedom and the
Condition (2.6) are implicitly contained in his book.

Corollary 2.5 Assume g admits flat coordinates. Consider the following system of PDE:

0 = ∇ j ui := ∂ui
∂x j

−
∑

s

�s
i j us (2.12)

on the unknown functions u1(x), ..., un(x), where �s
i j is a (smooth) solution of (2.3). Then,

for every point x̂ and for any initial data (û1, ..., ûn) ∈ R
n such that for every v ∈ R(x̂)

we have
∑

s vs ûs = 0 there exists a unique solution u1, ..., un of (2.12) with the initial
conditions ui (x̂) = ûi . This solution has the property

∑
s vsus = 0 at every x and for every

v ∈ R(x). Furthermore, for any such a solution u1, ..., un the 1-form u1dx1 + ... + undxn

is closed so there exists locally a function f such that ∂ f
∂xi

= ui . Moreover, if a solution
vanishes at one point, it vanishes at every point.

Proof The equation (2.12) means that the 1-form u1dx1+ ...+undxn is parallel with respect
to the connection ∇ = (�i

jk). In particular, the equation is invariant with respect to the

coordinate changes. BecauseR is invariant under parallel transport, ifR ⊆ Kernel(u1dx1 +
... + undxn) at the point x̂ , then R ⊆ Kernel(u1dx1 + ... + undxn) at every point. In the
flat coordinates x1, ..., xn such that g = ∑r

s=1 εi (dxi )2 (with εi ∈ {−1, 1}) the Eq. (2.12)
reads ∂ui

∂x j = 0. Then, if the initial data satisfy
∑

s vs ûs = 0, then for any solution we have
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ur+1 = · · · = un = 0 and first r functions u1, ..., ur satisfy
∂ui
∂x j = 0 which implies that they

are arbitrary constants. ��
Remark 2.6 The case of rank one metric is special, the following statement is true: If g has
rank 1, then g = ±θ ⊗ θ for a locally defined (non zero) 1-form θ . Furthermore (2.4) is
equivalent to dθ = 0, and this holds if and only if g admits flat coordinates.

To see this, recall that gi j is symmetric of rank one if and only if there exists (a1, . . . , an),
non vanishing, such that gi j = ±aia j . Suppose (2.3) holds for g = ±θ ⊗ θ with θ =
a1dx1 + ... + andxn . Clearly, in the flat coordinate system for g the components ai are
constant and θ is closed. In the other direction, if ∇g = 0 then ∇(θ) = 0 implying dθ = 0.

So far we have worked on (an open subset of) Rn , but because the conditions (2.3) and
(2.10) are coordinate invariant, they have a meaning globally on a smooth manifold M and
we can state the following

Corollary 2.7 If M is smooth closed manifold such that H1
dR(M) = 0, then it does not admit

a degenerate metric gi j of constant Rank(g) ≥ 1 such that Ri jk� = 0.

Proof If H1
dR(M) = 0, any closed 1-form is exact so the form

∑
i ui dx

i given by Corollary
2.5 is the differential of a function. Then, it vanishes at the points where the function takes
its extremal values which gives a contradiction. ��
Corollary 2.8 If the smooth closed manifold M admits a degenerate metric g of rank 1 such
that (2.4) holds, then M or its double cover is a fiber bundle over a circle.

Proof By Remark 2.6, we know that locally g = ±θ ⊗ θ for a nowhere vanishing closed
1-form θ . Then θ is either well defined globally on M , or it is well defined on a double cover.
The claim follows then from [26, Theorem 1]. ��

2.1 Optimal Cr-regularity for Theorem 2.2

It is known that for a non degenerate metric, the following optimal regularity holds: if g is of
class Cr with r ∈ N and satisfies (2.4) and(2.10), then there exist flat coordinate systems of
class Cr+1 (if r = 1, then the curvature has to be interpreted in the sense of distributions2).
We refer to [18] or [6, Theorem 8 and Remark 9] for a proof of this optimality result. In the
degenerate case, our proof of Theorem 2.2 loses one degree of regularity when we “factor
out” the kernel of g. Thus our proof of Theorem 2.2 assumes g to be of class Cr with r ≥ 2
and produces a flat coordinate system of class Cr . Our next result states the existence of flat
coordinates in optimal regularity:

Theorem 2.9 Suppose g has constant rank and assume (2.4) holds at any point. If g ∈ Cr

for some r ∈ N, then one can find �i
jk of class C

r−1 such that �i
jk = �i

k j and (2.3) holds.

Moreover, there exist flat coordinates of class Cr+1 if and only if (2.10) is fulfilled.

Remark 2.10 In our convention the set N starts with 1. When r = 1, the condition (2.10)
has to be understood in the weak sense, see [14, Sect. VI.I.6]. In the present situation, this

2 Note that a similar result cannot hold for r = 0. In [9, Sect. 6], E. Calabi and P. Hartman have given an
example of a continuousmetric which is locally isometric to the Euclideanmetric but admits no flat coordinates
of class C1.
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conditionsmeans that for any k, � ∈ {1, . . . , n} and any smooth 1-form u = (ui ) = ∑
i ui dx

i

with compact support such that Rg ⊆ Kernel(u), we have

∫ ∑

s

(
−�s

j�
∂us
∂xk

+ �s
jk

∂us
∂x�

+ us
∑

a

(
�s
ka�

a
� j − �s

�a�
a
jk

))
dx = 0.

This condition is independent of the freedom (2.6).

Proof The proof that (2.10) holds if there exist flat coordinates is similar to the proof of the
analogous statement in Theorem 2.2. Also the proof that �i

jk can be chosen of regularity

Cr−1 is the same as in Theorem 2.2. In order to prove the existence and smoothness of flat
coordinates assuming (2.10), let us consider a n × (n − m)-matrix-valued function B(x)
such that its columns are basis vectors of Rg . Since Rg is given by a system of linear
equations of constant rank whose coefficients are of class Cr , we may assume that B is of
regularity Cr . Next, without loss of generality we may assume that the last n − m rows of
B form a nondegenerate matrix (of dimension (n − m) × (n − m)). Then, there exists a
unique m × (n − m)-matrix-valued function F such that for every x the vector (u1, ..., un)
whose first components u1, ..., um are arbitrary and the other components um+1, ..., un are
constructed by u1, ..., um via matrix-multiplication

(um+1, ..., un) = (u1, ..., um)F (2.13)

the following condition3 is fulfilled:

(u1, ..., un)B = 0. (2.14)

The matrix F can be explicitly constructed as follows: if we denote by B ′ the submatrix of
B containing the first m rows of B and by B ′′ the submatrix of B containing the last n − m
rows by B ′′, then B ′′ is an invertible square matrix by hypothesis and F is explicitly given
by F = −B ′(B ′′)−1. In particular F is of class Cr .

In what follows we denote the i th component of the left hand side of (2.13) by F(u)m+i .
and we consider the following system of m × n PDEs on m unknown functions u1, ..., um
of the variables (x1, . . . , xn):

∂ui
∂x j

=
m∑

s=1

�s
i j us +

n∑

s=m+1

�s
i j F(u)s . (2.15)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. It follows from (2.6) that the system (2.15) is independent
of the choice of connection �k

i j satisfying (2.3). We observe the following facts concerning
the system (2.15):

(i) The system (2.15) is of Pfaff–Frobenius–Cauchy type, in the sense that all derivatives
of unknown functions are linear expressions of unknown functions whose coefficients
are functions of the position.

