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Abstract

Measuring grain sizes in gravel-bed rivers is crucial when studying river dynamics and

sediment transport. Automated methodologies have been developed in recent years

for detecting individual grains and measuring their size on digital imagery. These

object-based methodologies have mainly been applied to handheld imagery. Low-

cost and high-resolution orthoimages covering long river reaches are nowadays

accessible with the improvements in uncrewed aerial vehicles (UAV) and structure-

from-motion (SfM) photogrammetry. Applying object-based grain-sizing methodolo-

gies to such orthoimages may provide wide-scale information about the grain size

spatial distribution along streambeds. We examined how accurate three object-based

models (BASEGRAIN, PebbleCountsAuto and GALET) were, by comparing their out-

comes to in-field manual measurements of grain sizes and manual grain labelling. We

found that BASEGRAIN and PebbleCountsAuto underestimated grain sizes on aver-

age, whereas GALET generally overestimated grain size percentiles. Grain size mea-

surements obtained by manually labelling grain features were consistent with in-field

measurements.
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1 | INTRODUCTION

River beds are seldom composed of sediments of uniform size.

Quantifying the size distribution of sediment mixtures is fundamen-

tal for understanding and modelling river flows, morphodynamics

and sediment transport processes (Bunte & Abt, 2001). For

instance, a number of flow resistance equations involve grain size

quantiles (e.g., Ferguson, 2007; Hey, 1979; Keulegan, 1938;

Rickenmann & Recking, 2011; Smart & Jaeggi, 1983;

Strickler, 1923). Another example is provided by the methods for

predicting the threshold of incipient motion and transport rates

(e.g., Hodge, Richards, & Brasington, 2007; Parker, Klingeman, &

McLean, 1982; Recking, 2013, 2016). When studying bedload

transport in mountain rivers—whose sediment deposits are often

prone to grain sorting processes, such as bed armouring and size-

dependent selective transport—accurate quantification of local grain

size distributions is particularly important for assessing bedload

transport mechanisms (e.g., Schlunegger, Delunel, &

Garefalakis, 2020).

A variety of field sampling procedures have been developed for

characterising river-bed grain sizes in quantitative terms. Mechanical

sieving of volumetric samples and individual measurements of sur-

face grains are commonly used techniques (Kellerhals & Bray, 1971).

Nonetheless, these procedures can be laborious and entail limita-

tions for the assessment of spatial variations of bed-material grain

sizes (Bunte & Abt, 2001). To mitigate these issues, automated

grain-sizing methods based on remote sensing technologies have

emerged in recent decades. A number of research studies have been

dedicated to utilizing images for measuring grain sizes (see

Carrivick & Smith, 2019; Piégay et al., 2020). Parallelly, recent

improvements in uncrewed aerial vehicles (UAV) and structure-

from-motion (SfM) photogrammetry software packages have allowed
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to produce easily and at relatively low-cost valuable topographic

datasets, which typically comprise orthoimages, digital surface

models (DSM) and dense point clouds. Combining UAV-SfM imagery

and image-based grain sizing techniques can provide access to grain

size estimates over large spatial scales, in a cost- and time-efficient

manner (Carrivick & Smith, 2019).

The first image-based methodologies for measuring grain sizes

in rivers relied on the visual interpretation of nadir photographs

(e.g., Adams, 1979; Ibbeken & Schleyer, 1986). Grain size distribu-

tions (GSD) were estimated by measuring the projected intermedi-

ate axis (b-axis) of grains on photographs. Although less field

time is required (only photographs need to be taken), this method

still necessitates large processing times to measure grain features

individually (Bunte & Abt, 2001). Since the early 2000s, numerous

studies were dedicated to automatizing grain-sizing procedures on

images (Butler, Lane, & Chandler, 2001; Graham, Rice, &

Reid, 2005; McEwan et al., 2000). Two distinct approaches have

been followed. The first approach involves deriving grain sizes

from image statistics (Buscombe, 2013; Carbonneau, Lane, &

Bergeron, 2004; Woodget & Austrums, 2017; Woodget, Fyffe, &

Carbonneau, 2018). This methodology derives characteristic grain

sizes using image texture metrics, autocorrelation or wavelet

transformations. Such methods are based on regression between

single parameters and grain sizes (e.g., Carbonneau, Lane, &

Bergeron, 2004; Warrick et al., 2009; Woodget, Fyffe, &

Carbonneau, 2018), or on more novel methods based on Con-

volutional Neural Networks (CNN; e.g., Buscombe, 2020; Lang

et al., 2021). The second approach focuses on detection and

measurement of individual grain features, and is thus referred to

as ‘object-based’. Individual surface grains can be identified by

using image thresholding and segmentation processing

(e.g., Detert & Weitbrecht, 2012; Graham, Rice, & Reid, 2005;

Purinton & Bookhagen, 2019), or with most recent object detec-

tion algorithms based on CNN (e.g., Chen, Hassan, & Fu, 2022;

Mair et al., 2023; Mörtl et al., 2022; Soloy et al., 2020). The

advantages of object-based grain sizing over image statistics-based

methods are (i) that the former does not require site-specific cali-

bration and (ii) that one can derive more information from

object-type data (e.g., grain arrangement). Object-type data can

also be converted into grid-type data whose cell provide the

local GSD.

