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Abstract

Quantum Field Theories are a central object of interest of modern physics,
describing fundamental interactions of matter. However, current methods
give limited insight into strongly coupling theories. S-matrix bootstrap pro-
gram, described in this thesis, aims to provide insight into these strongly cou-
pled theories, by mapping the space of consistent scattering amplitudes that
obey properties imposed by unitarity, Lorentz invariance and causality. This
thesis aims to outline the basic principles of the program, along with steps
to construct numerical S-matrix bootstrap experiment, presents the Wolfram
Mathematica library developed by author to automatize parts of the proce-
dure that are shared among experiments, and finally discusses the research
on 4d conformal field theories, which, by relevant deformation, can be turned
into interacting QFTs, in which bootstrapping the scattering amplitudes al-
lowed finding lower bounds on a-anomaly coefficient in the investigated cases.

Abstrakt

Quantenfeldtheorien sind ein zentraler Gegenstand des Interesses der mod-
ernen Physik und beschreiben grundlegende Wechselwirkungen der Materie.
Aktuelle Methoden geben jedoch nur begrenzte Einblicke in stark kop-
pelnde Theorien. Das in dieser Arbeit beschriebene S-Matrix-Bootstrap-
Programm soll Einblick in diese stark gekoppelten Theorien geben, indem
es den Raum konsistenter Streuamplituden abbildet, die den durch Unitar-
ität, Lorentz-Invarianz und Kausalität auferlegten Eigenschaften gehorchen.
Ziel dieser Arbeit ist es, die Grundprinzipien des Programms zusammen mit
Schritten zum Aufbau eines numerischen S-Matrix-Bootstrap-Experiments
zu skizzieren, die vom Autor entwickelte Wolfram Mathematica-Bibliothek
vorzustellen, um Teile des Verfahrens zu automatisieren, die von Experi-
menten gemeinsam genutzt werden, und schließlich diskutiert die Forschung
zu 4d-konformen Feldtheorien, die durch relevante Verformung in inter-
agierende QFTs umgewandelt werden können, wobei das Bootstrapping der
Streuamplituden es ermöglichte, in den untersuchten Fällen Untergrenzen für
den a-Anomaliekoeffizienten zu finden.
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Chapter 1

Introduction

As the introductions of PhD theses are usually overly poetic, I’d like to start with
the least original phrase – since the beginning of the civilization understanding
the nature was not only beneficial to our survival as a species, but for some
weird specimens of H. sapiens var sapiens it was interesting on its own.

With such set of features given to me by socio-genetic roulette/the higher
power of preference1, I discovered that some people before me tried to explore
the rules of nature[1, 2], some have been quite successful[3], and most of them
were inspiring.

My favorite part of all the giants and dwarves standing on giants, and other
people standing at each other (named later the scientific community), were
human beings that thought mathematics is the promising way of describing the
universe around. With inevitable realization that the complex stuff like humans
or fungi is a bit too complicated for now, physics was born, a science that uses
maths to predict future of (mostly) inanimate things.

Via smashing things with other things2, scientists unveiled more and more
fundamental building blocks for the reality, with progressively weirder and
weirder maths behind them, to finally realize the reality is not really made
of building blocks (quanta), but rather quantum fields, which could be thought
as a fabric of the reality, and all what we considered particles is in fact this
very fabric of reality vibrating in quantum excitations. Nevertheless, the name
“particle physics” stuck. The (even more weird) mathematical toolkit to de-
scribe the quantum fields is named Quantum Field Theory (QFT) and is quite
important part of the modern physics, and a very important part of the thesis
presented.

QFT, in its all mathematical complexity, answers some questions, and cre-
ates even more questions. While quite neatly predicting many experimental
results, like ‘if I smash electron with another electron, what is the stuff that
falls out’, or ‘why the gyromagnetic ratio is −2.002319 . . . , while the first look
suggests it’s −2’3, it is also full of numbers that are unknown to have a particu-
lar reason to have such values (Standard Model has 19 free parameters, that can

1Reader shall choose relevant, based on metaphysical beliefs.
2Only smashing inanimate things is considered science, smashing animate things is called

‘violence’ and shall be avoided.
3The semiclassical computation provides ge = −2, but the 1-loop perturbation theory

provides ge = −2(1 + α/π) = −2.002319 . . .

1



2 CHAPTER 1. INTRODUCTION

only be found experimentally, and the relation between this fundamental the-
ory and the effective interaction for emerging particles, like pions and protons
introduces much more stuff to measure), full of numbers that have no meaning
with respect to experiments (non-observable quantities, like ones occurring in
renormalization), and quite rich in problems with high energy (UV) completion
(where above some scale the physical predictions behave like a glitchy video
game[4]).

