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Purpose of review

To review recent advances in the field of seizure detection in ambulatory patients with epilepsy.

Recent findings

Recent studies have shown that wrist or arm wearable sensors, using 3D-accelerometry, electrodermal
activity or photoplethysmography, in isolation or in combination, can reliably detect focal-to-bilateral and
generalized tonicclonic seizures (GTCS), with a sensitivity over 90%, and false alarm rates varying from
0.1 to 1.2 per day. A headband EEG has also demonstrated a high sensitivity for detecting and help
monitoring generalized absence seizures. In contrast, no appropriate solution is yet available to detect
focal seizures, though some promising findings were reported using ECG-based heart rate variability

biomarkers and subcutaneous EEG.

Summary

Several FDA and/or EU-certified solutions are available to detect GTCS and trigger an alarm with
acceptable rates of false alarms. However, data are still missing regarding the impact of such intervention
on patients’ safety. Noninvasive solutions to reliably detect focal seizures in ambulatory patients, based on
either EEG or non-EEG biosignals, remain to be developed. To this end, a number of challenges need to be
addressed, including the performance, but also the transparency and interpretability of machine learning

algorithms.
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INTRODUCTION

Reliable ambulatory seizure detection systems have
become a major expectation for persons with epi-
lepsy, their families and their physicians, with the
double aim of triggering timely alarms to mitigate
the potential harmful consequences of seizures and
providing more precise information on seizure fre-
quency to better guide therapy [1]. Indeed, this
essential information currently relies on reports
from patients or their caregivers, which often prove
inaccurate or misleading [2-5]. Accordingly, surveys
indicate that over 75% of individuals with epilepsy
consider real-time seizure detection as highly impor-
tant [6]. Yet, recent guidelines from the international
league against epilepsy and world federation of clin-
ical neurophysiology have concluded that current
wearable devices can only reliably detect generalized
tonic-clonic seizures (GTCS) and focal to bilateral
tonic-clonic seizures, all of which will be referred as
GTCS herein [7*%,8""]. Furthermore, there is currently
no evidence that using such device decreases the risk
of sudden unexpected death in epilepsy (SUDEP)
[7* 8™.

1350-7540 Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

NON-EEG BASED SEIZURE DETECTION

Generalized tonic-clonic seizures

A plethora of technologies has been devised to detect
seizures without the conventional use of EEG [9-14].
Commercially available devices mostly target the
identification of motor seizures [15], and primarily
GTCS. Yet, GTCS account for less than 15% of all
seizures observed in individuals with uncontrolled
epilepsy. This particular seizure type has undergone
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KEY POINTS

o Several medically certified wrist or arm wearables
reliably detect generalized tonic-clonic seizures (GTCS)
with acceptable rates of false alarms.

e The impact of GTCS detection on patients’” safety has
not yet been demonstrated.

e Until now, wearable EEG for long-time ambulatory
seizure detection has only proved applicable to the
monitoring of generalized absence seizures.

e There is no available solution to reliably detect
focal seizures.

e Promising developments include ECG-based heart rate
variability biomarkers and subcutaneous EEG.

comprehensive characterization, unveiling dis-
tinctive patterns that are readily discernible from
nonepileptic physiological activity and psychogenic
nonepileptic seizures through the utilization of
upper limb 3D-accelerometry (3D-acc) [16-19], elec-
tromyography sensors (EMG) [20-23], electrodermal
activity [24], and to some extent, electrocardiogram
sensors (ECG) [25,26], with each biosignal employed
either in isolation or in a multimodal manner.

Currently, only a limited number of devices
implementing these biosignal modalities has under-
gone rigorous testing, clinical validation, and
received approval from either the US Food and Drug
Administration and/or the European Union, specif-
ically for GTCS detection [15,27,28].

A wrist-worn 3D-acc based seizure detection
device (Epi-Care mobile, Danish care technology,
Sorg, Denmark) was recently tested in 71 partici-
pants (median age 27years old, range 7-72years
old) in a phase 4 field study. The device achieved
a median sensitivity of 90% for the detection of
GTCS, with a median false alarm rate (FAR) of 0.1
per day [19], replicating the performance previously
observed with the same device in epilepsy monitor-
ing unit (EMU) studies.

Another wrist sensor combines 3D-acc and EDA
(Embrace, Empatica Inc., Cambridge, USA) and was
tested in a large EMU study involving 67 adults and
85 pediatric participants. The device demonstrated a
sensitivity of 91% [95% confidence interval (CI):
84-99%] and a FAR of 0.27 per day (95% CI: 0.18,
0.36) [29™], consistent with the outcomes of prior
investigations [30,31].

Another type of 3D-acc sensor is placed on the
upper arm and includes photoplethysmography
(PPG) [32,33] (NightWatch, LivAssured B.V., Leiden,
The Netherlands). Using this device, a recent pro-
spective multicentric phase 4 study, encompassing
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2310 nights and totaling 28 174 h of recordings in 53
children, reported a median sensitivity for detecting
nocturnal GTCS of 94%, ranging from 71% to 100%
across patients, with a FAR of 1.2 per 24 h of record-
ings [34™"]. This device also detected other nocturnal
major motor seizure types, though with a lower
sensitivity of 86% [34"].

