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ABSTRACT

One approach for describing spatiotemporal chaos is to study the unstable invariant sets embedded in the chaotic attractor of the system.
While equilibria, periodic orbits, and invariant tori can be computed using existing methods, the numerical identification of heteroclinic and
homoclinic connections between them remains challenging. We propose a robust matrix-free variational method for computing connecting
orbits between equilibrium solutions. Instead of a common shooting-based approach, we view the identification of a connecting orbit as a
minimization problem in the space of smooth curves in the state space that connect the two equilibria. In this approach, the deviation of a
connecting curve from an integral curve of the vector field is penalized by a non-negative cost function. Minimization of the cost function
deforms a trial curve until, at a global minimum, a connecting orbit is obtained. The method has no limitation on the dimension of the
unstable manifold at the origin equilibrium and does not suffer from exponential error amplification associated with time-marching a chaotic
system. Owing to adjoint-based minimization techniques, no Jacobian matrices need to be constructed. Therefore, the memory requirement
scales linearly with the size of the problem, allowing the method to be applied to high-dimensional dynamical systems. The robustness of the
method is demonstrated for the one-dimensional Kuramoto–Sivashinsky equation.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143923

The chaotic evolution of a dynamical system can be described
in terms of the non-chaotic unstable invariant solutions embed-
ded within its chaotic attractor. Heteroclinic and homoclinic
orbits between these invariant solutions mediate the evolution
of the chaotic trajectory from the vicinity of one invariant solu-
tion to the vicinity of another one. Despite their importance for
a complete dynamical description of the chaotic dynamics, the
identification of connecting orbits has remained a computational
challenge. We introduce a robust and memory-efficient method
for computing connecting orbits between equilibrium solutions.

I. INTRODUCTION

A broad spectrum of physical systems, from fluid flows1 to non-
linear optics2,3 and suspensions of motile micro-organisms,4,5 exhibit
spatiotemporally chaotic dynamics. In the framework of dynami-
cal systems, the spatiotemporal chaos is viewed as the evolution of
a chaotic trajectory in the state space of the governing equations.

Embedded in the state space are non-chaotic, time-invariant solu-
tions including equilibria, periodic orbits, and invariant tori. These
invariant solutions are dynamically unstable so that the chaotic
trajectory visits them transiently, yet recurringly. Spatiotemporal
chaos can, thus, be viewed as a walk through a forest of invariant
solutions that form the elementary building blocks of the chaotic
solution.6–8 Consequently, individual invariant solutions are able to
capture essential properties of the observed spatiotemporal struc-
tures, and, collectively, they promise an avenue toward quanti-
tatively predicting statistical properties of the chaotic dynamics.
The increasing computational resources and algorithmic advances
have enabled these concepts, originally developed in the context
of low-dimensional chaotic dynamical systems, to be applied to
high-dimensional problems including transitional turbulence where
descriptions based on invariant solutions have proven to be particu-
larly useful.9–14

While equilibria and periodic orbits form the building blocks
of the dynamics, the chaotic evolution from the neighborhood of
one unstable invariant solution to another is mediated by connecting
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orbits. These hetero- and homoclinic connections provide dynamic
pathways between different periodic orbits or equilibria within the
chaotic attractor. Therefore, a complete dynamical description of the
chaotic dynamics in terms of state-space structures requires to both
identify equilibria, periodic orbits, and invariant tori embedded in
the chaotic attractor and compute connecting orbits between them.
In the context of fluid dynamics, for example, Kawahara and Kida15

and van Veen and Kawahara16 use connecting orbits to explain the
turbulent bursting in plane Couette flow; Suri et al. study the net-
work of connecting orbits that underpins the transient dynamics
in a quasi-two-dimensional Kolmogorov flow;17 Reetz and Schnei-
der characterize the time-dependent dynamics of inclined layer
convection using connecting orbits between coexisting invariant
solutions;18 and De Jesús and Graham discuss a network of dynam-
ically connected relative periodic orbits that organizes the attractor
in a two-dimensional Kolmogorov flow.19

We specifically focus on connecting orbits between equilibrium
solutions. Such connecting orbits have been identified as dynami-
cally relevant in fluid systems,17,18,20 and they are involved in global
bifurcations when, for instance, a periodic orbit bifurcates off a
homoclinic orbit or a heteroclinic cycle.21,22 Connecting orbits are
located within the intersection of the unstable manifold of one
equilibrium with the stable manifold of another or the same equi-
librium solution if they are of heteroclinic or homoclinic type,
respectively. In the vicinity of an equilibrium solution, a trajec-
tory approaches/departs the equilibrium along its stable/unstable
manifold exponentially in time. Consequently, the time required to
traverse the entire connecting orbit is not finite. This infinite passage
time makes computing connecting orbits very challenging.

One approach to handle the computational challenge of the
infinite passage time is to truncate the connecting orbit and com-
pute part of the orbit that is traversed in finite time. Under favorable
conditions, the truncated orbit can be computed using shooting
methods. Geometrically, the truncation approach searches for an
initial condition on the unstable manifold of the origin equilibrium
whose resulting trajectory lands on the stable manifold of the desti-
nation equilibrium. Due to their curvature, parametrizations of sta-
ble and unstable manifolds are usually not accessible. Consequently,
they need to be approximated locally by the corresponding tangent
spaces associated with the origin and destination equilibrium. Prac-
tically, a connecting orbit is, thus, approximated by identifying an
initial condition in the intersection of the unstable tangent space
of and a hypersphere around the origin equilibrium, which after
forward time integration reaches a distance below a chosen thresh-
old from the destination equilibrium.23 If the hypersphere is chosen
small enough, the unstable tangent space accurately approximates
the unstable manifold, and thus, the obtained trajectory accurately
represents a connecting orbit.

Even if the unstable manifold can be accurately approximated
by the unstable tangent space, a systematic search for an initial
condition that eventually reaches the destination equilibrium is a
formidable task, especially for a chaotic system where nearby trajec-
tories diverge exponentially with time. When the unstable manifold
at the origin equilibrium solution is two-dimensional, an exhaus-
tive search strategy can be employed.11,17,24,25 In this case, the search
space is a circle on the unstable tangent space with an angle being
the only variable. However, when the unstable tangent space at the

origin equilibrium has more than two dimensions, the search space
is too large for an exhaustive search. To improve the dimension-
ality drawback, Farano et al.26 propose an adjoint-based variational
method for finding a state on an energy shell around the origin equi-
librium whose trajectory reaches another energy shell around the
destination equilibrium. They do not constrain the initial condition
to be located on the unstable tangent space at the origin equilibrium,
hence as a second step, the trajectory is confirmed to shadow a con-
necting orbit by matching the end points of the trajectory against the
linearized dynamics around the two equilibria. In all these methods
determining the size of the hypersphere around the origin equilib-
rium solution is not a trivial task: the hypersphere should be small
enough in order for the tangent space to accurately approximate
the manifold, and large enough to let the required time integration
intervals be feasibly short.