(ii) If g is of class Cr , with r ≥ 1, then the coefficient of (2.15) are of class Cr−1. This is
due to the fact that (2.3) is a linear system of constant rank with coefficient of class Cr

(see the proof of Theorem 2.1 for an explanation). One can therefore find �i
jk of class

Cr−1 satisfying (2.3).
(iii) The compatibility conditions for (2.15) are equivalent to (2.10) (see e.g., [14, Sect.

VI.I.6]).

3 Geometrically, (u1, ..., un) should be viewed as a covector, i.e., as the 1-form u1dx
1 + ... + undxn . The

condition (2.14) is just the condition Kernel(u1dx1 + ... + undxn) ⊇ Rg .
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(iv) If the compatibility conditions are satisfied, there exists, for any point p and any initial
conditionu1(p), ..., um(p), a unique (local) solutionof (2.15)with this initial condition.
Furthermore, if the coefficients of (2.15) are of class Cr−1 for some r ∈ N, then this
solution is of class Cr (if r = 1 the compatibility condition has to be interpreted n the
weak sense). This statement is proved in [14, Chap. VI, Corollary 6.1].

Let us now show that if u1(x), ..., um(x) is a solution of (2.15), then the differential form
whose first components are u1(x), ..., um(x) and the remaining (n−m) components are given
by (2.13) is parallel with respect to any symmetric connection ∇ = (�i

jk) whose coefficients
satisfy (2.3). Indeed. for i ∈ {1, ...,m} the condition∇ j ui = 0 is clearly equivalent to (2.15).
To deal with the case i ∈ {m + 1, ..., n} we need the following additional statement: for any
vector field v = vi ∈ Rg of class Cr and any vector field z j we have

∑

j

(
z j∇ jv

i
)

∈ Rg. (2.16)

Indeed,

0 =
∑

j

z j ∂
∂x j

(
∑

s,r

gsrv
swr

)
=

∑

s,r , j

gsrw
r z j∇ jv

s +
∑

s,r , j

gsrv
s z j∇ jw

r

︸ ︷︷ ︸
=0 for v∈Rg

so
∑

j z
j∇ jv

s is a linear combination of the vectors from Rg .
Using (2.16), we obtain that for any v ∈ Rg and any z (both of class Cr ) we have

∑

i, j

vi z j∇ j ui =
∑

j

z j∇ j

(
∑

i

uiv
i

)
−

∑

i, j

ui z
j∇ jv

i = 0 − 0 = 0.

Then, the covector whose components are given by
⎛

⎝
∑

j

z j∇ j u1, ...,
∑

j

z j∇ j un

⎞

⎠

satisfies (2.14), so its last n − m components are determined by its first m components via
(2.13). Since the first m components are zero, as we proved above, also the last n − m
components are zero.

Thus, we have shown that for any point p and for any initial values u1(p), ..., un(p)
such that Kernel(u1dx1 + ... + undxn) ⊇ Rg(p) there exists a unique 1-form ui (x) =
u1(x)dx1+ ...+un(x)dxn of classCr such that it is∇−parallel, moreover, this form has the
condition Kernel(u1dx1 + ... + undxn) ⊇ Rg(p) at every point. This form is automatically
closed. We take m linearly independent 1-forms of such type and denote by f 1, ..., f m their
primitive functions. At the point p, there exists a m × m symmetric nondegenerate matrix
ci j such that at p we have g = ∑m

i, j=1 ci j d f
i d f j . Since by construction g and each of the

forms d f i are parallel, this condition holds at any point so every coordinate system such that
the first m coordinates are the functions f 1, ..., f m is flat for this metric. ��
Corollary 2.11 Suppose g has constant rank and satisfies (2.4) everywhere. Suppose also
g ∈ Cr ,α with r ∈ N and 0 ≤ α ≤ 1, then there exists a flat coordinate system of class
Cr+1,α if and only if (2.10) holds.
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Proof Arguing as in proof of Theorem 2.9, we consider the system (2.15), whose solutions
correspond to the differentials of the first m flat coordinates. We know that the solutions
are of class Cr . We also see that the derivatives of the solutions are linear expression in the
solutions with coefficients at least of class Cr−1,α . Therefore, the derivatives of the solutions
are of class Cr−1,α and the solutions of (2.15) are therefore of class Cr ,α . This implies that
the flat coordinates are of class Cr+1,α . ��
Remark 2.12 The proof of Theorem 2.9 shows that the metric g has a flat coordinate sys-
tem if and only there exist functions f 1, ..., f m (with m = Rank(g)) such that g =∑m

i j=1 ci j d f
i d f j with constant ci j , furthermore the 1-forms d f i are parallel and the flat

coordinate system x1, . . . , xn can be chosen such that xi = f i for 1 ≤ i ≤ m. Furthermore,
if g of of class Cr ,α , then on can chose f i of class Cr+1,α

3 On flat coordinates for the pair (degenerate metric, symplectic
structure)

3.1 Existence of flat coordinates

In this section we obtain necessary and sufficient conditions for the existence of flat coor-
dinates for the bilinear form g + ω with nondegenerate skew-symmetric part ω. Obvious
necessary conditions are that g has flat coordinates and ω is a closed form. We will prove the
following result:

Theorem 3.1 Let g be a a symmetric (possibly degenerate) bilinear form such that there
exist flat coordinates for it and ω = ωi j be a symplectic form. Then, there exists a coordinate
system such that the components of both g and ω are constant if and only if the equation

∑

a,b,c,d

gia P
ab Pcdgd j∇kωbc = 0 (3.1)

holds for every i, j, k, where Pi j is the inverse matrix of ωi j

∑

s

Pisωs j = δij =
{
1 if i = j,

0 if i = j,

and ∇ is any connection compatible with g, i.e. satisfying (2.3). Condition (3.1) does not
depend on the chosen connection.

Remark 3.2 (i) The matrix P = Pi j , inverse of ωi j represents a contravariant tensor field.
This means that under a change of coordinates, the transformation rule is given by the rule
dual to (2.1):

P̃i j (y) =
∑

r ,s

Prs(x)
∂ yi

∂xr
∂ y j

∂xs
.

(ii) Another possible formulation of Condition (3.1) can be written using the (1, 1) tensor
J such that g(X , Y ) = ω(J X , Y ), that is J j

i = −∑
k gik P

k j . Using this tensor, we define
a differential (skew symmetric) 2-form α by α(u, v) := g(u, Jv). Condition (3.1) is then
equivalent to ∇α = 0.
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Before proving Theorem 3.1, we first give necessary and sufficient conditions for the
existence of a local coordinate system in which both g and P have constant components:

Theorem 3.3 Let g = gi j be a symmetric (possibly degenerate) bilinear form such that there
exist flat coordinates for it near a point p ∈ R

n and P = Pi j be a skew-symmetric tensor
field of rank n at p. Then, there exists a local coordinate system near p such that both g and
P have constant components if and only if the following conditions hold:

(1) Pi j generates a Poisson structure, that is

∑

s

Psk ∂

∂xs
Pi j + Psi ∂

∂xs
P jk + Psj ∂

∂xs
Pki = 0. (3.2)

(2) The following holds for every i, j, k:

∑

a,b

gai gbj
∂Pab

∂xk
+

∑

s

(
P s
i �ks, j + Ps

j�ks,i

)
= 0, (3.3)

where P s
i = ∑

c gic P
cs and Ps

j = ∑
c g jc Psc, and �i j,s are as in (2.2).