The grain size distribution in gravel-bed rivers varies considerably

at the local scale (Bluck, 1979). This variability has been studied by

combining scattered manual measurements of grain sizes and visual

analysis (e.g., Dietrich et al., 2006; Guerit et al., 2014; Lisle &

Madej, 1992). The earliest object-based grain-sizing tools assumed

that images were taken by handheld or pole-mounted cameras

(e.g., Butler, Lane, & Chandler, 2001; Graham, Rice, & Reid, 2005).

This imagery approach provides access only to small spatial scales

(up to few tens of meters). Applying object-based grain-sizing

methods to orthoimages issued from UAV surveys can convey infor-

mation on the spatial variation in the grain size distribution, covering

scales from decimetres to hectometres.

The quality of the grain size information derived from ortho-

images and its potential for understanding geomorphological pro-

cesses depend a great deal on the accuracy of the applied technique.

Therefore, testing the latest object-based methodologies on high-

resolution orthoimages is key to identify specific limitations and

biases. Mair et al. (2022) evaluated the uncertainties in grain size mea-

surements on aerial imagery with regard to the UAV-SfM approach. A

performance assessment of a set of existing grain-sizing routines has

been conducted by Chardon, Piasny, & Schmitt (2022) for applications

to handheld imagery. To the best of our knowledge, no study evalu-

ated multiple object-based techniques for applications to high-

resolution orthoimages.

In this context, we evaluated three object-based grain-sizing

software routines (BASEGRAIN, Detert & Weitbrecht, 2012;

PebbleCountsAuto, Purinton & Bookhagen, 2019; GALET, Mörtl

et al., 2022) and compared their outcomes to in-field manual

measurements of grain sizes and manual labelling on orthoimages.

We wanted to answer the following questions. First, which auto-

mated grain-sizing software performs the best on orthoimages of

a gravel-bed river? Second, which are the limitations of

each tool?

2 | METHODS

The surface grain size distribution of a mountain river (Section 2.1)

was investigated by conducting line sampling (Section 2.2). We

designed UAV surveys to reconstruct orthoimages of the study site

based on SfM algorithms (Section 2.3). Grain sizes were measured dig-

itally on these orthoimages by using manual labelling (Section 2.4) and

three object-based grain-sizing methods (Section 2.5). These digitally

measured grain sizes were compared with grain sizes measured manu-

ally in the field (Section 2.6).

2.1 | Study site

The Navisence is a mountain river located in the South-West Swiss

Alps, tributary to the Rhône River (Figure 1a). This 23-km-long river

drains a 257 km2 catchment. Its main water source is the Zinal Glacier

at 2300 m a.s.l. The river is hydrologically undisturbed upstream of

the village of Zinal.

The study site is a 500-m-long and 60–90-m-wide river reach,

located in the upstream part of a 2-km-long floodplain named ‘Plats
de la Lée’ with an average slope around 3% (Figure 1b). The

Navisence flows across this alpine floodplain and develops a

braided network upstream of the village of Zinal (1650 m a.s.l.).

There, the catchment area is 77 km2. A gauging station managed by

a Walliser research institute (CREALP, Sion) is located downstream

of the study reach, and has gathered data since 2011 (flow rates

and bedload transport rates). The river has a glacio-nival hydrologi-

cal flow regime, with very low flow rates in winter and high dis-

charges in summer related to snow and glacier melting, with

significant circadian variations (Travaglini et al., 2015). The typical

low flow discharge is 1 m3/s in winter, while maximum hourly dis-

charge can exceed 25 m3/s in summer. Over the last 5 years, the

morphology of the braided network has been mostly impacted by a

single major flood in July 2018. Regarding the sediment lithology,

the surface alluvial deposits found in the river bed at the Plats de

la Lée are mostly composed of metamorphic rocks (mainly

orthogneiss). Therefore, sediments found on the study reach often

2 MIAZZA ET AL.
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exhibit variations of rock texture inside single grains, due to folia-

tion or veins for example.