An alternative to the shooting-based methods, which search
for a single state on the connecting orbit, is to search in the space
of connecting curves, i.e., all smooth curves in the state space which
connect the two equilibria. Among all such curves, only connecting
orbits are integral curves of the vector field induced by the govern-
ing equation. The idea is to start from a connecting curve pivoted on
the two fixed points, then deform the curve until the tangent velocity
coincides with the local field vector along the entire curve, and thus,
a connecting orbit is achieved. This approach has several advantages
over the reviewed shooting-based methods for computing connect-
ing orbits: First, there is no limitation on the dimensionality of the
unstable manifold at the origin equilibrium because no exhaustive
search is needed; Second, the approach does not suffer from the
exponential separation of trajectories with time since the connect-
ing curve is deformed locally and no time integration is required;
and finally, this approach yields the exact and the entire connecting
orbit without requiring to truncate it.

Despite the conceptual advantages of searching in the space
of connecting curves over the shooting-based alternatives, this
approach is not extensively developed on the practical side. Liu
et al.27 use rational Chebyshev basis functions for the spectral repre-
sentation of variables along the infinite temporal direction probably
for the first time in this context. They formulate the problem as a sys-
tem of nonlinear equations by setting the temporal derivative equal
to the right-hand side of the governing equation for every state vari-
able at every temporal collocation point. They then solve the result-
ing system of equations using standard Newton iterations. Dong
and Lan28 extend the variational method of Lan and Cvitanović,29

originally developed for finding periodic orbits, to the problem of
computing connecting orbits. They view the problem of deform-
ing connecting curves toward a connecting orbit as a minimization
problem: a connecting orbit is found by minimizing a cost func-
tion, which penalizes the deviation of a connecting curve from being
an integral curve of the vector field. They employ an infinitesimal-
step version of Newton iterations for continuously deforming the
curve and use finite differences for calculating the tangent veloc-
ity vector. In his Ph.D. thesis, Pallantla30 employs the same spectral
representation of variables in the temporal direction as in Ref. 27
and deforms the curve in the direction of the steepest descent of
the cost function. The common drawback of the aforementioned
algorithms is that they all require explicit construction of the Jaco-
bian matrix. In a system with M temporal and N spatial degrees of
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freedom, the size of the Jacobian matrix scales as O(M2N2), which
can be prohibitively large for high-dimensional dynamical systems
such as three-dimensional fluid flows.

In order to transfer the advantages of searching in the space of
connecting curves to high-dimensional dynamical systems, we pro-
pose a Jacobian-free variational method for computing connecting
orbits between two equilibrium solutions. The method employs an
adjoint-based optimization technique to minimize a cost function,
which measures the deviation of a connecting curve between two
equilibria from an integral curve of the vector field. We construct
a globally contracting dynamical system in the space of connect-
ing curves. Fixed points of this dynamical system are minima of the
non-negative cost function. The global minima of the cost function,
taking zero value, correspond to connecting orbits of the original
dynamical system. Therefore, connecting orbits are found by inte-
grating the dynamics in the space of connecting curves. Due to the
explicit construction of the dynamical system in the space of con-
necting curves, the memory requirement scales as O(MN) which
allows the proposed method to be applied to high-dimensional
dynamical systems.

The remainder of the present article is organized as follows. In
Sec. II, the problem of computing a connecting orbit is set up as a
minimization problem, and in Sec. III, the adjoint-based minimiza-
tion technique is formulated for a general autonomous dynamical
system. In Sec. IV, a spectral representation suitable for the dis-
cretization along the unbounded temporal domain is discussed. To
demonstrate the robustness of the proposed variational method,
in Sec. V, we consider the one-dimensional Kuramoto–Sivashinsky
equation in a spatiotemporally chaotic regime and show that several
connecting orbits can be converged reliably. Finally, in Sec. VI, the
paper is summarized and an outlook for future research is given.

II. VARIATIONAL METHOD FOR FINDING CONNECTING

ORBITS

We consider general autonomous dynamical systems of the
form

∂u

∂t
= f(u), (1)

where the smooth nonlinear operator f governs the evolution
of an n-dimensional real field u ∈ M ⊂ R

n defined over a
d-dimensional spatial domain x ∈ � ⊂ R

d and time t ∈ R subject to
time-independent boundary conditions (BCs) at ∂�, the boundaries
of the spatial domain �.

A connecting orbit between two equilibrium solutions is a solu-
tion trajectory u(x, t) of the governing equation (1) such that the
asymptotic conditions

lim
t→−∞

u = u−, lim
t→+∞

u = u+, f(u±) = 0 (2)

are satisfied in the temporal direction. The connecting orbit is a
heteroclinic connection if u− 6= u+ and a homoclinic connection if
u− = u+ (while implicitly assuming that the entire orbit is not the
equilibrium solution itself.)

In the (d + 1)-dimensional space–time domain of the dynam-
ical system (1), connecting orbits are solutions to a boundary value
problem subject to the same BCs as Eq. (1) in d spatial directions,

augmented by the asymptotic BCs (2) in the temporal direction.
The idea of the proposed variational method is to consider C∞

space–time fields that satisfy the boundary conditions in all (d + 1)
directions and vary the field until Eq. (1) is satisfied at each and every
space–time coordinate. Geometrically, f(u) is a vector field in the n-
dimensional state space M , u− and u+ are two fixed points, and
connecting orbits are integral curves of this vector field extending
from u− to u+. In this picture, the search space is the space of all
smooth curves in the state space that connect the two fixed points.
We define the space of connecting curves, denoted by Cg, as

Cg =







u(x, s)

∣

∣

∣

∣

u : � × R → M

lims→±∞ u = u±

u satisfies BCs at ∂�







. (3)

We parameterize connecting curves by s ∈ R in order to distin-
guish the evolution along a connecting curve from the evolution
along a solution trajectory of the governing equation (1), which is
parameterized by the physical time t. Connecting orbits form a sub-
set C ⊂ Cg in which the tangent velocity vector, ∂u/∂s, coincides
with the local field vector, ∂u/∂t = f(u), along the entire connecting
curve. As a measure of deviation of a connecting curve from being a
connecting orbit, we define the non-negative cost function J2 as

J2 =
∫ +∞

−∞

∫

�

r · r dxds, (4)

where r is the local deviation of the tangent velocity vector from the
field vector, or the residual of Eq. (1)

r(u) = f(u) − ∂u

∂s
(5)

and · indicates the standard Euclidean inner product. The residual
r is zero everywhere along a connecting orbit. Therefore, the cost
function takes zero value for u ∈ C , while it takes a positive value
for u ∈ Cg \ C . The problem of finding connecting orbits can now

FIG. 1. Schematic of the variational method for computing a connecting orbit
between two equilibrium solutions: A connecting curve pivoted on the two fixed
points is deformed such that a cost function J measuring the deviation of the
connecting curve from being an integral curve of the vector field is minimized.
For a connecting orbit, the tangent velocity vector matches the field vector along
the entire curve and, thus, the global minimum of the cost function, J = 0, is
achieved.
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be viewed as a minimization problem in Cg: Absolute minima of J2,
for which J = 0, correspond to connecting orbits u ∈ C . Figure 1
schematically shows the idea of this approach: Minimizing the cost
function J deforms a curve connecting two fixed points of the vector
field toward an integral curve of the vector field bounded between
the two equilibria, thereby a connecting orbit.