Proof Let us first observe that conditions (3.2) and (3.3) are geometric. Indeed (3.2) is just
the condition that the bilinear operation {·, ·} defined on functions by

{ f , h} :=
∑

i, j

∂ f

∂xi
∂h

∂x j
Pi j , (3.4)

satisfies the Jacobi identity and is therefore a Poisson bracket. The condition (3.3) says that
the tensor obtained by lowering both upper indexes in

∇k P
i j = ∂

∂xk
Pi j +

∑

s

(
�i
sk P

s j + �
j
sk P

is
)

, (3.5)

by gi j vanishes. In particular (3.3) does not depend on the choice of the connection �i
jk

satisfying (2.3). Furthermore, both (3.2) and (3.3) are tensorial conditions, that are obviously
satisfied in a flat coordinate system. So if there exists flat coordinates for both g and P , then
then (3.3) and (3.2) hold in any coordinate system.

In order to prove Theorem 3.3 in the other direction, let us consider smooth functions
f 1, ..., f m such that g = ∑m

i=1 εi (d f i )2 with ε1, ..., εm ∈ {−1, 1}. We assume that the
differentials of these functions are linearly independent in every points which implies m =
rank(g). Furthermore ∇(d f i ) =

(
∇k

∂ f i

∂x j

)
= 0. The existence of such functions follows

from the existence of flat coordinates.
We claim that (3.3) is equivalent to the condition that for any i, j ∈ {1, . . . ,m} the Poisson

bracket { f i , f j } is a constant. Indeed, using (3.5) and

∇k

(
∂ f i

∂xa

)
= ∂2 f i

∂xk∂xa
− �b

ka
∂ f j

∂xb
= 0,

123
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we obtain

∇k{ f i , f j } =
∑

a,b

∇k

(
Pab ∂ f i

∂xa
∂ f j

∂xb

)

=
∑

a,b

∇k(P
ab)

∂ f i

∂xa
∂ f j

∂xb
+

∑

a,b

Pab∇k

(
∂ f i

∂xa

)
∂ f j

∂xb
+

∑

a,b

Pab ∂ f i

∂xa
∇k

(
∂ f j

∂xb

)

= 0.

Next, consider the vector fields X f 1 , ..., X f m whose components are given by:

X i
f j =

∑

s

Psi ∂ f j

∂xs ,

(they are called the Hamiltonian vector fields of f j ). The condition (3.2) implies that they
commute. Indeed, the commutator of the vector fields X f μ and X f ν is given by

[X f μ, X f ν ]i =
∑

a,b,s

(
Pas ∂ f μ

∂xa
∂

∂xs

(
Pbi ∂ f ν

∂xb

)
− Pas ∂ f ν

∂xa
∂

∂xs

(
Pbi ∂ f μ

∂xb

))

=
∑

a,b,s

(
Pas ∂ f μ

∂xa
Pbi ∂ν f ν

∂xb∂xs
+ Pas ∂ f μ

∂xa
∂Pbi

∂xs
∂ f ν

∂xb

−Pas ∂ f ν

∂xa
Pbi ∂ν f μ

∂xb∂xs
− Pas ∂ f ν

∂xa
∂Pbi

∂xs
∂ f μ

∂xb

)

(3.2)=
∑

s

Psi ∂

∂xs
{ f μ, f ν} = 0.

Let us show that there exists a function f m+1 such that the differential d f m+1 is lin-
early independent (at the point in whose small neighbourhood we are working in) from
the differentials of the functions d f 1, ..., d f m and such that for every i = 1, ...,m
the function d f m+1(X f i ) is a constant. In order to do it, we consider the coordinates
(t1, ..., tm, zm+1, ..., zn) such that in these coordinates for every i = 1, ...,m the vector
field X f i is equal to

∂
∂t i

. The coordinates exist by the (simultaneous) Rectification Theorem.
Chose now an arbitrary 1-form θ with constant entries in this coordinate system which is

linearly independent from d f 1, ..., d f m . Clearly dθ is closed and we can choose f m+1 such
that d f m+1 = θ . It is clear from the construction that { f m+1, f i } = θ(X f i ) is constant for
all i .

We consider then the symmetric bilinear form

gext := g + (d f m+1)2.

It has constant rank equal to m + 1 and its entries are constant in the coordinate system
(x1 = f 1, ..., xm+1 = f m+1, xm+2, ..., xn). Moreover, the (natural analog of the) condition
(3.3) is satisfied for this metric. Indeed, this condition is equivalent to the condition that

{ f i , f j } =
∑

a,b

∂ f i

∂xa
∂ f j

∂xb
Pab

is constant for every i, j = 1, ...,m + 1, which is clearly the case by the construction.
Then, we can enlarge the rank of g further and in n−m such steps come to the coordinate

system f 1, ..., f n in which both the metric and the tensor P have constant components. ��
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We can now prove the main Theorem of the section.

Proof of Theorem 3.1 It is well known that the dual P of a symplectic form ω is a Poisson
structure, thus condition (3.2) is satisfied. We claim that (3.1) and (3.3) are equivalent condi-
tions. To prove this claim, recall that δij = ∑

s P
isωs j , is a parallel tensor for any connection,

therefore

0 = ∇k(δ
a
t ) = ∇k

(
∑

s

Pasωst

)
=

∑

s

(∇k P
as)ωst +

∑

s

Pas∇kωst ,

we thus have

∇k P
ab =

∑

t,s

Pbt (∇k P
as)ωst = −

∑

t,s

Pas Pbt∇kωst .

Lowering both upper indexes in this identity by g gives the equivalence (3.1) ⇔ (3.3).
Theorem 3.3 gives us now the existence of coordinates in which both g and P have constant
entries. Clearly ω is also constant in these coordinates. ��

The following example provides a simple instance where Theorem 3.3 implies the exis-
tence of flat coordinates for g + ω. However, directly establishing the existence of such
coordinates may not be straightforward.

Example 3.4 Let us consider the following tensors in R4 :

g = (dx1)2 + (dx2)2 and ω = dx1 ∧ dx2 + a · dx2 ∧ dx3 + dx3 ∧ dx4,

where a = a(x2, x3) is a smooth, non constant function of x2 and x3. Since g is constant
we will choose ∇ to be the standard connection on R4. A tensor is then parallel for ∇ if and
only its entries are constant. In matrix notations, the tensors g, ω and P are

G =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , � =

⎛

⎜⎜⎝

0 −1 0 0
1 0 −a 0
0 a 0 −1
0 0 1 0

⎞

⎟⎟⎠ , and P = �−1 =

⎛

⎜⎜⎝

0 1 0 a
−1 0 0 0
0 0 0 1

−a 0 −1 0

⎞

⎟⎟⎠ .