2.2 | Manual measurements of grain sizes

We used the line sampling procedure proposed by Fehr (1987). This

procedure has been specially devised for mountain rivers, and has

thus been used in numerous field studies of hydraulics and sediment

transport in mountain rivers across the Alps (e.g., Konz et al., 2011;

Ramirez et al., 2022; Rickenmann, 1997; Rickenmann &

McArdell, 2007; Schneider et al., 2016). There are alternatives to

Fehr’s method; for instance, grid sampling protocols such as the

Wolman pebble count (Wolman, 1954) and its variants are much more

common than line sampling. The main advantage of Fehr’s method

over other techniques is that it is much easier to georeference a sam-

ple line than a grid (or a random walk) in the field and in ortho-

photographs. When comparing grain size estimates from field

measurements and automated methods, it is thus possible to sample

the same stones in the field and orthophotographs and thus, by doing

so, we can benchmark methods on a fair basis. Another major advan-

tage of Fehr’s method is that by considering all the pebbles crossed

by the sampling line, it requires a smaller sampling space than

methods based on areal or random particle sampling, which is of great

interest for characterising spatial variations in grain size distribution

when the riverbed involves patches of distinct grain sizes. A possible

disadvantage of Fehr’s method is that its accuracy has been much less

studied than Wolman-based methods (Daniels & McCusker, 2010;

Rice & Church, 1996). The recommendations drawn for Wolman-

based methods should, however, apply to Fehr’s method: the sampling

line has to cross a large number of stones—as large as 400 according

to Rice & Church (1996)—if sufficient precision in the quantile

(or percentile) estimation is desired. In practice, this requirement is

problematic for mountain rivers like the Navisence because of spatial

variations in grain size over short distances. From a statistical view-

point, the central limit theorem can help understand why accuracy of

grain size quantiles varies as the sample size’s square root as Rice &

Church (1996) found in their field study, and why this result holds

only when the sample is drawn from the same population, with the

same mean and variance. When the grain size distribution exhibits

substantial spatial variations, obtaining unbiased estimates becomes

particularly difficult: (i) if the sample size is small, then it is probably

representative of the local population, but estimates are inaccurate,

(ii) if the sample size is large, then in principle, a higher accuracy is

F I GU R E 1 (a) Location of the study site and the Navisence River watershed in Switzerland (© swisstopo). (b) Location of the UAV surveys
over the study reach (the river flows northwise). The river image is an orthoimage obtained from a UAV survey carried out on 13 Sep 2022
(50-m-high flight). (c) Detailed view of the three orthoimages which were reconstructed from UAV collected images, with positions of the line
sampling analysis, ground control points (GCPs) and check points (CPs).

MIAZZA ET AL. 3
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expected in quantile estimation, but measurements are biased. The

Navisence riverbed is characterised by a typical median stone size of

around 10 cm and patch length of approximately 10 m. These features

led us to consider that a sample size of about 150 pebbles—as pro-

posed by Fehr (1987)—provided a suitable trade-off between preci-

sion and representativeness.

We collected samples over 17 lines distributed over areas A, B

and C (Figure 1c). Following Fehr (1987), we stretched a string over

the dry bed-material surface to be analysed. The b-axis of all pebbles

underneath the string was measured. Pebbles with a b-axis smaller

than 1 cm were not considered. The pebbles were divided into diame-

ter classes and the number of pebbles falling in each grain size interval

was computed (the corresponding diameter classes are specified in

the Supporting Information, we used the sampling protocol provided

in Fehr (1987)). Approximately 150 pebbles should be measured to

ensure a good representativeness. This led us to choose sampling

lengths of 5 or 10 m depending on the local grain size. The largest

pebbles (over 10 cm) were often imbricated or clogged, which

prevented a correct measurement of the b-axis. They were therefore

manually extracted, which required significant effort and the use of a

pickaxe. For one sample and a single operator, this procedure lasted

about 1 hour. To georeference each line on geographic information

systems, we measured the starting and endpoint positions using a

pole-mounted GPS/GNSS system—Leica Zeno 20 coupled with

a GG04P antenna, with real-time kinematic correction (Swipos-GIS/

GEO network).

Fehr’s method involves converting the line samples into approx-

imate volumetric-sample equivalents of the subsurface grains via

empirical relations between surface and subsurface grain sizes

(Fehr, 1987). The frequency-by-number grain size distribution is

converted into a frequency-by-weight distribution (describing the

weight fraction of each grain size interval), so that the results are

comparable with standard volumetric sampling. The conversion is

based on the voidless cube model (Kellerhals & Bray, 1971), which

was empirically adapted by Fehr (1987). As grains whose b-axis is

smaller than 1 cm are neglected during the sampling process, the

cumulative frequency of the components larger than 1 cm has to be

corrected to take neglected finer components into account.

According to Fehr (1987) observations based on field mechanical

sieving in a large set of Swiss gravel-bed rivers, 20% to 30% of the

subsurface layer volume is smaller than 1 cm in diameter. Finally,

the GSD is extrapolated towards the finest grain sizes. Fehr (1987)

observed that for the Swiss Alps, the distribution of the fine frac-

tion of the bed and bedload material generally follows a Fuller

curve. When predicting the proportion of fine material in the GSD,

Fehr assumed that the final GSD follows a Fuller curve for the

undersampled finest grain sizes (see Supporting Information for the

detail). We consider this tail correction to be well suited to our field

site, whose bed is mostly structured by coarse particles and clogged

by glacier flour.

