Abstract

New detectors for future high-energy physics experiments will operate under unprecedented radiation dose rates. This condition requires improved radiation resistance on detector equipment. The consequent development of new materials, particularly optical materials, becomes crucial. In this work, optical components mean reflectors, light absorbers, or light transmitters. These materials, reflectors or light transmitters, are needed in detectors primarily to collect and transmit light from the scintillator to the PMT. When it comes to light absorbers, they are required to protect the detector from light from the environment. This work aims at studying selected optical materials with improved properties (functional and optical) and radiation resistance that can be used in new detectors at the Large Hadron Collider (LHC) experiments. Light transmittance, optical reflection, thermal characteristics, and radiation resistance were investigated to evaluate the proposed materials.We have developed optical systems based on siloxanes to continue our previous developments of radiation-resistant materials for radiation detectors. We also report a study of several reflective materials and light absorber introduced into the siloxane. Investigations have shown that these systems are radiation resistant to doses of at least 1 MGy.Tested samples were irradiated at linear electron accelerator LUE-40 in the National Science Center Kharkiv Institute of Physics and Technology (KIPT). The accelerated electrons were sent to the heavy complex targets to deliver the irradiation with gamma or neutron fluxes. The consequent gamma and neutron fluxes and doses were estimated with the GEANT4 simulation.

Details