The tensor

GPG =

⎛

⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠

is constant. By Theorem 3.3, we know that there exists a local coordinate system in some
neighborhood of any point of R4 such that g, P and ω have constant components.

One should note however that

J = −PG = (GP)� =

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
a 0 0 0

⎞

⎟⎟⎠ .

is not constant, hence not parallel for the connection ∇.
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Remark 3.5 In the proof of Theorem 3.3, we have used several times the (simultaneous)
Rectification Theorem, which states that if X1, . . . , Xk are k linearly independent vector
fields in a domain ofRn such that [Xi , X j ] = 0, then there exist local coordinates x1, . . . , xn

in a neighborhood of any points such that Xi = ∂
∂xi

for i = 1, . . . , k. Furthermore, if the
fields are of class Cr ,α with r ≥ 1 and 0 ≤ α ≤ 1 , then the coordinates are also of class
Cr ,α . Indeed, by standard results from the theory of ordinary differential equations, we know
that a vector field of class Cr ,α generates a flow of class Cr ,α (see e.g. [11, Theorem 12.2]).
Therefore, the proof of Theorem 3.1, shows that if one assumes that g and ω are of class
Cr ,α with r ≥ max{(n − m), 1}, then there exists a coordinate system of class Cr+1+m−n,α

that is flat for both g and ω. The reason is that in the proof of Theorem 3.3, we loose one
class of regularity at each step of the construction (note that by Remark 2.12, the functions
f 1, . . . , f m are of classCr+1,α and the proof requires n−m steps, so the resulting coordinates
are indeed of class Cr+1+m−n,α). A better regularity result will be given in next section.

Finally, note that the arguments in our previous proof also show that the following state-
ment is true:

Theorem 3.6 Letω be a symplectic form of class defined on a domainU ⊂ R
n. Suppose there

exists f 1, . . . , f m ∈ Cr (U ) such that d f 1, . . . , d f m are everywhere linearly independent
and the Poisson brackets { f i , f j } are constant on U for any i, j ∈ {1, . . . ,m}. If r ≥ p =
n − m, then there exists a coordinate system y1, . . . , yn of class in some neighborhood of
any point in U such that yi = f i for i = 1, . . . ,m and ω has constant coefficients ωi j in
these coordinates.

Note in particular that the case m = 0 gives an alternative proof of Darboux’ Theorem.
We are not aware of such a proof in the literature.

3.2 On the regularity of flat coordinates for the pair (degenerate metric, symplectic
structure)

By Theorem 2.9 and Corollary 2.11, if the (degenerate) metric g is of class Cr ,α , then the flat
coordinate system, if it exists, is of class Cr+1,α . A similar phenomenon holds in the purely
skew-symmetric case, when g = 0 and ω is nondegenerate. Indeed, it has been proved in [4,
Theorem 18] that given a symplectic form ω of class Cr ,α with 0 < α < 1 and r ∈ N ∪ {0},
there exists local coordinate systems of class Cr+1,α in which ω has constant entries. In view
of these results, one might hope that if g andω are of classCr ,α , then a flat coordinate system
of class Cr+1,α should exists for g + ω. The following example ruins such hope.

Example 3.7 We consider R2 with the coordinates (x, y) and the bilinear form g + ω with
g = dx2 andω = h(x)dx∧dy with h = 0. Then, the condition (3.1) holds, and up to aCr ,α-
coordinate change, the flat coordinates are given by (x, u(x, y))with the function u satisfying
the equation ∂u

∂ y = h(x). The general solution of this equation is u(x, y) = û(x) + yh(x)
with an arbitrary function û(x). If h is not of classCr ,α , then u(x, y) is also not of classCr ,α ,
which implies that flat coordinates cannot be of class Cr+1,α .

The next result improves Theorem 3.1: if the bilinear form is of classCr ,α with 3 ≤ r ∈ N

and 0 < α < 1, then one can find flat coordinates of class Cr−2,α .

Theorem 3.8 Under the hypothesis of Theorem 3.1, if the condition (3.1) is fulfilled and the
bilinear form g + ω is of class Cr ,α with 3 ≤ r ∈ N and 0 < α < 1, then there exists a flat
coordinate system of class Cr−2,α .
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The rest of the section is devoted to proving this Theorem; the proof is quite involved and
can be omitted with no damage for the understanding of the rest of the article. For the proof,
we will need the following two statements, which are known in folklore, but for which we
did not find explicit references. We sketch the ideas leading to the proof.

Lemma 3.9 (Poincaré Lemma with parameters) Let ωs be a family of closed m-forms on a
ball Un with coordinates x1, ..., xn, where s = (s1, ..., sk) are some parameters. Assume
that the dependence of the components of ωs on x and on s is of class Cr ,α with r ∈ N and
0 ≤ α ≤ 1, then, there exists a family θs of (m − 1)-forms, such that their dependence on
(x, s) is of class Cr ,α and such that for every s we have dθs = ωs .

Indeed, the standard proof of the Poincaré Lemma (such as written in [1]) is based on
a purely algebraic construction followed by an integration along a selected coordinate. The
first operation obviously does not affect the regularity of the form with respect to any set
of parameters and the integration also preserves the Cr ,α regularity, thanks to the Lebesgue
dominated convergence Theorem.

Lemma 3.10 (Darboux Theorem with parameters) Let ωs be a family of symplectic 2-forms
on a ball U 2n with coordinates x1, ..., x2n, where s = (s1, ..., sk) are some parameters.
Assume that the dependence of the components ofωs on x and on s is of class Cr ,α with r ∈ N

and 0 ≤ α ≤ 1. Then, there exists a family φs of local diffeomorphisms φs : U 2n → R
2n

such that their dependence on (x, s) is of class Cr ,α and such that for every s the form ωs is
the pullback under φs of the standard symplectic form on R2n.

Idea of the proof: The proof via the “Moser trick” requires the Poincaré Lemma and stan-
dard facts about the existence and regularity of systems of ordinary differential equations.
This allows one to keep track of how the change of coordinate system depends on the param-
eter s. Indeed, the Moser trick is based on a construction of a (time depending) vector field
such that its flow at time t = 1 gives us the required diffeomorphism. The construction of
the vector field uses the Poincaré Lemma, and applying the previous Lemma one can check
that the vector field and its flow are of class Cr ,α with respect to both the space variables x
and the parameter s. See [21, Sect. 3.2] for more details on Moser’s proof.

Proof of Theorem 3.8 By Corollary 2.11 there exist functions f 1, ..., f m of classCr+1,α with
m = Rank(g) such that g = ∑m

i, j=1 ci j d f
i d f j for some constant nondegenerate symmetric

m ×m-matrix (ci j ). By (3.3), the Poisson bracket of any two these functions is constant. We
may assume without loss of generality that there exist k′, k′′ with 2k′ + k′′ = m such that

−{ f i , f i+k′ } = { f i+k′
, f i } = 1 for i ≤ k′

and such that for any other pair of functions f i its Poisson bracket is zero. Next, as in Sect.
3, we consider the commuting vector fields X f i ; they are of class C

r ,α . By the Rectification
Theorem, there exists a coordinate system (x1, ..., xn) of class Cr ,α such that the following
holds:

(A) The first 2k′ + k′′ coordinates are x1 = f 1, ..., x2k
′+k′′ = f 2k

′+k′′
.