2.3 | UAV surveys and structure-from-motion
photogrammetry

2.3.1 | Areas A, B and C: data acquisition

Three UAV surveys were carried out over different sectors of the

study reach. The covered areas were named A, B, and C and their

location is shown in Figure 1b,c. We conducted these surveys in order

to evaluate the accuracy of digital object-based grain-sizing tools on

orthoimages, compared with in-field line sampling. Nine manually

sampled lines were located in area A, seven in area B and four in area

C. We used a DJI Phantom 4 pro and a DJI Phantom 4 pro v2 UAVs.

These rotatory-wing quadcopters are equipped with a GPS for auto-

mated flights. They have an integrated camera with a 20-mega-pixel

resolution. The automated flights were planned using Pix4Dcapture

software (v. 4.13.1; developed by Pix4D, Lausanne, Switzerland).

Images were taken vertically on a predefined trajectory, with a frontal

and lateral overlap between individual images in the order of 70%.

During image acquisition, the UAV stayed stationary to avoid motion

blur. It then moved to the next predefined position along the grid line

map. In order to obtain the best compromise between image resolu-

tion and spatial coverage, we conducted our flights at an elevation of

approximately 10 m above the take-off position. As the UAVs flew

horizontally, the effective flight height varied depending on ground

slope and local topographic features. Ground resolution ranged from

2.9 mm/px to 3.7 mm/px. The survey C was conducted under sunny

conditions, whereas the surveys over area A and B were conducted

under shaded conditions, on clear days and before the sun illuminated

the study reach (see Table 1). These three UAV surveys were always

performed before manual line sampling. Further information about

the camera parameters used can be found in Tables S1 and S2.

2.3.2 | Auxiliary georeferenced points

Ground control points (GCP) were distributed over the surveyed areas

to constrain more accurately the SfM photogrammetric reconstruction

and to assess errors. The GCP were marked with paint, and their posi-

tion was measured using the same GPS/GNSS system described in

Section 2.2. This provided a horizontal positioning accuracy close to

1 cm and a vertical accuracy in the 2- to 4-cm range. The GCP coordi-

nates were measured in the CH1903+/LV95 coordinate system

(EPSG 2056). During the SfM reconstruction preprocessing steps, we

located the GCP position on the images. The start and endpoints of

T AB L E 1 Summary of the UAV surveys.

Area
name

Area
size (m2) Date Weather UAV model

Number of
images

Number of
tie points

Number of
GCPjCP

Ground sampling
distance (mm/px)

A 2500 5 Oct 2022 Shady, clear sky DJI Phantom 4 pro 232 6 070 479 4j9 2.9

B 3450 12 Oct 2022 Shady, clear sky DJI Phantom 4 pro 223 6 053 898 3j5 3.7

C 5850 26 Oct 2022 Sunny DJI Phantom 4 pro v2 419 12 511 931 6j6 3.3

Abbreviations: CP, check points; GCP, ground control points.

4 MIAZZA ET AL.
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the manually sampled lines served as independent check points to

evaluate the accuracy of the reconstructed orthoimages. Some start

and endpoints could not be located with certainty on the basis of the

photographs taken in the field (14 out of 34), and were therefore not

considered check points. The resulting orthoimage positioning errors

are given in Table 2.

2.3.3 | Data processing

Geo-referenced orthoimages were obtained by processing the images

with the Pix4Dmapper software (v. 4.8.0; Pix4D, Lausanne,

Switzerland). By combining SfM photogrammetry and multi-stereo

view algorithms, the software reconstructs the three-dimensional

(3D) surface topography. In the SfM framework, the 3D positions of a

large set of features automatically extracted from images are

retrieved, simultaneously with camera positions and orientations by

iteratively solving a highly redundant system of triangulation equa-

tions (Westoby et al., 2012). This method provides a point cloud,

which can then be converted into a DSM and an orthoimage. The

main parameters used in Pix4Dmapper can be found in Table S3.

2.4 | Digital manual labelling

Manual labelling was performed by a single operator on the ortho-

images using the QGIS software (v. 3.22). We manually drew a poly-

gon on all visible grain features intersected by the georeferenced

lines. This labelling operation took approximately 10–15 min per line.

We measured the b-axis of all labelled grains by automatically fitting

an ellipse to each feature (fitting based on the second central moment

of the object geometry). The detailed ellipse fitting procedure is

described in the Supporting Information. The b-axis corresponds to

the minor axis of the fitted ellipse. This procedure for extracting the

b-axis of each labelled grain is similar to the ellipse fitting procedure

used by the object-based grain-sizing methods described in

Section 2.5. Finally, we derived the GSD from the b-axis of the identi-

fied grain features for each line using Fehr’s (Fehr, 1987) method

implemented in a Python script.

2.5 | Description of selected object-based grain-
sizing tools

In this section, we describe the internal frameworks of the three

object-based grain-sizing tools under investigation. We specify how

each tool was implemented to derive grain size distributions that are

comparable with those based on in-field manual samples. Figure 2

shows an example of detected grain features along a line using the

different methodologies.