III. ADJOINT-BASED MINIMIZATION OF THE COST

FUNCTION

We have recast the problem of computing connecting orbits
into a minimization problem in the space of connecting curves
extended between two equilibrium solutions. Absolute minima
of the non-negative cost function J2 with J = 0 correspond to
a connecting orbit. To solve the minimization problem, we
employ an adjoint-based technique inspired by the recent works
of Farazmand31 on identifying equilibria and traveling waves and
Azimi et al.32 on computing periodic orbits of nonlinear dynamical
systems. We construct a dynamical system in the space of connect-
ing curves, Cg, such that along its trajectories the cost function is
guaranteed to decrease monotonically. Therefore, connecting orbits
are found by integrating the constructed dynamics in Cg until a min-
imum of the cost function is reached. Parametrizing this dynamical
system by a fictitious time τ , we need to construct the operator G(u)

such that evolution of u governed by

∂u

∂τ
= G(u) (6)

guarantees

∂J2

∂τ
≤ 0, ∀τ . (7)

We define the inner product space Cs ⊃ Cg

Cs =
{

q(x, s)

∣

∣

∣

∣

q : � × R → R
n

lims→±∞ q = v±∈R
n

}

(8)

together with the real-valued inner product

〈, 〉 : Cs × Cs → R,

〈

q1, q2

〉

=
∫ +∞

−∞

∫

�

q1 · q2 dx ds,
(9)

and L2-norm
∥

∥q
∥

∥ =
√

〈

q, q
〉

. (10)

In contrast to the space of connecting curves Cg, the elements of
Cs have arbitrary asymptotic states v± ∈ R

n. The rate of change of
the cost function J2 = ‖r‖2 = 〈r, r〉 is obtained by the inner prod-
uct of r(u) with its directional derivative along the to-be-determined
operator ∂u/∂τ = G(u),

∂J2

∂τ
= 2

〈

(∇ur)
∂u

∂τ
, r

〉

. (11)

The directional derivative of r(u) along G is defined as

LLL (u; G) = lim
ε→0

r(u + εG) − r(u)

ε
. (12)

Using the adjoint of the directional derivative, we can write
Eq. (11) as

∂J2

∂τ
= 2

〈

LLL
†(u; r), G

〉

, (13)

where LLL † is the adjoint operator of LLL , with

〈LLL (u; G), r〉=
〈

G,LLL †(u; r)
〉

, (14)

for all connecting curves u ∈ Cg. The residual r [defined in Eq. (5)]
and the operator G [defined in Eq. (6)] are functions of u and belong
to the inner product space Cs with certain properties that are detailed
shortly. By choosing G(u) = −LLL †(u; r), the monotonic decrease of
the cost function is guaranteed,

∂J2

∂τ
= 2

〈

LLL
†(u; r), −LLL

†(u; r)
〉

= −2
∥

∥LLL
†(u; r)

∥

∥

2 ≤ 0. (15)

The dynamical system ∂u/∂τ = G(u) = −LLL †(u; r) is globally con-
tracting. All trajectories are eventually attracted to stable fixed points
at which ∂u/∂τ = 0 and J2 takes a minimum value. Although the
monotonic decrease of the cost function is guaranteed along trajec-
tories of the dynamics in Cg, reaching the global minimum is not.
To find a connecting orbit, therefore, the dynamics in the space of
connecting curves is integrated until a fixed point is reached. Those
fixed points of ∂u/∂τ = G(u), which correspond to the global mini-
mum of the cost function, J = 0, are connecting orbits of the original
dynamical system ∂u/∂t = f(u), and those corresponding to J > 0
are rejected.

The dynamical system ∂u/∂τ = G(u) is constructed in the
space of connecting curves Cg defined in Eq. (3). This imposes cer-
tain BCs on the residual r(u) and the operator G(u). In the temporal
direction, lims→±∞ r = 0 since u satisfies the correct asymptotic BCs
for all τ , and lims→±∞ G = 0 since the correct asymptotic values of
u must be preserved. In space, u satisfies the correct BCs at ∂� for
all τ ; consequently, the spatial BCs of r and G are determined fol-
lowing similar arguments. For example, r and G will be periodic in
directions where u is periodic, will take zero value at the boundaries
where u satisfies Dirichlet boundary conditions and so forth. These
properties must be taken into account while deriving the adjoint
operator from the definition (14). Derivation of the adjoint operator
for the Kuramoto–Sivashinsky system, introduced in Sec. V, is pre-
sented in Appendix A where the zero asymptotic values of r and G
in the temporal direction and their periodicity in space enable us to
derive the adjoint operator as an explicit function of the space–time
field u.

Both heteroclinic and homoclinic connections can be numer-
ically identified using the introduced variational method. In the
case of a homoclinic connection to an equilibrium solution, zero
variation in time, i.e., the equilibrium solution itself, is a trivial solu-
tion satisfying the definition (2). Therefore, depending on the initial
connecting curve from which the integration starts, a trivial or a
nontrivial solution with J = 0 can be obtained. The definition of a
heteroclinic connection does not have any trivial solution.

On an abstract level, we construct the operator G following the
same logic as that employed by Farazmand31 in computing equilib-
ria and by Azimi et al.32 in computing periodic orbits. However,
in the different contexts, the form of this operator differs as the
resulting variational dynamics evolves a spatial or space–time field
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representing the specific sought-after invariant solution: In com-
puting equilibria, the variational dynamics evolves a spatial field
that geometrically corresponds to moving a point in the state space;
in computing periodic orbits, the variational dynamics evolves a
space–time field periodic in the temporal direction that corresponds
to deforming a loop in the state space, and here the variational
dynamics evolves a space–time field satisfying the asymptotic con-
ditions (2) in the temporal direction that corresponds to deforming
a curve in the state space that connects two fixed points.

IV. SPECTRAL REPRESENTATION IN TIME

An efficient implementation of the proposed adjoint-based
variational method is aided by an accurate spectral representation of
a space–time field q(x, s) ∈ Cs in the s direction such that the asymp-
totic conditions at s → ±∞ are directly enforced by the chosen
expansion. The spectral accuracy significantly reduces the number
of time sections, and thereby memory, required for an accurate rep-
resentation of connecting orbits. We use rational Chebyshev basis
functions for the spectral representation in the temporal direction
(see Chap. 17 of Ref. 33 for details).

Rational Chebyshev functions, Rn(s), are given by

Rn(s) = cos(nθ), n ∈ W, (16)

where θ ∈ (0, π) and s ∈ R are related via

s = s0 + S cot(θ) ⇐⇒ θ = cot−1

(

s − s0

S

)

, (17)

with s0 ∈ R and S ∈ R
+ being mapping parameters.