(B) The first k′ vector fields X f i , i = 1, ..., k′, are given by: X f i = − ∂

∂xk′+i .

(C) The next k′ vector fields X f i , i = k′ + 1, ..., 2k′, are given by: X f i = ∂

∂xi−k′ .

(D) The next k′′ vector fields X f i , i = 2k′ + 1, ..., 2k′ + k′′, are given by: X f i = − ∂

∂xi+k′′ .
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Let us explain the existence of this coordinate system. Consider the local action ofR2k′+k′′

generated by the flows of commutative linearly independent vector fields X f 1 , ..., X f 2k′+k′′ .
Take a transversal n − 2k′ − k′′-dimensional submanifold to the orbits of this action such
that on this transversal the values of f 1, . . . , f 2k

′′
are equal to zero. We may do it without

loss of generality since adding a constant to f i changes nothing.
The functions f 2k

′+1, ..., f 2k
′+k′′

restricted to any transversal have linearly independent
differentials since they are constant on the orbits of the action ofR2k′+k′′

.We take a coordinate
system on the transversal such that its first k′′ coordinates are f 2k

′+1, ..., f 2k
′+k′′

.
Next, consider the coordinates (t1, ..., t2k

′+k′′
, y2k

′+k′′+1, ..., yn) coming from the Recti-
fication Theorem, constructed by these vector fields, by this transversal, and by this choice of
the coordinates on the transversal. Recall that these coordinates have the following properties:
The vector fields X f i are the vectors

∂
∂t i

.

The coordinates (t1, ..., t2k
′+k′′

, y2k
′+k′′+1, ..., yn), after the following reorganisation and

proper changing the signs are as we require in (A–D): we consider the coordinates

(x1 = tk
′+1, ..., xk

′ = t2k
′
, xk

′+1 = −t1, ..., x2k
′ = −tk

′
, x2k

′+1 = y2k
′+k′′+1, ..., x2k

′+k′′

= y2k
′+2k′′

,

x2k
′+k′′+1 = −t2k

′+1, ..., x2k
′+k′′ = −t2k

′+k′′
, x2k

′+2k′′+1 = y2k
′+2k′′+1, ..., xn = yn).

Let us explain that by the construction of the coordinates the first m = 2k′ + k′′ coordinates
are the functions f 1, ..., f m as we require in (A). Indeed, at our transversal the values of the
coordinates x1, ..., x2k′ are zero and therefore coincide with that of f 1, ..., f 2k

′
. Next, by the

assumptions

X f i ( f
j ) = Pi j = { f i , f j } =

⎧
⎨

⎩

−1 if 1 ≤ i ≤ k′ and j = k′ + i,
1 if 1 ≤ j ≤ k′ and i = k′ + j,
0 otherwise.

implying (A). Finally, observe that the i th column of P is the vector −Xxi , which gives us
(B,C, D).

In this coordinate system the matrix of the Poisson structure P is given as follows (since
P is skew-symmetric it is sufficient to describe the entries Pi j with i > j only): Its first k′
columns are the vectors ∂

∂xk′+1 , ...,
∂

∂x2k′ . The next k
′ columns are the vectors− ∂

∂x1
, ...,− ∂

∂xk′ .

The next k′′ columns are ∂

∂x2k′+k′′+1 , ...,
∂

∂x2k′+2k′′ . Moreover, all entries of the matrix Pi j

areof class Cr−1,α and independent of the coordinates x1, ..., x2k
′
and of the coordinates

xm+1, ..., xm+k′′
. Indeed, it is known and follows from the Jacobi identity that any Poisson

structure is preserved by the flow of anyHamiltonian vector field. Then, our Poisson structure
P is preserved by the flows of the vector fields ∂

∂x1
, ..., ∂

∂x2k′ and ∂

∂x2k′+k′′+1 , ...,
∂

∂x2k′+2k′′

implying that its entries are independent of x1, ..., x2k
′
and of x2k

′+k′′+1, ..., x2k
′+2k′′

.
For example, the general form of such a matrix Pi j with k′ = 1, k′′ = 2, n = 8 is as

follows:

Pi j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 1 0 0 P56 P57 P58

0 0 0 1 −P56 0 P67 P68

0 0 0 0 −P57 −P67 0 P78

0 0 0 0 −P58 −P68 −P78 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.6)
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where the components Pi j with 4 < i < j ≤ 8 are functions of the variables x3, x4, x7, x8

only.
Calculating the inverse matrix (ωi j ) = (Pi j )−1 we see that in these coordinates it is given

by

ω = ∑k′
i=1 dx

i ∧ dxk
′+i + ∑2k′+k′′

i=1+2k′ dxi ∧ dxk
′′+i + ∑2k′+k′′

i, j=1+2k′ ui j dxi ∧ dx j

+∑2k′+k′′
i=2k′+1

∑n
μ=2k′+2k′′+1 viμdxi ∧ dxμ + ∑n

μ,ν=2k′+2k′′+1 wμνdxμ ∧ dxν .
(3.7)

The functions ui j , viα and wαβ are explicit algebraic expressions in the entries of Pi j .

Therefore, they are of class Cr−1,α and are independent of the coordinates x1, ..., x2k
′
and of

the coordinates x2k
′+k′′+1, ..., x2k

′+2k′′
. Note also that the (n−2k′ −2k′′)× (n−2k′ −2k′′)-

matrix wαβ is skew-symmetric and nondegenerate.
For example, the inverse of the matrix (3.6) is as follows:

ωi j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 u 1 0 v37 v38
0 0 −u 0 0 1 v47 v48
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 −v37 −v47 0 0 0 w

0 0 −v38 −v48 0 0 −w 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.8)

where the functions vi j , u, w may depend on x3, x4, x7, x8 only and are of class Cr−1,α .
Let us view now the last sum in (3.7), namely ω̃ = ∑n

α,β=2k′+2k′′+1 wμνdxμ ∧ dxν,

as a 2-form on a (n − 2k′ − 2k′′)-dimensional neighborhood with local coordinates
(x2k

′+2k′′+1, ..., xn). The coordinates (x1, ..., x2k
′+2k′′

) are now viewed as parameters and
we actually know that the form ω does not depend on the coordinates x1, ..., x2k

′
and on the

coordinates x2k
′+k′′+1, ..., x2k

′+2k′′
, so effectively the parameters are x2k

′+1, ..., x2k
′+k′′

. The
form ω̃ is closed and non-degenerate; i.e., it is a symplectic form.

By Lemma 3.10, there exists a coordinate change (depending on the parameters)

x2k
′+2k′′+1

old = x2k
′+2k′′+1

new (x2k
′+1, ..., x2k

′+k′′
, x2k

′+2k′′+1
old , . . . , xnold), · · ·

xnold = xnnew(x2k
′+1, ..., x2k

′+k′′
, x2k

′+2k′′+1
old , ..., xnold)

(3.9)

such that after this coordinate change ω̃ has constant entries. Then, after the coordinate
change of class Cr−1,α which leaves the first coordinates (x1, ..., x2k

′+2k′′
) unchanged and

transforms the remaining coordinates (x2k
′+2k′′+1, ..., xn) by the rule (3.9), we achieve that

the components wμ,ν in (3.7) are now constants. Note that this coordinate change does
otherwise not affect the structure of ω given by (3.7).