2.5.1 | BASEGRAIN

We used BASEGRAIN (v.2.3), which is a free access MATLAB-based

method developed by Detert & Weitbrecht (2012). It performs indi-

vidual grain segmentation on digital top-view photographs in five

preprocessing steps. Three out of five steps require supervised param-

eter tuning to optimise performance. Ellipses are then fitted to the

detected objects, and the minor axis is considered as the b-axis of

the grain feature.

Orthoimages were cut out into image tiles corresponding to the

bed surface patches where the line sampling was conducted. This

splitting was required because BASEGRAIN is not able to handle

georeferenced orthoimages. The image tiles were rotated in order

to position the line vertically. The BASEGRAIN processing was much

influenced by the variations in colour and texture of the Navisence

sediments, thus no unique set of parameters allowed for optimised

object detection for all image tiles. Therefore, object detection had

to be performed individually for each image tile when using

BASEGRAIN. We tuned the different parameters until a visually

optimal segmentation of the grains was obtained. No postprocessing

was applied to the detected objects. The virtual sampling line

implemented in BASEGRAIN was placed so as to match the position

of each field sampling line. We extracted the dimensions of all the

grains detected and intersected by the line in BASEGRAIN. We then

tallied grains using the same grain size intervals as those used for

manual sampling, and computed the GSD according to Fehr’s

(Fehr, 1987) method.

2.5.2 | GALET

GALET is a deep-learning image segmentation model for grain size

analysis developed by Styx4D (Bourget-du-Lac, France) and presented

in Mörtl et al. (2022). The CNN model implemented in GALET was

trained using a dataset generated by a technique based on automated

image creation. Mörtl et al. (2022) used manually cropped grain

images and synthesised artificial grain images to generate labelled

training images. During the grain detection and segmentation steps in

GALET, orthoimages are split into 512 or 1024 pixel-large tiles. The

software performs grain detection and estimates the shapes of

T AB L E 2 Quality assessment of structure-from-motion photogrammetry results.

Area name

Ground control points Check points

X (cm) Y (cm) Z (cm) X (cm) Y (cm) Z (cm)

ME STDEV ME STDEV ME STDEV ME STDEV ME STDEV ME STDEV

A 0.0 0.8 0.0 0.9 0.0 1.0 0.2 1.5 �2.8 2.3 0.3 2.8

B 0.0 0.8 0.0 0.5 0.0 0.0 �0.9 1.5 �1.8 2.1 �4.2 2.0

C 0.0 1.0 0.0 0.9 0.0 1.2 0.8 1.8 0.7 1.7 2.8 1.4

Note: Mean error (ME) and standard deviation of error (STDEV) on ground control points and check points after bundle block adjustment.

MIAZZA ET AL. 5
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overlapping grains. A final shapefile is produced in which all detected

instances are vectorised.

The entire GALET segmentation process was applied on each

orthoimage. The routine detected the grain features and provided the

corresponding shapefiles. We measured the b-axis of all detected

grains by automatically fitting an ellipse using the same method as the

one utilised for manual labelling. Digital line sampling was performed

on these shapefiles in QGIS, as the positions of the field sampling lines

were georeferenced. We classified the vectorised grains that inter-

sected the georeferenced lines according to their b-axis. The same

grain size intervals used for manual sampling were considered and the

GSDs were computed by using the Fehr (1987) method.

2.5.3 | PebbleCountsAuto

PebbleCounts is an open-source Python-based algorithm, developed

by Purinton & Bookhagen (2019). Here, we used its highly automated

version named PebbleCountsAuto. It is an image segmentation

method that performs individual grain detection. Resulting grain fea-

tures are measured via ellipse fitting.

As PebbleCountsAuto requires significant computing time to pro-

cess entire orthoimages (Purinton & Bookhagen, 2021), grain feature

detection was performed on image tiles cut out from the orthoimages

(similarly to the procedure used with BASEGRAIN). These tiles cor-

responded to the locations where in-field line sampling was

performed. PebbleCountAuto only required us to manually tune the

threshold level of Otsu’s threshold matrix. This parameter was tuned

for each processed image tile in order to obtain a visually optimal seg-

mentation of grain features. The default parameter defining the mini-

mum area in pixel for a feature to be considered a grain was modified

and set at 23 pixels in order to be consistent with the same parameter

defined in BASEGRAIN—value based on the limit of grain feature

detectability in images (see Graham, Rice, & Reid, 2005). The model

uses a size cut-off criterion to discard grains whose b-axis is too small.

By default, the cut-off value is set at 20 px, but we decreased it to

3 px so that all grains with a b-axis exceeding 1 cm could be consid-

ered. PebbleCountsAuto allows one to work with georeferenced

orthoimages. Therefore, information about detected grain features

such as northing and easting coordinates in an UTM coordinate sys-

tem, major and minor axis of the fitted ellipses and their orientation

could be exported as text files. These data were used to reconstruct

the detected features as georeferenced ellipses in QGIS. Digital line

sampling was then performed by computing the GSD from grain fea-

tures intersected by each georeferenced line.