Rational Chebyshev collocation points are obtained by a uni-
form discretization of θ . Therefore, M interior collocation points
are

sj = s0 + S cot

(

jπ

M + 1

)

, j = 1, 2, . . . , M, (18)

with j = 0 and j = M + 1 being reserved for the asymptotic values
s → +∞ and s → −∞, respectively. The uniform discretization of
θ results in a non-uniform distribution of grid points in s. Colloca-
tion points are denser around s0, the center of the distribution, and
become sparser further away from the center. The spacing between
successive grid points is linearly scaled by S.

A real function q(s) with s ∈ R and constant asymptotic values
is approximated by the truncated expansion in a rational Chebyshev

basis, q(s) ≈
∑M+1

k=0 ckRk(s), where the expansion coefficients are

ck = 2

(M + 1)c̄k

M+1
∑

m=0

1

c̄m

q(sm) cos

(

mkπ

M + 1

)

, (19)

with grid points sm defined in equation (18) and

c̄j =
{

2, if j = 0 or M + 1,

1, otherwise.
(20)

Having a grid function q(sj) with j = 0, 1, . . . , M + 1 over ratio-
nal Chebyshev grid points (18), the differentiation matrix Dt is

constructed as

Dt j,m = 2

S(M + 1)
sin2

(

jπ

M + 1

) M+1
∑

k=0

k

c̄mc̄k

cos

(

mkπ

M + 1

)

× sin

(

kjπ

M + 1

)

, j, m = 0, 1, . . . , M + 1. (21)

The expansion in a rational Chebyshev basis allows us to repre-
sent the space–time objects in the unbounded temporal direction,
and we can expect spectral accuracy with fast convergence as a
function of the expansion’s truncation order. Rational Chebyshev
functions form a generic basis for the spectral representation of
functions over the entire real axis with constant asymptotic values
and are, thus, a suitable expansion for connecting orbits for any
studied physical system.

V. APPLICATION TO KURAMOTO–SIVASHINSKY

EQUATION

As a proof of concept, we apply the introduced method for
identifying connecting orbits to the one-dimensional Kuramoto–
Sivashinsky equation (KSE).34,35 The KSE is a nonlinear partial
differential equation, which emerges in various physical contexts
such as flame propagation,35 plasma physics,36 or interfacial fluids
instability.37 The KSE is also commonly used as a model system
for examining new methods developed for chaotic fluid flows and
transitional turbulence since it exhibits spatiotemporally chaotic
behavior and displays some similar features to the Navier–Stokes
equations.

The one-dimensional KSE for a real field u(x, t) on the periodic
spatial domain 0 ≤ x < L is

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ν

∂4u

∂x4
, (22)

with constant positive damping parameter ν. The dynamics of the
KSE is controlled by the single dimensionless group L = L/

√
ν.

Here, we fix ν = 1 and consider the domain size L as the control
parameter.

For L < 2π , the trivial equilibrium solution u(x, t) = const.
is linearly stable and is the global attractor of the dynamics. By
increasing L, solutions of the KSE undergo a series of bifurcations
before the dynamics can exhibit spatiotemporally chaotic behavior
for sufficiently large domain sizes. For certain ranges of the con-
trol parameter, heteroclinic cycles between equilibria emerge as the
most attracting invariant sets. For instance, for 13.03 . L . 14.92,
a network of isolated heteroclinic orbits between two symmetry-
related equilibrium solutions attracts the nearby trajectories, and the
dynamics exhibits regular transitions between the two equilibria.38,39

For 18.05 . L . 20.89, we again observe the network of connecting
orbits between two symmetry-related equilibria to be attracting. In
this range of L, the two equilibria are connected by a one-parameter
continuous family of connecting orbits which provides infinitely
many heteroclinic cycles and, therefore, transitions take place via
irregular bursts.

We demonstrate the application of the proposed method by
computing connecting orbits between equilibrium solutions of the
KSE for L = 22. This domain size is large enough for the KSE
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to sustain the spatiotemporally chaotic dynamics. Hence, there is
no attracting heteroclinic cycle, and connecting orbits cannot be
obtained by time-marching the KSE. However, this domain size is
small enough to have low-dimensional unstable manifolds at the
equilibria found, over which an exhaustive search for possible con-
necting orbits is practical. The state space geometry of the KSE
for this parameter value has previously been explored in detail by
Cvitanović and collaborators.25 They identified several connecting
orbits using the shooting method described in Sec. I. Here, at least
one connecting orbit between any two equilibrium solutions is com-
puted, or it is confirmed by the exhaustive search in Ref. 25 that no
connecting orbit exists between the two equilibria.

A. Formulation of the adjoint-based variational

method for the KSE

The KSE (22) has the form of the general dynamical system (1)
with n = d = 1 and � = [0, L). The residual field, defined in Eq. (5),
for the KSE is

r = −∂u

∂s
− u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
. (23)

The dynamical system along whose trajectories the cost function
decreases monotonically is derived based on the adjoint operator of
the directional derivative of r. The adjoint operator for the KSE sys-
tem is constructed by a series of integrations by part (see Appendix A
for details),

L
†(u; r) = ∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4
. (24)

Therefore, the dynamical system in the space of connecting curves,
u(x, s; τ) ∈ Cg, that minimizes the cost function J2 is

∂u

∂τ
= −L

†(u; r) = −∂r

∂s
− u

∂r

∂x
+ ∂2r

∂x2
+ ∂4r

∂x4
. (25)

B. Symmetry preservation

The KSE (22) is equivariant under continuous translations in
the x-direction

γ (α)u(x, t) = u(x + αL, t), α ∈ [0, 1) (26)

and under inversions about the origin

σu(x, t) = −u(−x, t). (27)

The translation operator γ (α) and inversion operator σ commute
with the residual (23) of the KSE. Consequently, the dynamics in the
space of connecting curves, Eq. (25), is equivariant under the action
of γ (α) and σ . This means that if the integration of Eq. (25) starts
from an initial space–time field that is invariant under the action
of σ ◦ γ (α), the dynamics preserves the resulting point-inversion
symmetry, and, therefore, the computed connecting orbit belongs
to the same symmetric subspace of the state space M .

The KSE (22) preserves the spatial mean value of the evolv-
ing field. Consequently, the spatial mean along a connecting orbit
is constant and the same as the end point equilibrium solutions.
We consider the dynamics of the KSE in the subspace of fields with
zero spatial mean. The zero mean value is not enforced during the

evolution of a connecting curve toward a connecting orbit. How-
ever, since the two end point equilibria do have zero spatial mean,
a converged connecting orbit with J = 0 takes zero mean value as
well.

C. Numerical implementation

1. Spectral discretization

A connecting curve u(x, s) is discretized in the temporal direc-
tion using M + 2 time sections (including the end point equilib-
ria) over the rational Chebyshev grid while each time section is
represented by N Fourier modes in space,

u(xn, sm) =
N
2 −1
∑

j=− N
2

ûj(sm) exp

(

j
2πxn

L
i

)

, (28)

where xn = nL/N with indices 0 ≤ n < N are the uniform grid
points in space; sm with indices 0 ≤ m ≤ M + 1 are the non-uniform
rational Chebyshev collocation points in time; ûj(sm) is the jth
Fourier coefficient of the time section at sm; and i is the imaginary
unit.