Arm EMG sensors have also proved highly sen-
sitive and specific for detecting GTCS [20-22,35]. In
a prospective, multicenter, blinded study employing
real-time seizure detection in a cohort of 71 patients
(agerange: 10-62), one such wearable EMG solution
successfully identified 94% of GTCS with an FAR of
0.67 per day [23].

Wearable ECG patch, designed for monitoring
heart rate variability (HRV), also demonstrated high
sensitivity in the detection of GTCS. In a cohort of
100 patients, the device successfully detected 17 out
of 18 GTCS, resulting in a sensitivity of 100% (95%
CI: 79.4-100) with a FAR of 1/day [25]. Similar
results were reported in another prospective phase
2 study in 47 patients, with a detection of 9 out 10
GTCS, and a FAR of 0.9/day (90%) [26]. In a more
recent phase 2 multicenter trial aimed at detecting
all seizure types, particularly nonconvulsive ones, 8
out of 10 GTCS were correctly identified (80%) [36™].

Nonwearable sensors have also been developed
to detect seizures, including under-mattress device
incorporating a quasi-piezoelectric film integrated
with pressure sensors [37]. Clinical studies have
shown a sensitivity in detecting GTCS of 85% in
children and 89% in adults, with rare false alarms
occurring exclusively during daytime [38,39]. A
recent retrospective study of 55 adult patients con-
firmed a lower sensitivity than that provided by
wearables, at 78%. FAR was very low, at 0.007 per
day [407].

Wearable devices detecting GTCS can poten-
tially provide biomarkers of seizure severity,
extracted from the different biosignals collected
for detection, with the view that such biomarkers
could help predicting the risk of sudden unexpected
death in epilepsy (SUDEP) [41]. As a first step, two
EMUs studies have explored the possibility to use
surface EMG and HRV as surrogate indicators of
seizure severity. Both biomarkers showed strong
association with the presence and duration of a
postictal EEG suppression (PGES), with the EMG-
based algorithm predicting the presence of PGES
longer than 20s with an accuracy of 85% [42,43].
The presence of a progressive slowing of the clonic
phase, which could be captures from 3D-acc, also
correlated with the presence and duration of the
PGES, as well as with the type of GTCS [44]. The
above as well as other wearable sensors might also
enable to infer from the duration of GTCS and
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postictal immobility, as well as the severity of pos-
tictal autonomic changes [45].

Focal seizures

In contrast with GTCS, only a limited body of
research has explored the utilization of extracerebral
biosensors for the detection of focal seizures. As
previously discussed, the NightWatch, which com-
bines 3D-acc PPG has been tested for detecting
major motor seizures other than GTCS, including
30 seizures with bilateral tonic seizures lasting >30s,
focal onset hyperkinetic seizures (HK), and other not
otherwise categorized major motor seizures (OM).
Sensitivity for detecting these three seizure types
was 53%, 83% and 91% respectively [34™]. Interest-
ingly, the positive (n=492) and false (n=1642)
alarms were mainly triggered by the 3D-acc (86%
for positive alarms and 66% for negative alarms)
followed by a rapid increase in heart rate (23% for
positive alarms and 36% for negative alarms) and by
tachycardia (18% for positive alarms and 6% for
negative alarms). A minority of alarms, specifically
27% of true positive alarms and 8% of false positive
alarms, were activated by multiple signals simulta-
neously [34™].

The identification of focal seizures without con-
spicuous movement or muscle engagement obvi-
ously necessitates other biomarkers than those
reliant on movement or muscle activity-based devi-
ces. Changes in hear rate and HRV have been pro-
posed and recently tested as potential biomarkers for
the detection of such seizures [25,26,36"%,46-50]. In
a recent phase 2 clinical trial of 62 patients, an ECG
patch associated with an HRV-based patient-adap-
tive logistic regression machine learning achieved a
sensitivity of 77% for the detection of focal seizures
with a FAR of 0.62% [36™]. However, a major and
expected difference was observed between patients
with an ictal increased in heart rate > 5S0bpm (sen-
sitivity of 87%) and those without (sensitivity of
24%). The results confirmed those from a compara-
ble previous study from the same group [26], though
with improved FAR believed to reflect the imple-
mentation of the patient-adaptive algorithm.

EEG-BASED SEIZURE DETECTION

In recent years, notable advances in ambulatory
scalp-EEG recordings have emerged, addressing
the challenge of prolonged monitoring spanning
weeks, months or even years. Novel systems
employing subcutaneous or intra-auricular electro-
des have been developed, indicating potential for
reliable chronic EEG recordings in the future [9,51-
53].