As a final touch, the firmest way of doing QFT prediction is perturbation
theory, which provide results for some small4 range of parameters around simple
”free theories” that the humankind knows how to solve, with a rather limited
insight into ”strong coupling”, where the parameters are considered large.

With a rather complicated relation between strongly coupling theories and
our ability to compute anything in them, the scattering theory was born, where
the complicated mathematics of Quantum Field Theory was replaced by com-
plex5 mathematics of scattering amplitudes, quantities that represent the out-
come of a scattering experiment (smashing things with things, mankind’s most
established way of understanding fundamental physics). With a scattering am-
plitude Sab→cd being the probability amplitude of transition between the state
ab and cd (”we smashed a with b and noted c and d came out”), not only this is
the most observable of all observable quantities, without any nasty ‘renormal-
ization scales’ and other decoys, but also it doesn’t introduce any problems with
strong coupling (in perturbative QFT Sab→cd is proportional to a small coupling
parameter α in some power, here it’s just a number), but it doesn’t possess any
inherent problems with high energies (the initial state are still particles, just
smashed harder at each other).

The collective smartness of many scientists allowed to establish several ana-
lytic properties of amplitude S. Merging very fundamental properties expected
from the theory describing our world, like causality (which means events are
only influenced by past events that were close enough for light signal to reach
former), unitarity (the probabilities are not negative and better if they would
sum up to 1), and Lorentz invariance (the laws of physics are independent of
frame of reference) provides the analytic structure of quantity S if the variables
used to describe it are taken to be complex numbers6. A review of these prop-
erties will be given in the next chapter, however, this moment desperately calls
for a (very unmotivated for now) example.

Considering a general physical theory of a single scalar field of mass m, and
no additional assumption, it may be concluded that

• The scattering amplitude of 2-to-2 particles S is dependent on Mandelstam
invariants s, t, with s = −(pµ

1 + pµ
2 )2, t = −(pµ

1 − pµ
3 )2

• This rather weird distributional quantity may be decomposed into S =
1 + i(2π)4δ(4)(p1 + p2 − p3 − p4)T (s, t)

• T (s, t) is a function. Moreover, it’s a real and analytic function in upper
complex plane, both in s and t, with T ∗(s+ iε, t+ iε) = T (s− iε, t− iε)

4The range of convergence of such perturbative series is exactly 0, which makes the author
scratch his head quite hard.

5c = a + bi
6So long, “it’s all physical”
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• T (s, t) has a number of branch cuts, corresponding to energies required to
produce n ≥ 2 outgoing particles, starting at s = 4m2, s = 9m2, s = 16m2

and so on.

• T (s, t) may have a pole at m2, which exist due to 1-particle state of energy
m.

• If the theory describing this physical system obeys LSZ reduction for-
mula (relating scattering amplitude to 4-point function), crossing relation
T (s, t) = T (t, u) = T (4m2 − s− t, t) holds. Therefore, the analytic struc-
ture in t is similar.7

Summarizing these, now very unfounded, claims one gets a picture of analytic
structure of T in the complex plane

s

m2 4m2 9m2 16m2

One can ask now ”what is the space of functions that have this analytic
structure”. This is exactly the question asked by S-matrix bootstrap program.

With a minimal amount of the assumptions, so analyticity, as described
above, and unitarity (the conservation of non-negative probabilities), one can
create an ansatz (a parametrized educated guess) for the function T (s, t), and
explore the space of the parameters that do not violate these assumptions. That
leads to a beautiful dream, a dream of the bootstrapper, in which all physical
quantities are like they are because they are the only logical choice, with others
leading to inconsistent results.

Quite a few projects has shown power of this approach, from bootstrapping
pion scattering by imposing real-world resonances and chiral zeroes [5], effective
field theories resulting from large Nc QFTs [6, 7], photon-like particles [8], par-
ticles to probe a-anomaly [9, 10] (presented in this thesis), or c-anomaly [11],
or supersymmetric theories [12].

Obviously, creating an amplitude ansatz with couple hundreds of free pa-
rameters and checking for which combinations obey unitarity is a rather tedious
task, however, for the tedious tasks humanity has created the devices that know
no tiredness nor boredom8, but are absolutely dumb and do only exactly what
they are exactly told to9.

Computers, which massively accelerated the research, productivity and the
spread of conspiracy theories, can now be used to give S-matrix bootstrap pro-
gram a boost which was unthinkable (by both scientists and computers alike)
60 years ago, when analytic properties of scattering amplitudes grabbed the
attention the first time[13].

The research presented here is in great part done for computers and done
with the help of computers. The first chapter outlines the first principles of
S-matrix as created by biological brains, from the initial step of thinking ‘there
are particles’ (Wigner construction of ISO(1, 3) representations), to ‘there were
two particles in the past, how to say that there will be two (maybe different)

7It’s not obvious if crossing relations can be derived from QFT axioms. Rigorous texts
often postulate crossing as an axiom.