2.6 | Accuracy evaluation

The grain size percentiles obtained by manually labelling images and

those obtained by applying the three grain-sizing tools were com-

pared with the grain sizes retrieved by on-field manual line sampling.

F I GU R E 2 Example of digital line sampling with manual labelling and the software routines investigated. The blue line corresponds to the
location of the georeferenced line. The grain features displayed for manual labelling and GALET are the original grain feature polygons and not
the fitted ellipses. The BASEGRAIN image originates from the software GUI.

6 MIAZZA ET AL.
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The comparisons were done by normalising all digitally obtained grain

size percentiles by their corresponding in-field manually measured

grain size percentiles as follows:

dnorm ¼ ddigital
dmanual

where ddigital corresponds to the digitally obtained grain size percen-

tiles, while dmanual corresponds to the grain size percentiles obtained

from in-field manual sampling. Therefore, if the digital measurements

were accurate, dnorm should be close to unity.

We considered the normalised root mean square error (NRMSE)

to quantify the errors of digitally based grain size percentiles in terms

of the corresponding fraction of the mean grain size percentiles

obtained from in-field manual sampling. This error metric allowed us

to directly compare the accuracy of the model estimates for different

grain size percentiles, even if the grain scales were different (like for

d16 and d84 values, which may not be of the same order of

magnitude). For each grain size percentile, the NRMSE was calculated

as follows:

NRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi�xið Þ2
s

ffiffiffi
n

p �xmean

where yi is the value of the digitally estimated grain size percentile on

sample i, xi is the value of the manually measured grain size percentile

on sample i, xmean is the mean value of the manually measured grain

size percentiles and n is the number of line samples—n = 17 in this

study.

3 | RESULTS

Pairs of digitally and manually measured characteristic grain sizes are

presented in Figure 3 for the set of Fehr line samples collected during

F I GU R E 3 Characteristic grain size values from digital measurement procedures plotted against in-field manually measured characteristic

grain sizes, for each of the 17 line sampling analysis performed. The black dashed line corresponds to the 1:1 trend.

MIAZZA ET AL. 7
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the field campaign. Grain size estimates from manual in-field line sam-

ples were regarded as the reference ‘ground-truth’ values when com-

paring the performance of the different methods. Overall, the data

pairs corresponding to digital manual labelling and their associated in-

field manual measurements proved to be mutually consistent. Grain

size estimates from digital manual labelling closely follow the 1:1

trend when plotted against their in-field ground-truth counterparts

(Figure 3). The grain size estimates issued from GALET follow the 1:1

trendline with a particularly good agreement on the highest half of

the grain size domain for the dm, d50 and d84 cases. However, the

GALET estimates were often larger than the manual ones on the low-

est half of the grain size domain (Figure 3a,b,d).

PebbleCounts grain size estimates included three outliers. For the

sake of readability, the outliers were not plotted in Figure 3, as they

differed strongly from manually measured grain sizes for the dm and

d84 grain sizes (their values ranged from 20 to 28 cm for the dm grain

size, and from 42 to 62 cm for the d84 grain size, see Figure S2). These

outliers arose because a large grain feature (b-axis > 40 cm) was

detected in each of the three concerned samples. Such large features

resulted from the undersegmentation of sediment patches in

PebbleCounts.

When ignoring the above outliers, we found that PebbleCounts

and BASEGRAIN grain size estimates were often located under the

identity line in Figure 3. Particularly, the largest manually measured

values were systematically underestimated by BASEGRAIN and

PebbleCounts routines for all characteristic grain sizes.

The normalised grain size percentiles are presented in Figure 4.

The median normalised grain size percentiles derived from manual

labelling are close to unity for all grain size percentiles. This indicates

a good match with grain sizes issued from in-field manual sampling.

F I GU R E 4 Median normalised grain size percentile of each digital measuring procedure (thick line). The grain size percentiles were
normalised by the in-field manually derived grain size percentiles (ddigital/dmanual). The q25 and q75 quartiles of the normalised digital estimates are
represented by the dotted lines, meaning that 50% of the normalised estimates are located within the coloured area. Key grain size percentiles
(i.e., d16, d50 and d84) are indicated by vertical lines.

F I GU R E 5 Normalised root mean squared error (NRMSE) of each digital measuring procedures compared with in-field manual sampling, for

each grain size percentile. Key grain size percentiles (i.e., d16, d50 and d84) are indicated by vertical dotted lines.

8 MIAZZA ET AL.
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The normalised grain size percentiles computed by GALET were fre-

quently in excess of the grain size values derived from in-field manual

measurements (median value above unity). This overestimation was

particularly pronounced for grain size percentiles smaller than d40.

Normalised grain size percentiles obtained from BASEGRAIN and

PebbleCounts (whose outliers were not considered) underestimated

grain size percentiles on average. This underestimation was less

severe for larger grain size percentiles. If we look at the q25 and q75

quartiles in Figure 4, the object-detection software routines provide

normalised grain size percentiles that are more scattered in the lower

half of the grain size percentiles (i.e., between d5 and d50) than in the

upper half, with a minimum scatter reached around the d80 grain size.