1350-7540 Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

In parallel, numerous EEG-based seizure detec-
tion algorithms have been developed [54]. These
algorithms, which are usually trained and tested
on EEG datasets recorded in EMU rather than in
ambulatory patients, exhibit sensitivities ranging
from 75% to 90%, with false detection rates between
0.1 and 5 per hour [54]. Transitioning these algo-
rithms to ambulatory settings raises critical consid-
erations. On the one hand, long-term ambulatory
EEG recordings with noninvasive wearable devices
are likely to suffer from much more artefacts than in
the EMU, leading to reduced sensitivity and specif-
icity, whereas on the other hand, acceptable rates of
false alarms shall be much lower in ambulatory
settings than in-hospital where such alarms are
primarily managed by the EMU statf.

Yet, some recent data suggest that headband
EEG can achieve clinically relevant detection for
some seizure type [55,56,57%,58]. Indeed, a recent
multicenter prospective phase 3 clinical trial using a
headband embedded with dry electrodes to detect
generalized absence seizures in 39 patients achieved
a median sensitivity per patient of 93% [interquar-
tile range (IQR)=66.7-100%] [56]. In contrast,
another study focusing on tonic seizures only
reached a 41% sensitivity (41%) with a high FAR
of 0.75 per hour [58]. Poor findings were also
reported for focal impaired awareness (FIA) seizures
in both inpatient and outpatients, with 52% and
23% sensitivity, respectively, and FAR up to 7.13 per
hour [577].

To mitigate these issues, multibiosignal correla-
tions might prove pivotal [59], with a synergistic
combination of EEG and non-EEG technologies uti-
lizing wireless-coupled biosensors positioned on the
head (e.g., behind or around the ear) and peripheral
regions (e.g., the wrist) [60]. Minimally invasive
subcutaneous EEG electrodes, which are less suscep-
tible to artifacts than those on the scalp, offer an
alternative approach to clinically-relevant EEG-
based seizure detection in ambulatory patients [61].

MACHINE LEARNING FOR SEIZURE
DETECTION

Machine learning algorithms have become an inte-
gral part of seizure detection and prediction systems,
with particular emphasis on Deep Learning frame-
works [62-68]. They can be developed to operate in
real-time when embedded in seizure detection devi-
ces or offline for analysis after the recording. Yet,
algorithms embedded in seizure detection devices
must meet low computing, memory and power
requirements that are constrained by the wearable
devices [69]. The 2023 ICASSP Seizure Detection
Challenge was specifically organized to evaluate
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algorithms designed for wearable EEG devices. The
challenge provided participants with the SeizelT1
dataset that contains 42 subjects with one week of
continuous EEG recorded in the EMU, with four
additional electrodes placed behind the ear (Byte-
flies Sensor Dot) representing potential ambulatory
wearable EEG data [70]. While the challenge high-
lighted some of the state-of-the-art methods for
EEG-based wearable seizure detection methods, it
also highlighted the continued need for algorithm
improvements as the best-performing algorithm
obtained a sensitivity of 63% with 15 false-alarms
per hour which is not acceptable by patients for real-
time seizure alarming devices [71]. At the same time,
algorithms designed for use in an EMU setting per-
form considerably better. A recent assessment of
commercially available algorithms for EEG-based
EMU seizure detection showed that these algorithms
have a sensitivity close to 90% for a false alarm rate
of 1.7-5.5 per day [72™].

The development of seizure detection algo-
rithms raises a number of issue, including compazr-
ison of performance across studies, transparency
and interpretability [73]. Comparison across studies
can be promoted by using similar public datasets, as
illustrated by the 2023 ICASSP Seizure Detection
Challenge. Other publicly available datasets for
EEG-based seizure detection are available [74], but
remain scarce overall. Recent research has also high-
lighted the importance of proper cross-validation
methodology and the choice of proper performance
metrics for the evaluation of algorithms [75,76].
Addressing this issue requires a collective effort from
the research community. Collaborative initiatives,
akin to those proposed by prominent scholars
[73,777], are vital in establishing standardized data-
sets that encompass diverse seizure types, durations,
and clinical contexts. These standardized datasets
would serve as a common ground for algorithm
evaluation, enabling fair and accurate comparisons
between different methodologies. Furthermore, a
consensus on evaluation metrics, incorporating
measures such as sensitivity, specificity, positive
predictive value, and false alarm rate [2,3], is imper-
ative. Establishing a set of universally agreed-upon
metrics will facilitate the comprehensive assessment
of algorithms and enhance the reproducibility
of results.

CONCLUSION

Several commercial wrist or arm wearable sensors,
using 3D-acc alone or combined with EDA or PPG,
enable a reliable detection of GTCS with acceptable
level of false-alarm rates. No such wearable currently
offer clinically-relevant solution to detect focal

4 www.co-neurology.com

seizures. This conclusion also applies to wearable
EEG which utility remains restricted to the detection
of generalized absence seizures. Promising develop-
ments in the field include the utilization of ECG-
based HRV biomarkers and subcutaneous EEG.
Improvements are needed in the standardization
of datasets and metrics used to trained and tested
seizure detection algorithms, as well as in the trans-
parency and interpretability of the underlying
machine learning tools.
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