8Unlike PhD candidates
9Sometimes like PhD candidates
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particles later?’ (construction of scattering operators and amplitudes), via ‘each
particle pair is pretty much colliding head on’ (Center of Mass frame), through
‘this weird diagram above is actually a good idea’ (analyticity and crossing),
then back to ‘angular momentum is conserved, and that pretty much ends the
topic how to write unitarity’ (Partial Waves and Unitarity), ‘how to guess the
amplitude, at least up to several hundred free parameters’ and ‘how to write
that into a form our dear computer-savvy[14] friends know how to solve’.

The second chapter is a bit more personal, as it describes my beloved child10,
the SMatrixToolkit, which facilitates setting up S-matrix numerical computa-
tions, via using symbolic programming software Wolfram Mathematica, to go
through as many steps of chapter 2 as it is possible to do by a machine. Deriva-
tion of partial waves, construction of ansatze from standard building blocks,
putting the precomputed integrals together – these steps have been program-
matically solved for scattering scalar particles in 4 dimensions, and with addi-
tional efforts can be expended to cover the cases of d ≥ 3 and spinning par-
ticles. It comes with an example to reproduce a classic S-matrix bootstrap
experiment[15], and more examples are provided in the repository.

The third chapter describes effects of unholy union of the man and the
machine. There I describe how I and my collaborators used S-matrix bootstrap
to probe the landscape of 4d conformal field theories (CFTs). The numerical
experiments introduced bounds on a-anomaly coefficient of CFTs containing at
least a real scalar field. These results suggest existence of unknown a ≤ 1

5760π2

CFTs, with different lower, non-zero bounds on a depending on the symmetries
of the problem.

10Now orphaned and waiting for adoption.

https://github.com/jmarucha/SMatrixToolkit


Chapter 2

S-matrix bootstrap

In this paper the author adapts convention of mostly positive Minkowski metric ηµν =
diag{−1, 1, 1, 1} and Hermitian generators of Lie groups, in particular Poincaré group
ISO(1, 3)

2.1 States and amplitudes
In general flat-space QFT a general state can be decomposed into irreducible
representations of Poincaré group, with a basis of

|c, ~p; `, λ; γ〉 (2.1)

with c being ‘center of mass energy’, ~p being representations weight under spatial
translation (with weight under the time translation being p0, p2

0 = m2 + ~p2),
and `, λ being representations of corresponding Lorentz little group (after fixing
weights under translations). γ is a theory-dependent set of labels describing the
state (e.g. electric charge, particle flavor).

In such basis, the arbitrary state can be described as a transformation of
‘zero-momentum state’, using boosts (generated byKi) and rotations (generated
by Ji).

|c, ~p; `, λ; γ〉 = e−iφJ3e−iθJ2e+iφJ3eiηK3
∣∣m,~0; `, λ; γ

〉
(2.2)

That results in overall momentum

~p = (p sin θ cosφ, p sin θ sinφ, p cos θ) , p = m2 sinh η (2.3)

In this paper, the underlying QFT will consist only on scalar particles
φ1, φ2, . . . , which give raise to 1 Particle States (1-PS), that are characterized
by ‘mass’1, c = mi, and zero spin (that’s the ‘scalar’ part), ` = 0 and λ = 0. To
describe 1-PS, a shorthand is used

|φi, ~p〉 ≡ |mi, ~p; 0, 0, γi〉 (2.4)

with (conventional) relativistic normalization of

〈φa, ~pi|φb, ~pj〉 = 2
√
m2

a + ~p2
i (2π)2

δ(3)(~pi − ~pj)δab (2.5)

1Related to Casimir of the Poincaré algebra, m2 = −P µPµ

5



6 CHAPTER 2. S-MATRIX BOOTSTRAP

One defines 2 particle states (2-PS) as tensor product of two 1-PS, which is

|φa, φb〉 = |φa, ~pa〉 ⊗ |φb, ~pb〉 (2.6)

if the particles are different, or

|φa, φa〉 = 1√
2
(

|φa, ~pa〉 ⊗ |φb, ~pb〉 + |φs, ~pb〉 ⊗ |φa, ~pa〉
)

(2.7)

if the particles are the same, to account for Bose symmetry.
The weights under spatial translation

~P |φa, φb〉 = (~pa + ~pb) |φa, φb〉 (2.8)

and energy

H |φa, φb〉 =
(√

m2
a + p2

a +
√
m2

b + p2
b

)
|φa, φb〉 (2.9)

simply follow from Abelian nature of R1,3 subgroup, and the normalization is
inherited from normalization of 1-PS