This trend was also observed for manual labelling, but it was less

pronounced—the interquartile range of the normalised grain size per-

centiles was relatively low compared with the object detection soft-

ware estimates.

The evolution of the NRMSE as a function of the grain size per-

centile is presented in Figure 5. This error metric indicates that the

digital measurement procedures were most accurate around the d84

grain size percentile, except for PebbleCounts when its outliers were

considered. Grain sizes computed from digital manual labelling

showed the lowest NRMSE. Concerning the software routines, they

exhibited mutually similar error values for grain size percentiles

between d5 and d40. Between the d40 and d90 grain sizes percentiles,

GALET showed the lowest errors, whereas BASEGRAIN and

PebbleCounts (without outliers) exhibited comparable higher NRMSE

values. The NRMSE of grain size estimates of PebbleCounts was sig-

nificantly reduced when removing the outliers from the error metric

computation.

4 | DISCUSSION

The accuracy of digital manual labelling and of object-based grain-

sizing methods compared with in-field line sampling is discussed in

Sections 4.1 and 4.2, respectively.

4.1 | Digital manual labelling accuracy

The characteristic grain size values derived from manual labelling of

orthoimages showed a great similarity with the values derived from

in-field manual sampling (Figures 3 and 4). This similarity contrasts

with previous studies on manual labelling of individual grains in photo-

graphs, which found that grain sizes were generally underestimated

compared with in-field sampling results (e.g., Adams, 1979; Church,

McLean, & Wolcott, 1987; Garefalakis et al., 2023; Ibbeken &

Schleyer, 1986). These authors linked this underestimation to the par-

tial information accessible in photography-based grain-sizing methods,

because only the exposed part of grains is visible in nadir photo-

graphs. Partial burying of grains, grain imbrication or foreshortening of

grains due to the angle of the photograph can lead to underestimate

the true grain sizes (Graham et al., 2010).

In our study, grain size percentiles derived from digital manual

labelling did not suffer from underestimation, most likely because it

was difficult to identify smallest particles (b-axis < 2 cm approxi-

mately) owing to the orthoimage resolution or to their location in-

between coarser particles. The weak detection of finest particles

resulted in different calibrations of the Fuller curves that describe the

lower end of the GSDs and probably led to higher NRMSE values for

grain size percentiles in the d10–d40 range (Figure 5). In our samples,

percentiles smaller than d10 corresponded to grain sizes smaller than

1 cm and no grain-sizing method (including in-field sampling) provided

direct measurements for such small grains. Therefore, under d10, the

Fuller interpolation in the Fehr method completely determined

the grain size percentiles, made the GSD tails mutually similar and

provided lower NRMSE values. The undersampling of fine grains likely

counterbalanced the size underestimation for the largest particles,

thus providing average grain size estimates that were similar to those

derived from in-field manual sampling. It is worth mentioning that

manual labelling was performed by a single operator and we did not

investigate how the results may differ depending on the operator.

4.2 | Accuracy of object-based grain-sizing
methods

Comparing the three software routines (BASEGRAIN, GALET and

PebbleCountsAuto) revealed differences in accuracy and limitations.

GALET tends to overestimate in-field grain sizes issued from line sam-

pling. The main explanation for this phenomenon is that GALET did

not detect the smallest grains (b-axis < 2–3 cm). Mörtl et al. (2022)

noted that the resolution of orthoimages determines the smallest

detectable grain size by GALET. The resolution of the generated

orthoimages (approximately 0.3 cm/px) was likely too low for the

detection of the smallest grains. Fine grained samples (with dm smaller

than 7 cm, Figure 3a) were therefore particularly affected by the

absence of small grains in GALET grain size estimates and thus led to

overestimated values. To reduce the detection limit for small grains,

shorter ground sampling distances would be required.

Visual inspection of the grain features detected by GALET

suggested that the software performance was not affected by differ-

ent rock texture patterns inside individual grains. The CNN training

dataset used by Mörtl et al. (2022) is probably well suited to applying

the routine to the Navisence bed images. A significant number of

grains was not detected in the GALET routine. Overall, GALET

detected 40% less grain features, regardless of their size, along the

lines compared with the manual labelling conducted by a human oper-

ator. The largest grains (b-axis > 20 cm) sometimes appeared over-

segmented by a vertical or horizontal line. This feature splitting was

caused by the edges of the finite-size moving window used for grain

feature detection in GALET. This issue did not arise with large

grain features along the lines, but it could lead to a size underestima-

tion for some of the largest pebbles present in the river bed.

BASEGRAIN and PebbleCounts produced similar results, as both

software routines generally underestimated characteristic grain sizes.