Next, we use that the form (3.7) is closed. The coefficient of dxi ∧dxμ∧dxν in dω is given

by
(

∂viμ
∂xν − ∂viν

∂xμ

)
for any i ∈ {2k′+1, ..., 2k′+k′′} andμ, ν ∈ {2k′+2k′′+1, . . . , n}.We thus

see that for every i = 2k′+1, ..., 2k′+k′′ the 1-form θi := ∑n
μ=2k′+2k′′+1 viμdxμ, viewed as

a 1-form on a neighborhood of dimension n−2k′−2k′′ with coordinates (x2k
′+2k′′+1, ..., xn),

with coefficients depending on parameters x2k
′+1, ..., x2k

′+k′′
, is closed. Then, by Lemma

3.9, there exist functions Vi of class Cr−2,α such that ∂Vi
∂xμ = viμ.

We consider now the following coordinate change of class Cr−2,α . The coordinates
x1, ..., x2k

′+k′′
and x2k

′+2k′′+1, ..., xn remain unchanged and the coordinates x2k
′+k′′+1, ...,
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x2k
′+2k′′

are changed by the rule:

x2k
′+k′′+i

old = x2k
′+k′′+i

new + Vi . (3.10)

This coordinate change does not affect the previous improvements; that is: The structure of
ω is still given by (3.7) and the terms wμν are still constant. But now the terms viμ are zero.

Finally, we consider the term
∑2k′+k′′

i, j=2k′+1 ui j dx
i ∧ dx j of (3.7). Calculating the differ-

ential of the 2-form ω we see that ui j may depend on the coordinates x2k
′+1, ..., x2k

′+k′′

only, and that the 2-form
∑2k′+k′′

i, j=2k′+1 ui j dx
i ∧ dx j viewed as a 2-form on a k′′-dimensional

neighborhood with coordinates x2k
′+1, ..., x2k

′+k′′
is closed. The components of this form

are of class Cr−3,α , and by [11, Theorem 8.3], there exist functions U2k′+1, ...,U2k′+k′′ , of
class Cr−2,α , depending on the coordinates x2k

′+1, ..., x2k
′+k′′

such that

2k′+k′′∑

i, j=2k′+1

ui j dx
i ∧ dx j =

2k′+k′′∑

i=2k′+1

d
(
Uidx

i
)

.

We use the functions Ui in the last coordinate change: the coordinates x1, ..., x2k
′+k′′

and
x2k

′+2k′′+1, ..., xn remain unchanged and the coordinates x2k
′+k′′+1, ..., x2k

′+2k′′
are changed

by the rule:

x2k
′+k′′+i

old = x2k
′+k′′+i

new +Ui . (3.11)

This coordinate change does not affect the previous improvements; i.e., the structure of ω

is still given by (3.7), the terms wμν are still constant, the terms viμ are still zero but now
also the terms ui j are zero. Thus, the coordinates are flat for g and for ω. This completes the
proof of the Theorem. ��

4 The general case

In this section,we consider a bilinear form g+ωwhere both the symmetric and skew-symetric
part may be degenerate.

4.1 The case when the symmetric part is zero.

We first assume ω is degenerate and g = 0, and discuss the existence of a flat coordinate
system.

Theorem 4.1 There exists a smooth flat coordinate system for a given smooth skew-symmetric
2-form ω = ωi j = ∑

i< j ωi j dxi ∧ dx j if and only if ω has constant rank and dω = 0.

Although this theorem is known, see e.g. [1, Theorem 5.1.3], we give a short proof for
selfcontainedness and because we use certain ideas of the proof later.

Proof Ifω has maximal rank, then this result is the classical Darboux Theorem. Let us reduce
to it the case of smaller rank. We denote by

Rω = {v ∈ TxM | ω(v, ·) = 0} (4.1)
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the kernel of ω. Because ω has constant rank,Rω is a smooth distribution. Furthermore, the
condition dω = 0 implies that it is integrable; indeed, for any vector fields u, v ∈ Rω and
arbitrary vector field w we have

0 = Lv (ω(u, w)) = (Lvω) (u, w) + ω([v, u], w) + ω(u, [v,w]).
The first term on the right hand side vanishes because of the Cartan magic formula, the third
term because u, w ∈ Rω. Then, [v, u] ∈ Rω and the distribution is integrable.

Assume now the distribution has dimension n − p, where p = rank(ω), and consider a
coordinate system x1, ..., x p , y1, ..., yn−p such that the distribution Rω is spanned by the
vector fields ∂

∂ y1
, ..., ∂

∂ yn−p . In this coordinate system, we have

ω =
∑

i< j≤p

ωi j (x) dx
i ∧ dx j .

Since dω = 0, the components ωi j do not depend on the variables y1, ..., yn−p (indeed,
suppose for instance that ω12 depends on y1 then dω would contain the nonzero term
∂ω12
∂ y1

dy1 ∧ dx1 ∧ dx2 which does not cancel with any other term). The problem is then
reduced to the classical Darboux Theorem in dimension p, which completes the proof of the
Theorem. ��
Remark 4.2 It has been proved in [4, Theorem 18], see also [11, Theorem 14.1], that if ω is a
symplectic form (that is non degenerate and close) of class Cr ,α with r ∈ N and 0 < α < 1,
then the previous result still holds and the obtained flat coordinates are of class Cr+1,α .

For a closed 2-form of constant rank < n, one can still find flat coordinates of class Cr ,α .
See [5, Theorem 3.2] and the extended discussion in [11, §14.3]. The degenerate case is
proved by reducing it to the symplectic case, taking into account that factoring out the kernel
of ω reduces one degree of regularity,

4.2 A necessary and sufficient condition in the general case

We consider the tensor field gi j +ωi j with gi j symmetric and ωi j skew-symmetric and study
the existence of a flat coordinate system. This is equivalent to the existence of a symmetric
affine connection ∇ = (�i

jk) such that its curvature is zero and such that both g and ω are
parallel, meaning that

∂gi j
∂xk

=
∑

s

gs j�
s
ik + gis�

s
jk (4.2)

∂ωi j

∂xk
=

∑

s

ωs j�
s
ik + ωis�

s
jk . (4.3)

We view (4.2, 4.3) as a linear inhomogeneous system of equations where the unknown
quantities are the �i

jk . Algebraic compatibility conditions of each of the Eqs. (4.2) and (4.3)
have a clear geometric interpretation. Indeed, as we understood in Sect. 2, the algebraic
consistency condition of (4.2) is (2.4) and the freedom in choosing � satisfying (4.2) once
(2.4) is satisfied is the addition of (possibly several expressions of the form)

vi Tjk with v ∈ Rg and Tjk = Tkj . (4.4)

Concerning the second set of equations, we have the following
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Lemma 4.3 Suppose ω is of class C1, then there exists �k
i j such that �k

i j = �k
ji and (4.3)

holds if and only if ω is a closed 2-form.