In spectral space, the connecting curve u is represented by
an (M + 2) × N matrix of complex numbers ûm,j = ûj(sm). The
derivative of order q ∈ W of this space–time field with respect to

x is obtained by the Hadamard product D
(q)
x � û, where D

(q)
x m,j

= (2π ji/L)q, and its derivative of order q ∈ W with respect to s is
obtained by multiplying û from the left by D

q
t , where the tempo-

ral differentiation matrix Dt is defined in Eq. (21). The residual r
and the descent direction G are discretized in the same way with the
only difference that their time sections at s0 and sM+1 (correspond-
ing to s → +∞ and s → −∞, respectively) are identically zero (see
Sec. III). The nonlinear terms are calculated in physical space where
products are of elementwise Hadamard type. Transforming back
and forward between physical and spectral representations of the
space–time fields requires one-dimensional forward or backward
discrete Fourier transformation of each time section.

2. Initialization

The initial connecting curve is chosen as a convex combination
of the equilibrium solutions u− and u+, plus a symmetry breaking
term

u0(x, s; a) = 1

2

[(

1 + tanh (s)
)

u+(x) +
(

1 − tanh (s)
)

u−(x)
]

+ a exp (−s2)v(x), a ∈ {0, 1}, (29)

with x ∈ [0, L) and s ∈ R. If u−(x) and u+(x) both are inversion-
symmetric about the same point x = x0, then a = 0 results in an
initial space–time field for which all time sections are invariant
under the same inversion symmetry. Since the proposed variational
dynamics preserves the inversion symmetry, we can set a = 0 in
order to search in the inversion-symmetric subspace of connecting
trajectories. In order to break such a symmetry, we add the second
line, i.e., set a 6= 0, where v(x) is a field which does not have the
inversion symmetry shared between u−(x) and u+(x).
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FIG. 2. Nontrivial equilibrium solutions of the KSE for L = 22 denoted by (a) E1,
(b) E2, and (c) E3. Each of the three solutions is symmetric under inversion about
the origin. E2 and E3 are also symmetric under discrete shift by L/2 and L/3,
respectively.

TABLE I. Repelling eigenvalues of the equilibria of the KSE for L= 22. The rest of

the eigenvalues, except one zero eigenvalue for E1, E2, and E3, have a negative real

part.

Solution Unstable eigenvalues

E0 λ1,2 = 0.2198
λ3,4 = 0.1952
λ5,6 = 0.0749

E1 λ1,2 = 0.1308 ± 0.3341i
λ3,4 = 0.0824 ± 0.3402i

E2 λ1,2 = 0.1390 ± 0.2384i

E3 λ1,2 = 0.0933

3. Time stepping

The defined dynamical system ∂u/∂τ = G is globally contract-
ing and we are only concerned about the asymptotic state u = u0

+
∫ ∞

0
Gdτ . Consequently, we select the numerical integration

scheme based on simplicity and stability rather than accuracy. We
use semi-implicit forward Euler time-stepping scheme, which has
first-order accuracy in τ and treats the linear terms of G in u implic-
itly and the nonlinear terms explicitly. The code was developed in
C++ with OpenMP parallelization of local calculations.

D. Results and discussion

In the subspace of fields with zero spatial mean, the KSE with
L = 22 has four known equilibrium solutions including the trivial
solution u = 0. Hereafter, we denote the trivial equilibrium solu-
tion by E0, and the nontrivial ones by E1, E2, and E3 as shown
in Fig. 2. We compute these equilibrium solutions following the
adjoint-based variational method of Farazmand.31 E1, E2, and E3 are
invariant under inversion about the origin, σ . E2 and E3 are also
symmetric under discrete shifts γ (1/2) and γ (1/3), respectively.

FIG. 3. Monotonic decrease of the arc length cost function Jarc against the ficti-
tious time τ as the dynamics in the space of connecting curves evolves an initial
connecting curve toward a connecting orbit for which J = 0. A three-dimensional
projection of the state space corresponding to the marked times (i) to (vi) is shown
in Fig. 4.
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Therefore, in addition to the inversion about x = 0 and L/2, E2 is
symmetric under inversion about x = L/4 and 3L/4, and E3 is sym-
metric under inversion about x = L/6, L/3, 2L/3, and 5L/6 as well.
The repelling eigenvalues of all four equilibrium solutions are listed
in Table I, and their associated eigenvectors are shown in Figs. 15–18
in Appendix B.

Connecting orbits are converged by integrating Eq. (25) until a
fixed point in the vector field of G, corresponding to a minimum J,
is achieved. Connecting orbits correspond to the global minima of J,

for which J = 0. In order to monitor the convergence, we define the
arc length weighted cost function

Jarc =

∫ +∞

−∞
|r|

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

ds

∫ +∞

−∞

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

ds

, (30)

FIG. 4. Continuous deformation of a connecting curve by the dynamics constructed in the space of connecting curves toward a heteroclinic connection from the fixed point
E1 to E2. The solid blue line is the evolving connecting curve at the times marked on Fig. 3, and the dashed line is the converged heteroclinic connection. The state space is
projected on Pk(s) = ={ûk(s)}, k = 1, 2, 3.
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with | · | being

∣

∣q
∣

∣ =
√

∫

�

q · q dx, q ∈ Cs. (31)

Obviously, Jarc = 0 if and only if J = 0. However, the numerical eval-
uation of Jarc is not subject to the error accumulation associated with
the numerical evaluation of the improper integral (4) that defines
J. Moreover, since the trivial solution to the definition of a homo-
clinic connection has zero arc length, Jarc is undefined when the
trivial solution is achieved, while J = 0 for either trivial or nontrivial
solutions. We consider the algorithm converged when Jarc < 10−12.

Due to the continuous translational symmetry of the KSE,
Ei with i = 1, 2, 3 represent their so-called group orbits of all
symmetry-related states, i.e., γ (α)Ei where α ∈ [0, 1). Every con-
necting orbit, therefore, has infinite dynamically equivalent copies
corresponding to similar translations of the origin and the desti-
nation equilibrium solutions. We search for connecting orbits of
a certain relative phase between the two end points by fixing the
origin equilibrium and shifting the destination equilibrium solu-
tion when constructing the initial connecting curve using Eq. (29).
In the following, we first demonstrate the application of the intro-
duced method by computing a connecting orbit from E1 to E2. We
then present converged connecting orbits between other equilib-
rium solutions and compare them to the same orbits obtained from
other methods reported in the literature if applicable.

The search for a heteroclinic connection from E1 to E2 is ini-
tialized by a connecting curve constructed using Eq. (29) in the
inversion-symmetric subspace of M (a = 0). We discretize the
space–time domain by N = 64 Fourier modes in space and M = 550
rational Chebyshev grid points in time. The scaling of the temporal
discretization is set to S = 55 and the center of the distribution to
s0 = 0. For this system, the integration scheme described in Sec. V C
is stable for 1τ = 0.01.