For three sampling lines, PebbleCounts outcomes were affected by

several feature merging occurrences and missed grain detections (the

outliers mentioned in Section 3). These errors were likely caused by

glacial flour, which partially covered pebbles. This led to a large over-

estimation of grain size percentiles for these lines. The grain sizes of

the other lines were generally underestimated because the largest

stones were often not detected, which may be due to the presence of

intergranular textures that prevented optimal edge detection. In

MIAZZA ET AL. 9
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addition, direct sun illumination on orthoimage C caused size underes-

timation of the detected stones, as the shaded grain faces were not

included in the detected object boundaries. Finally, we observed that

the grain masks identified by PebbleCounts were generally smaller

than the apparent size of stones in the orthoimages. This shortcoming

in PebbleCounts led to grain size underestimation. PebbleCounts

showed a poor detection rate along the lines on the orthoimages, as

the number of grain features detected is 62% smaller than that

resulting from manual labelling.

Concerning BASEGRAIN, rock-texture variations inside single

grains (e.g., due to foliation or veins) can be detected as grain edges

during the segmentation procedure. Therefore, large particles often

appeared over-segmented. This resulted in the detection of several

smaller particles instead of a single large particle. These over-

segmentation errors were less frequent for small particles, whose

detection was less influenced by rock texture details—apparently

because of the limited image resolution. BASEGRAIN suffered from

the same problem identified in PebbleCounts: it often did not merge

shaded grain-surfaces into the object boundaries. This resulted in

underestimation of the real size of grain features. Rock texture varia-

tions induced BASEGRAIN to detect fictitious edge patterns. Non-

detection of large particles might arise when BASEGRAIN was unable

to reconstruct a closed grain boundary from these edge patterns. The

large number of tunable parameters in BASEGRAIN makes the perfor-

mance highly dependent on the operator’s choices. Meticulous param-

eter tuning and visual checks of the quality of the object detection

were performed in the present study, but it cannot be excluded that

different operators could have obtained different results.

Systematic grain size underestimation from automated image-

based methods induced by rock texture is an issue pinpointed by ear-

lier studies (e.g., Strom, Kuhns, & Lucas, 2010). We found that

PebbleCounts results were relatively less influenced by rock texture

patterns than BASEGRAIN ones. Over-segmentation errors with

BASEGRAIN may be even more severe when no parameter tuning is

performed (see Chardon, Piasny, & Schmitt, 2022).

Among the routines considered here, GALET, based on deep

learning for object detection, emerged as the best-suited tool for

grain size analysis when studying gravel bars from orthoimages.

GALET was designed to fit the wide range of rock texture found in

gravel-bed rivers and to conduct grain feature detection on long

stream reaches. The object-detection performances of deep-learning

methods (see Zhao et al., 2019), the recent implementation of deep

learning in object-based grain-sizing techniques (e.g., Chen,

Hassan, & Fu, 2022; Soloy et al., 2020) and the results of the pre-

sent study indicate that the deep-learning technology may enable a

step forward in automated optical granulometry. We believe that

the use of novel automated grain-sizing techniques applied to large

scale orthoimages will give a new impetus to understanding the pro-

cesses that drive sediment sorting in gravel-bed rivers. In the

Supporting Information, we illustrate by way of an example how

grain size data obtained by object-based segmentation on ortho-

images can be used to study the grain size distribution’s spatial vari-

ation along a mountain river. This example involves statistical tools

originally developed in other scientific fields—such as Moran’s index

(Moran, 1950) and Local Indicator of Spatial Association

(Anselin, 1995)—to analyse the spatial variability of riverbed deposits

according to their grain sizes.

5 | CONCLUSIONS

We presented a benchmarking study of three object-based grain-

sizing models (BASEGRAIN, PebbleCountsAuto, and GALET) on a

mountain river bed. The main difference between them was that

GALET uses deep-learning technology whereas the two others are

based on image thresholding for grain segmentation. The three

methods were applied to orthoimages obtained from UAV surveys

and Structure-from-Motion photogrammetry. In-field estimates of

grain sizes obtained using Fehr’s line sampling technique served

as a reference dataset to evaluate the accuracy of each grain-

sizing method. We supplemented the comparison by manually

labelling grain features on the same orthoimages. By computing

the grain size distributions within Fehr’s (Fehr, 1987) framework,

we ensured that all methods were comparable on the same

footing.

Manual labelling provided estimates that were fully consistent

with field measurements. BASEGRAIN and PebbleCountsAuto under-

estimated grain sizes on average, whereas GALET generally over-

estimated grain size percentiles.

We identified some limitations in the three models. BASEGRAIN

often led to over-segmentation in grain features due to the rock-

texture influence on object detection. PebbleCountsAuto outcomes

were often affected by missed detections of large grains. Shaded grain

faces and glacier flour also influenced grain detection in

PebbleCountsAuto. The available image resolution prevented the

detection of the smallest grain features with GALET.

Our study showed that GALET was generally the most accurate

automated grain-sizing method. Our results suggest that object-based

methodologies based on deep learning may become the new corner-

stone of optical granulometry for monitoring river-surface grain sizes

with high spatial coverage and accuracy.
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