Proof If ω is of class C1,α for some 0 < α < 1, then the Lemma immediately follows from
Theorem 4.1. Since we only assume the C1-regularity of ω, a purely algebraic argument is
needed. Observe first that a necessary condition is

∂ωi j

∂xk
+ ∂ω jk

∂xi
+ ∂ωki

∂x j
= 0. (4.5)

Indeed, if one relabels the index in (4.3) by the schemes (i → j → k → i) and (i →
k → j → i), and add the obtained equations to the initial equation, one obtains (4.5). The
geometric interpretation of (4.5) is clear: it holds at every point if and only if ω is a closed
form.

Observe now that, assuming (4.5) holds, the system (4.3) is algebraically equivalent to
the following system of linear equations:4

∑

s

ωis�
s
jk = 1

3

(
∂ωi j

∂xk
+ ∂ωik

∂x j

)
+ Ti jk, (4.6)

where Ti jk is totally symmetric. This linear system is always compatible if (4.5) holds.
Indeed, the compatibility condition for the equations (4.6) is as follows: for any v ∈ Rω the
expression

∑

s

vs
(

∂ωs j

∂xk
+ ∂ωsk

∂x j

)

should be symmetric in j ←→ k. We see that this condition is always fulfilled. We conclude
that (4.5) are sufficient conditions for compatibility of (4.3). ��

Unfortunately, we do not have an easy geometric interpretation for compatibility condi-
tions of the whole system (4.3, 4.2).

We now state our main result:

Theorem 4.4 Let g + ω be a smooth (here we assume C∞ for simplicity) bilinear form on
a domain U ⊂ R

n (where g is symmetric and ω is skew-symmetric). Suppose there is a flat
coordinate system for g and ω, then there exist smooth functions �i

jk such that both (4.2) and
(4.3) are fulfilled; in particular ω is closed and has constant rank. Moreover, (2.10) holds.
Conversely, if there exist smooth functions �i

jk such that (4.2) and (4.3) are fulfilled and
(2.10) holds, then there exists a flat coordinate system.

Proof The direction “⇒” is clear. Indeed, the conditions (4.2) and (4.3) are geometric and
are trivially satisfied in a flat coordinate system for �i

jk = 0, therefore they hold in any
coordinate system. Let us prove the non trivial direction.

We assume the existence of smooth functions �i
jk defined onU , such that (4.2) and (4.3)

hold. We view these functions as coefficients of a connection ∇. The parallel transport with
respect to this connection preserves g and ω. In particular g and ω have constant rank. We
set m = rank(g) and p = rank(ω). We also assume that condition (2.10) holds.

Our first step is to show that one may assume without loss of generality, Rg ∩ Rω = {0}
at one and therefore at every point. Indeed, it is integrable and we can consider a coordinate
system x1, ..., xk, y1, ..., yn−k such that Rg ∩ Rω is spanned by ∂

∂ y1
, ..., ∂

∂ yn−k . We know

4 In the symplectic case (when ω is nondegenerate) (4.6) is known [7].
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that both g and ω are preserved along the flow of any vector field v ∈ Rg ∩ Rω. Indeed, for
g we proved this in Sect. 2 and for ω in Sect. 4.1. Then, in the coordinate system g and ω are
given by

g =
k∑

i, j=1

gi j dx
i dx j , ω =

∑

i< j≤k

ωi j dx
i ∧ dx j

such that gi j and ωi j do not depend on the y-coordinates. We see that the situation is reduced
to an analogous situation on a k-dimensional manifold such that Rg ∩ Rω is trivial. Note
that the existence of smooth functions �i

jk satisfying (4.3) and (4.2) is not affected by this
reduction since the freedom (4.4) with v ∈ Rg ∩ Rω, affects neither (4.2) nor (4.3). For the
rest of the proof we may and will assume that Rg ∩ Rω is trivial.

Because of (4.3), the distribution Rω is integrable and invariant under parallel transport.
We assume that ω has rank p, so Rω has dimension n − p. Taking in account (2.10) and
Theorem 2.2 we obtain the local existence of functions f 1, ..., f m , where m = rank(g) and
such that the differentials d f i are linearly independent and parallel, and

g =
m∑

i, j=1

ci j d f
i d f j , (4.7)

where c = (ci j ) is a constant nondegenerate symmetric m × m matrix. Without loss of
generality, we may also assume that

(a) The functions f 1, ..., f r have the property Kernel(d f i ) ⊇ Rω.

(b) No nontrivial linear combination of the remaining functions f r+1, ..., f m has this prop-
erty.

Indeed, if a function f has property ∇i∇ j f = 0 at all points, then the property
Kernel(d f ) ⊇ Rω at one point x implies this property at all points. To see it, we chose a
smooth path c(t) joining a base point x to an arbitrary point y and denote by v(t) ∈ Rω(c(t))
the parallel transport of the vector v ∈ Rω(x) along this curve. We then have

d

dt

(
d fc(t)(v(t))

) =
∑

k

∂

∂xk
(d f (v))

dck

dt
=

∑

s,k

(
vs∇k∇s f + ∂ f

∂xs
∇kv

s
)
dck

dt
= 0 + 0 = 0.

Observe now that the hypothesisRg ∩Rω = {0} implies that r ≤ p and n = p +m − r .
Furthermore the functions f r+1, ..., f m restricted to any integral submanifold of Rω define
local coordinates on this submanifold. Indeed, no nontrivial linear combination of their
differentials annihilates Rω.

We denote by Û = U/Rω the quotient manifold of U by the flow of all vector fields in
Rω (we identify points ofU lying on the same integral submanifold of the distributionRω).
The manifold Û is of dimension p = rank(ω), let us fix some coordinates (z1, . . . , z p) on
Û (concretely they are provided by any coordinate system on a manifold transverse to Rω).

Observe that the functions f 1, . . . , f r are constant on any integral manifold of Rω and
therefore induce well defined functions on Û ; we denote them by f̂ 1, . . . , f̂ r . Likewise, the
form ω induces a well defined 2-form ω̂ on Û , which is clearly a symplectic form on Û . We
denote by P̂ the dual Poisson structure of ω̂. We claim that for any 1 < μ, ν ≤ r , the Poisson
bracket

{ f̂ μ, f̂ ν} =
p∑

i, j=1

P̂i j ∂ f̂ μ

∂z j
∂ f̂ μ

∂z j
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is constant. Indeed, this quantity is scalar and constructed by linear algebraic operations from
the triple (ω, d f μ, f ν) (viewed now as objects on U ) and all the objects in this triple are
parallel with respect to ∇.

We then know from Theorem 3.1, that there exists a coordinate system y1, . . . , y p on Û
such that y j = f̂ j for j = 1, . . . , r and ω̂ has constant components in this coordinate. We
thus have proved that the coordinate system on U defined by

(x1, . . . , xn) = ( f 1, . . . , f r , yr+1, . . . , y p, f r+1, . . . , f m)

is flat for both g and ω. ��

We conclude this section with a few remarks:

Remark 4.5 (i) Let us stress that verifying the hypothesis of Theorem 4.4 requires only
differentiation and linear algebraic operations. The main computational difficulty is to
decide if the combined linear system containing (4.2) and (4.3) is solvable.

(ii) In the proof of Theorem 4.4we assumed that all objects are as smooth as we need for the
proof. We need them to be Cr ,α with r ≥ 4 and 0 < α < 1. The flat coordinate system
is then of class Cr−3,α . We do not have an example demonstrating that the regularity
is optimal, and in fact rather tend to believe that it is not optimal.