After a sharp initial decrease, the arc length cost function
decays exponentially with the fictitious time, as shown in Fig. 3, and
reaches the convergence criterion, Jarc = 10−12, at τ ≈ 1.25 × 104.
In the vector field induced by G, heteroclinic connections are attract-
ing fixed points. The exponential decay of the cost function suggests
that when the evolving connecting curve gets close enough to the
connecting orbit, the dynamics is dominated by the leading, i.e., the
slowest, eigendirection of the linearized dynamics in the vicinity of
the fixed point of ∂u/∂τ = G.

Figure 4 shows six snapshots of the continuous deformation
of the connecting curve from E1 to E2 governed by the dynamics
in the space of connecting curves (25) toward a heteroclinic con-
nection. A substantial deformation toward the final shape of the
connecting orbit takes place at the beginning of the evolution. The
major remaining part of the integration time is spent on the slight
remaining deviation from the final orbit. The space–time field cor-
responding to the initial connecting curve [snapshot (i) in Fig. 4] and
the converged connecting orbit [snapshot (vi) in Fig. 4] are displayed
in panels (a) and (b) of Fig. 5, respectively.

The spatial resolution is chosen by monitoring the energy spec-
trum of spatial Fourier modes in a direct numerical simulation of
the KSE for L = 22. The spatial resolution N = 64 ensures at least

FIG. 5. The space–time contour of the initial connecting curve and the converged
connecting orbit from the equilibrium solution E1 to E2. The initial connecting curve
is symmetric under inversion about the origin. Since the dynamics in the space
of connecting curves preserves the center symmetry, the converged connect-
ing orbit belongs to center-symmetric subspace as well. The temporal dimension
is mapped on the uniformly discretized finite interval [π , 0], where θ = π and
θ = 0 correspond to s → −∞ and s → +∞, respectively [see Eq. (18)].
(a) The initial connecting curve at τ = 0. See marker (i) on Fig. 3 and panel (i)
of Fig. 4. (b) The converged connecting orbit at τ = 1.25 × 104. See marker (vi)
on Fig. 3 and panel (vi) of Fig. 4.

FIG. 6. Variation of the asymptotic value of the arc length cost function Jarc by
refining the temporal resolution M. Filled circles: Exponential decrease of Jarc,min
to zero in successfully converging to a connecting orbit from E1 to E2. Open cir-
cles: The cost function gets stuck in a local minimum in the failed search for a
connecting orbit from E2 to γ (1/4)E2 in an over-constrained subspace.
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FIG. 7. Connecting orbits from E0 to (a) E1, (b) E2, and (c) E3 in the center-sym-
metric subspace. The orange line shows the initial connecting curve, and the
blue line shows the converged connecting orbit. The state space is projected on
Pk(s) = ={ûbk(s)}, k = 1, 2, 3 with b = 1 in (a), b = 2 in (b), and b = 3 in (c).

FIG. 8. The space–time contour of the converged connecting orbits from E0 to
(a) E1, (b) E2, and (c) E3 in the center-symmetric subspace.

six orders of magnitude drop in the modulus of spatial Fourier coef-
ficients at all times. The converged connecting orbit from E1 to E2, as
an equilibrium solution to Eq. (25), is structurally stable for a wide
range of temporal resolutions M. However, the accuracy of the spec-
tral representation in time, and therefore the minimum achieved
value of the cost function, Jarc,min := limτ→∞ Jarc(τ ), varies with M.
Figure 6 show the spectral convergence of Jarc,min with M. Notice
that Jarc,min can be considerably higher than the convergence crite-
rion when M is not large enough. If a local minimum of the cost
function is reached, in contrast, Jarc,min does not improve as the tem-
poral resolution is increased. As an example of a failing search, we
try to converge a connecting orbit between E2 and γ (1/4)E2 from
an initial connecting curve constructed using Eq. (29) with a = 0
(see Sec. V C 3 why such connection cannot exist). The integration
from this initial connecting curve does not reach a global mini-
mum but approaches a local minimum with Jarc,min = 5.1 × 10−2.
As shown on Fig. 6, the minimum value does not decrease as the
temporal discretization is refined, confirming that a converged local
minimum has been identified and no connecting orbit was found.
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FIG. 9. Connecting orbit from E1 to E3 in the center-symmetric subspace. The
orange line shows the initial connecting curve, and the blue line shows the con-
verged connecting orbit. The state space is projected on Pk(s) = ={ûk(s)},
k = 1, 2, 3.

1. Connecting orbits originating from E0:
Six-dimensional unstable manifold

We converge a heteroclinic connection from E0 to E1, E2 and
E3 from an initial connecting curve constructed using Eq. (29) with
a = 0. A three-dimensional state space projection and the
space–time contour of heteroclinic connections from E0 to the
other three equilibrium solutions are exhibited in Figs. 7 and 8,
respectively. The algorithm settings are presented in Appendix C.

The unstable manifold of E0 is six-dimensional. Each of the
repeated unstable eigenvalues of E0, Table I, is associated with one
eigenvector symmetric under reflection across x = 0 and another
one symmetric under inversion about the origin (see Fig. 15). An
exhaustive search in the unstable tangent space at E0 is not prac-
tical even in the inversion-symmetric subspace of the KSE where
the reflection-symmetric eigenvectors do not exist, and the unsta-
ble manifold is three-dimensional. Dong and Lan28 have computed
a heteroclinic connection from E0 to E1 using their variational
method, which employs finite differences for calculating tangent
velocity vectors. They have used 6000 sections to discretize this

FIG. 10. The space–time contour of the converged connecting orbit from E1 to
E3 in the center-symmetric subspace.

FIG. 11. Connecting orbits from E2 to (a) E3 and (b) γ (1/4)E2 in the center-sym-
metric subspace. The orange line shows the initial connecting curve, and the
blue line shows the converged connecting orbit. The state space is projected on
Pk(s) = ={ûk(s)}, k = 1, 2, 3.

connecting orbit in time and obtain residuals of order O(10−6). To
achieve this value of Jarc (and similarly, the supremum norm of the
residual r), M = 25 interior time sections suffice for the proposed
variational method.

2. Connecting orbits originating from E1:
Four-dimensional unstable manifold

We demonstrated the details of converging a heteroclinic con-
nection from E1 to E2 at the beginning of this section (see Figs. 3–6).
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FIG. 12. The space–time contour of the converged connecting orbits from E2 to
(a) E3 and (b) γ (1/4)E2 in the center-symmetric subspace.

We also converge a heteroclinic connection from E1 to E3 from
an initial connecting curve constructed using Eq. (29) with
a = 0. Figures 9 and 10 show a three-dimensional state space projec-
tion and the space–time contour plot of the converged heteroclinic
connection from E1 to E3, respectively. The algorithm settings are
presented in Appendix C.