(iii) The proof of Theorem 4.4 shows that if g has constant rank 1, then there locally exists
flat coordinates for g + ω if and only if the following conditions are satisfied:

(a) g = ±θ ⊗ θ for a closed 1-form θ .
(b) ω is closed and has constant rank.
(c) Rω ∩ Rg has constant dimension.

5 Ideas used in our proofs, conclusion and outlook

We solved, for an arbitrary bilinear form, the problem stated byRiemann: we found necessary
and sufficient conditions for a bilinear form to have constant entries in a local coordinate
system.Our results generalize the special cases solved byRiemann himself (when the bilinear
form is symmetric and nondegenerate) and by Darboux (when it is skew-symmetric and
nondegenerate).

Our proofs in the smooth case use methods and, whenever possible, notations which
were available to, and used by, Riemann, Darboux and other fathers of differential geometry.
These methods include basic real analysis, basic linear algebra and the standard results on
the existence and uniqueness of solutions of systems of ordinary differential equations.

We also employ a fundamental idea used in particular byRiemann in [22], andwhich is one
of themain reasons formany successful applications of differential geometry inmathematical
physics: if one works with geometric (covariant, in the language used in physics) objects,
then one can work with them in a coordinate system which is best adapted to the geometric
situation.

The ideas behind the proofs are based on concepts that appeared later. Let us comment on
them and relate our proofs to these concepts.

The first one is the concept of parallel transport, it was introduced by Levi-Civita and
was effectively used by Elie Cartan. Recall that for any connection ∇ = (�i

jk) the parallel
transport along the curve c : [0, 1] → M is a linear mapping τc : Tc(0)M → Tc(1)M . It it
defined via the differential equation

∑
s
dcs (t)
dt ∇sV i (c(t)) = 0 and can also be extended to

123



Bernhard Riemann 1861 revisited... Page 23 of 25 12

arbitrary tensors replacing the differential equation by
∑

s
dcs (t)
dt ∇s P

i1..ik
j1... jm

(c(t)) = 0. The
parallel transport is compatible with all geometric operations on tensors.

The condition that a (possibly, degenerate) metric g is parallel with respect a given con-
nection ∇ = (�i

jk) is equivalent to (2.3), and it means that the parallel transport preserves
the metric. This implies that the distribution Rg = ker(g) is invariant by parallel transport.
It is then integrable and the flow generated by any vector fields belonging to this distribution
preserves g (in other words, the vector fields inRg are Killing vector fields). This was a key
argument to reduce the proofs of Theorems 2.2 to the nondegenerate case, which was solved
already by Riemann.

A similar reasoning shows that in the situation discussed in Theorem 4.4 one can “quotient
out” first the joint kernel of ω and g and then the kernel of ω, so the situation is reduced to the
one discussed in Theorem 3.3. Indeed, the parallel transport preservesRg (Rω, respectively)
so the distributions of Rg (Rω, respectively) are integrable; moreover, g (ω,respectively) is
preserved along the flow of any vector fields lying inRg (Rω, respectively). This allowed us
to reduce the proofs of 4.1 and Theorems 3.3 to the Darboux Theorem and to Theorem 3.3.

The second concept is the idea of the holonomy (group). This concept was successfully
used already by Cartan and is still an active object of study. For an affine connection ∇ =
(�i

jk) and a fixed point p, the holonomy group generated by parallel transports along curves
c : [0, 1] → M starting and ending at p (the so-called loops). The situation studied in
Theorem 2.2 suggests that we consider the holonomy group restricted to the anihilator

Ro(p) := {ξ ∈ T ∗
p M | Kernel (ξ) ⊇ Rg(p)}.

This space is invariant with respect to parallel transport along the loops since it is defined
viaRg which is parallel and therefore is invariant. The Ambrose-Singer Theorem [2], states
that the holonomy group is generated by the curvature and is trivial if the curvature is zero.
Now, (2.10) implies that the curvature (of the connection ∇ viewed as the connection on the
subbundle Ro of T ∗M) vanishes. This implies the existence of sufficiently many parallel 1-
forms belonging to this bundle. They are automatically closed and give rise to flat coordinates.

The third concept came from the theory of integrable Hamiltonian systems and was crys-
tallized in the 1970’s; the standard references are [1, 3]. The key observation is that for any
two functions f , h we have [X f , Xh] = X{ f ,h}, where { , } is a Poisson structure and Xh ,
X f are the Hamiltonian vector fields corresponding to f and h. The condition that { f , h} is
constant implies then that vector fields X f and Xh commute, which was the key point in the
proof of Theorem 3.3.

We havemostly used the “old-fashioned” language and notations for two reasons.Wewish
our proofs to be available to any mathematician, even without special training in differential
geometry and integrable systems. Our declared goal is to present the proofs in the form the
fathers of Riemannian Geometry and Symplectic Geometry could understand them, and we
believe that we achieved this goal, at least partially. In addition, we expect that our results
may have applications outside of differential geometry.

The second reason is that we aim at understanding the lowest regularity assumptions on
g and ω under which our results holds. The “modern” differential geometrical ideas touched
in this section require, as a rule, higher regularity than it is necessary. The point is that the
so-called “invariant notations” that are highly successful in dealing with global differential
geometry on manifolds are, by nature, non-transparent about regularity.

For example, the proof of Riemann works under the assumption that the metric is of class
C2 (of course for Riemann himself all functions were real analytic by definition). Later,
alternative proofs appeared which allowed to find the optimal regularity assumption for the
result of Riemann, see e.g. [6, 16, 18, 19]. Other examples include the Darboux theorem
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(under optimal regularity assumptions it was proved in [4] and [11]) and also the optimal
regularity results for isometries of Riemannian (see e.g. the appendix to [20] for an overview)
and Finsler metrics [17, 20].

As an illustration, our proof of Theorem 3.3 requires the bilinear forms to be of rather high
regularity, see Remark 3.5. By contrast, the proof of Theorem 3.8 produces flat coordinates
of class Cr−2,α .

Though our results are local, they may open a door to a global investigation of flat bilinear
forms. We already have several relatively easy global results, Corollaries 2.7 and 2.8. We
also allow ourself to formulate the following conjecture:

Conjecture 5.1 Suppose a closed manifold M has a flat (possibly degenerate) non-negative
definite metric g of rank m. Then, it is finitely covered by a manifold which is diffeomorphic
to a fiber bundle over a m-dimensional torus.

Note that in the nondegenerate case m = n = dim M , the Conjecture is equivalent to
Bieberbach’s Theorem, see e.g. [8]. In this situation one can find m parallel forms θ1, ..., θm
on a finite cover M̃ of M such that the lifted metric g̃ writes as g = ∑m

i, j ci jθiθ j , with
a constant symmetric positively definite matrix ci j . Note also that by [10], if a manifold
admits m closed forms such that in every point they are linearly independent, the manifold
is diffeomorphic to a fibre bundle over a m-torus.

Note also that some of our results can be easily generalized for the nonflat case. Say,
one can define degenerate metrics of constant curvature κ ∈ R by the equation Ri jk� =
κ(gi�g jk − gikg j�), and degenerate symmetric space by the formula ∇m Ri jk� = 0. Neither
formula depends on the freedom (2.6).
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