The unstable manifold of E1 is four-dimensional. One pair of
complex conjugate unstable eigenvalues of E1, Table I, is associ-
ated with eigenvectors invariant under reflection across x = 0, while
the other pair is associated with eigenvectors invariant under inver-
sion about the origin (see Fig. 16). An exhaustive search in the
four-dimensional unstable tangent space at E1 is not practical. Cvi-
tanović et al.25 perform an exhaustive search in the two-dimensional
plane spanned by the reflection-symmetric eigenvectors at E1 and
show that all trajectories starting from that plane are chaotic and do
not reach any of the equilibrium solutions. They perform another
exhaustive search in the two-dimensional plane spanned by the
inversion-symmetric eigenvectors and show that trajectories start-
ing from that plane form a one-parameter family of heteroclinic
connections from E1 to E2, except one bordering orbit that converges
to E3.

3. Connecting orbits originating from E2:
Two-dimensional unstable manifold

We converge two heteroclinic connections from E2 to E3 and
γ (1/4)E2. The initial conditions are constructed using Eq. (29) by
setting a = 0 for the connecting orbit between E2 and E3 and set-
ting a = −1 and v = <{v1,2} for the connecting orbit between E2

and γ (1/4)E2, where <{v1,2} is the real part of the complex conju-
gate unstable eigenvectors at E2 (see Fig. 17). In the latter, adding

the symmetry breaking term (a 6= 0) is necessary because E2 and
γ (1/4)E2 are both symmetric under inversion about x = kL/4 with
k = 0, 1, 2, 3, thus, an initial connecting curve constructed by set-
ting a = 0 is symmetric under inversion about all these points. The
dynamics (25) preserves all the four inversion symmetries while
no connecting orbit can exist in such subspace of M because the
unstable eigenvectors of E2 are symmetric only about x = 0 and
L/2, meaning that as soon as a trajectory of the KSE leaves E2, the

FIG. 13. Two connecting orbits from E3 to E2 in the center-symmetric sub-
space. The orange line shows the initial connecting curve, and the blue line
shows the converged connecting orbit. The state space is projected on Pk(s)

= ={ûk(s)}, k = 1, 2, 3. (a) Orbit 1: The initial connecting curve is constructed
via Eq. (29) by setting a = 0. (b) Orbit 2: The initial connecting curve is con-
structed via Eq. (29) by setting a = −1 and v = sin (x).
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FIG. 14. The space–time contour of the two converged connecting orbits from E3

to E2 in the center-symmetric subspace: (a) Orbit 1 and (b) orbit 2. See Fig. 13.

inversion symmetries about x = L/4 and 3L/4 are broken. Conse-
quently, as shown in Fig. 6, a = 0 results in getting stuck in a local
minimum of the cost function as the dynamics (25) is integrated.
A three-dimensional state space projection and the space–time con-
tour plot of the connecting orbits from E2 to E3 and γ (1/4)E2 are
shown in Figs. 11 and 12, respectively. The algorithm settings are
presented in Appendix C.

By an exhaustive search in the two-dimensional unstable tan-
gent space at E2, Cvitanović et al.25 show that the unstable manifold
of E2 is a one-parameter family of connecting orbits that converge to
γ (1/4)E2, except one orbit that connects E2 to E3.

4. Connecting orbits originating from E3:
Two-dimensional unstable manifold

We converge two heteroclinic connections from E3 to E2. The
initial conditions are constructed using Eq. (29) by setting a = 0 in
one and a = −1 and v = sin (x) in the other. A three-dimensional
state space projection and the space–time contour of these connect-
ing orbits are shown in Figs. 13 and 14, respectively. The algorithm
settings are presented in Appendix C.

The unstable manifold of E3 is two-dimensional. The repeated
positive eigenvalue of E3, Table I, is associated with one eigenvector
symmetric under reflection across x = 0, and another eigenvector
symmetric under inversion about the origin (see Fig. 18). Cvitanović
et al.25 conduct an exhaustive search in the two-dimensional unsta-
ble tangent space at E3 and identify two heteroclinic connections
from E3 to E2 corresponding to the perturbation of E3 along the
inversion-symmetric eigenvector and its opposite direction. Fixing
E3 and shifting E2 in space by L/3 and 2L/3 puts the translated copy

of E2 in the same relative phase to E3 as the original configuration.
Therefore, the exhaustive search identifies two other pairs of hetero-
clinic connections from E3 to the group orbit of E2, which are copies
of the first pair of connecting orbits shifted by L/3 and 2L/3 in the
x-direction.

VI. SUMMARY AND CONCLUDING REMARKS

Connecting orbits are of significant importance for studying
spatiotemporally chaotic dynamical systems in terms of their invari-
ant state space structures. We introduce a variational method for
computing connecting orbits between two equilibrium solutions by
searching in the space of all smooth curves in the state space that
connect the two equilibria. In this method, the deviation of a con-
necting curve from an integral curve of the vector field is penalized
by a non-negative cost function. A dynamical system in the space of
connecting curves is set up such that along its trajectories the cost
function is guaranteed to decrease monotonically. All trajectories of
this dynamical system eventually converge to an equilibrium, which
corresponds to a minimum of the cost function. Global minima of
the cost function, taking zero value, correspond to the connecting
orbits of the original dynamics. This method is not limited by the
dimensionality of the unstable manifold at the origin equilibrium
solution, does not suffer from exponential separation of trajecto-
ries, and does not require any domain truncation. The introduced
method is Jacobian-free, and its memory requirement scales linearly
with the number of degrees of freedom, which allows this method
to be applied to high-dimensional dynamical systems including
three-dimensional fluid dynamics problems.

As a proof of concept, we apply the introduced variational
method to the one-dimensional KSE and compute several connect-
ing orbits between known equilibrium solutions of the system with
domain size L = 22. The set of converged solutions contains at least
one connecting orbit between any two equilibrium solutions unless
it is known from an exhaustive search in the unstable manifold of
the origin equilibrium solution that they are not connected. The
stability analysis of the adjoint-descent dynamics (25) can deter-
mine if the identified solution is an isolated connecting orbit or
belongs to a one-parameter continuous family of orbits. In the for-
mer case, all eigenvalues are negative except only one zero associated
with continuous translations in the temporal direction s. In the
latter, the stability matrix has an additional zero associated with
variation within the continuous family of connecting orbits. In that
case, the connecting surface can be computed by tracing the neutral
eigendirection associated with the second zero eigenvalue.

After demonstrating the feasibility of the introduced method
for computing connecting orbits between equilibrium solutions of
the one-dimensional KSE, we are extending the present work in two
directions: One is applying this method to the three-dimensional
wall-bounded fluid flows governed by the Navier–Stokes equations
(NSEs). The challenge in applying this method to the wall-bounded
NSEs lies not only in dealing with a dynamical system of consider-
ably larger size but also in handling the incompressibility constraint
and the pressure field. Pressure is not governed by an explicit
evolution equation but by the so-called pressure Poisson equation
to adapt itself to the velocity such that the velocity field remains
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divergence-free. An accurate computation of the pressure field asso-
ciated with an instantaneous divergence-free velocity field in a wall-
bounded domain is not a trivial task,40 let alone the derivation of the
adjoint operator in the presence of this nonlocal, nonlinear opera-
tor. The second direction is developing methods following a similar
idea for computing connecting orbits between invariant solutions of
other types, including between two periodic orbits and eventually
between invariant tori. This requires to reformulate the variational
dynamics within modified search spaces appropriate for the dif-
ferent asymptotic boundary conditions in the temporal direction.
Together with improved methods for computing other invariant
solutions,32,41,42 the proposed methodology for computing connect-
ing orbits represents a step toward a more complete description
of the state-space structures supporting spatiotemporally chaotic
dynamics. Eventually, the identification of connecting orbits medi-
ating transitions between invariant solutions may allow for efficient
forecasting of chaos even in high-dimensional systems including
fluid turbulence.
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APPENDIX A: DERIVATION OF THE ADJOINT

OPERATOR FOR THE KSE

The directional derivative of the residual of the KSE, defined in
Eq. (23), along G is obtained by definition (12) as

L (u; G) = −∂G

∂s
− ∂(uG)

∂x
− ∂2G

∂x2
− ∂4G

∂x4
. (A1)

In order to find the adjoint operator, we expand the inner product
of L (u; G) and r as

〈L (u; G), r〉 =
∫ +∞

−∞

∫ L

0

(

−∂G

∂s
− ∂(uG)

∂x
− ∂2G

∂x2
− ∂4G

∂x4

)

r dx ds

= −
∫ L

0

{∫ +∞

−∞

∂G

∂s
r ds

}

dx −
∫ +∞

−∞

{∫ L

0

(

∂(uG)

∂x

+ ∂2G

∂x2
+ ∂4G

∂x4

)

r dx

}

ds. (A2)

Integrating by parts, we can write the first and the second integral as
follows:

∫ L

0

{∫ +∞

−∞

∂G

∂s
r ds

}

dx =
∫ L

0

{

lim
T→∞

[Gr]s=T
s=−T −

∫ +∞

−∞
G

∂r

∂s
ds

}

dx,

∫ +∞

−∞

{∫ L

0

(

∂(uG)

∂x
+ ∂2G

∂x2
+ ∂4G

∂x4

)

r dx

}

ds

=
∫ +∞

−∞

{

[uGr]x=L
x=0 −

∫ L

0

uG
∂r

∂x
dx +

[

∂G

∂x
r − G

∂r

∂x

]x=L

x=0

+
∫ L

0

G
∂2r

∂x2
dx +

[

∂3G

∂x3
r − ∂2G

∂x2

∂r

∂x

+ ∂G

∂x

∂2r

∂x2
− G

∂3r

∂x3

]x=L

x=0

+
∫ L

0

G
∂4r

∂x4
dx

}

ds.

In the limit T → ∞, the boundary term [Gr]s=T
s=−T vanishes since

both G and r are asymptotically zero. All boundary terms, [ · ]x=L
x=0 ,

vanish too due to periodicity of u, r, and G in x. Therefore, Eq. (A2)
becomes

〈L (u; G), r〉=
∫ +∞

−∞

∫ L

0

(

∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4

)

G dx ds.

(A3)

From the definition of the adjoint operator (14), this inner product
equals

〈

L
†(u; r), G

〉

=
∫ +∞

−∞

∫ L

0

L
†G dx ds. (A4)

Comparing Eqs. (A3) and (A4), L †(u; r) is given by

L
†(u; r) = ∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4
. (A5)
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APPENDIX B: UNSTABLE EIGENVECTORS OF THE

EQUILIBRIA OF THE KSE

The KSE with L = 22 has four known equilibrium solutions
including the trivial solution E0 = 0, and three nontrivial solutions
E1, E2, and E3 as shown in Fig. 2. The repelling eigenvalues of
these equilibrium solutions are listed in Table I. The correspond-
ing eigenvectors of E0, E1, E2, and E3 are shown in Figs. 15–18,
respectively.

APPENDIX C: PARAMETERS USED IN COMPUTING

CONNECTING ORBITS OF THE KSE

In all calculations presented in Sec. V, we have used N = 64
Fourier modes in space, have set the center of the temporal distri-
bution at the origin s0 = 0, and have used time step size 1τ = 0.01.
The temporal resolution M and the scaling S are listed in Table II.
The temporal resolution is set high enough so that the convergence
criterion Jarc,min < 10−12 is achieved (see Sec. V D).

FIG. 15. Unstable eigenvectors vi of the trivial equilibrium solution E0. The asso-
ciated eigenvalues are λ1,2 = 0.2198 in (a) and (b), λ3,4 = 0.1952 in (c) and (d),
and λ5,6 = 0.0749 in (e) and (f).

FIG. 16. Unstable eigenvectors vi of the equilibrium solution E1. The associ-
ated eigenvalues are λ1,2 = 0.1308 ± 0.3341i in (a) and (b), and λ3,4 = 0.0824
± 0.3402i in (c) and (d).

FIG. 17. Unstable eigenvectors vi of the equilibrium solution E2. The associated
eigenvalues are λ1,2 = 0.1390 ± 0.2384i.

FIG. 18. Unstable eigenvectors vi of the equilibrium solution E3. The associated
eigenvalues are λ1,2 = 0.0933.
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TABLE II. Parameters used for numerically integrating the dynamics in the space of

connecting curves between different equilibrium solutions of the KSE for L= 22 to

compute connecting orbits.

Row From To M S Figures

1 E0 E1 80 40 7(a) and 8(a)
2 E2 130 35 7(b) and 8(b)
3 E3 120 40 7(c) and 8(c)

4 E1 E2 550 55 4 and 5
5 E3 500 60 9 and 10

6 E2 τ (1/4)E2 400 35 11(a) and 12(a)
7 E3 450 50 11(b) and 12(b)

8 E3 E2 600 50 13(a) and 14(a)
9 500 40 13(b) and 14(b)
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6P. Cvitanović, “Recurrent flows: The clockwork behind turbulence,” J. Fluid
Mech. 726, 1–4 (2013).
7G. J. Chandler and R. R. Kerswell, “Invariant recurrent solutions embedded in
a turbulent two-dimensional Kolmogorov flow,” J. Fluid Mech. 722, 554–595
(2013).
8C. J. Crowley, J. L. Pughe-Sanford, W. Toler, M. C. Krygier, R. O. Grigoriev, and
M. F. Schatz, “Turbulence tracks recurrent solutions,” Proc. Natl. Acad. Sci. U.S.A.
119, 1–7 (2022).
9R. R. Kerswell, “Recent progress in understanding the transition to turbulence in
a pipe,” Nonlinearity 18, R17–R44 (2005).
10B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, “Turbulence transition
in pipe flow,” Annu. Rev. Fluid Mech. 39, 447–468 (2007).
11J. F. Gibson, J. Halcrow, and P. Cvitanović, “Visualizing the geometry of state
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