〈φa, φb|φc, φd〉 = 4 (2π)6
√

(m2
a + p2

a)(m2
b + p2

b) ×

×
(
δ(3)(~pa − ~pc)δ(3)(~pb − ~pd)δacδbd + δ(3)(~pa − ~pd)δ(3)(~pb − ~pc)δadδbc

)
(2.10)

To describe scattering, two different 2-PS are considered, so called in-state,
before scattering event, at time t = −∞:

|φa, φb〉in (2.11)

and out-state, after the event, at time t = +∞

|φc, φd〉out (2.12)

where operator translating one to the other can be written as

Ŝ |φa, φb〉in = |Φ〉out (2.13)

where |Φ〉out is a general out-state that may consist of many-particle states.
The main focus, however, will be the 2 → 2 particle scattering. The related

matrix elements are

Sab→cd × (2π)4
δ(4)
(

(pa + pb) − (pc + pd)
)

≡ out〈φc, φd|φa, φb〉in (2.14)

with four-vectors momenta 4-vectors defined as pµ
a = (

√
m2

a + |~pa|2, ~pa), and
the delta function resulting from (2.8)(2.9)
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2.2 Mandelstam invariants
Poincare invariance implies, that the matrix element (2.14) stays the same after
Lorentz transformations, in particular

|φ′
a, φ

′
b〉in = eiηiKi |φa, φb〉in

|φ′
c, φ

′
c〉out = eiηiKi |φc, φc〉out .

(2.15)

This invariance,

out〈φc, φd|φa, φb〉in = out〈φ′
c, φ

′
d|φ′

a, φ
′
b〉in (2.16)

implies the S-matrix, which, first, could be thought as a general function of in-
going and out-going momenta, (along with some labels), depends only on some
combinations of these.

For small values of ηi (introducing them as vector ~η) the resulting in/out-
going momenta may be computed to be

(p′
i)µ =

(
p0

i

~pi

)
+
(
~η · ~pi

~η p0
i

)
+ O

(
~η2) (2.17)

With these in mind, one sees that may be computed to be

(
(p′

i)µ − (p′
j)µ
)

=
(
p0

i − p0
j

~pi − ~pj

)
+
(
~η · (~pi − ~pj)
~η
(
p0

i − p0
j

))+ O
(
~η2) (2.18)

It makes it not very difficult to observe that values

(
(p′

i)µ − (p′
j)µ
)2 =

(
p0

i − p0
j

~pi − ~pj

)2

+ O
(
~η2) (2.19)

are invariant under this Lorentz boost.
Keeping in mind the momentum conservation encapsulated in (2.14), one

can form invariants

t = − (pµ
a − pµ

c )2 = − (pµ
b − pµ

d )2

u = − (pµ
a − pµ

d )2 = − (pµ
b − pµ

c )2 (2.20)

and
. = − (pµ

a − pµ
b )2

. = − (pµ
c − pµ

d )2 (2.21)

where these two are so useless they never even deserved to be named by the
scientific community.

With simple argument of counting, one can conclude, that, while 4 3-momenta
have 4 · 3 = 12 free variables (p0 is fixed by 1PS Casimir), the conservation of
4-momentum brings that down to 8.

Then, by using Lorentz boosts (eiηiKi) one can get rid of 3 (via boosting the
system to zero momentum frame), bringing number of parameters down to 5.

With leftover rotations (eiηiJi), one can fix in-momenta (to be described in
the next section), and some part of out-momenta, and therefore, a scattering
event needs only two numbers (5 − 3 = 2) to be defined.
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Therefore, the values t and u are enough degrees of freedom for parametrizing
2 → 2 particle scattering2.

However, it’s useful to introduce another quantity3

s = − (pµ
a + pµ

b )2 = − (pµ
c + pµ

d )2 (2.22)

which may be easily computed to be

s = m2
a +m2

b +m2
c +m2

d − t− u (2.23)

From now on, the S-matrix will be described in terms of variables s, t, u
(keeping in mind one of these is redundant via s+ t+ u =

∑
m2

i ).

2.3 Center of mass frame
Keeping in mind the construction (2.2), one can similarly invert the relation to
put 2-PS instate into zero-momentum frame, more often called Center of Mass
(CoM) frame, due to its classical mechanics origin. The state, constructed by
this transformation, can be described in terms of 4-momenta

pµ
a =

{√
|p|2 +m2

a,+|p| sin θ′ cosϕ′,+|p| sin θ′ sinϕ′,+|p| cos θ′
}

pµ
b =

{√
|p|2 +m2

b ,−|p| sin θ′ cosϕ′,−|p| sin θ′ sinϕ′,−|p| cos θ′
} (2.24)

The 2-PS state of these momenta can still be rotated by

|φa, φb〉COM
in = e−iθ′J2e−iφ′J3 |φa, φb〉in (2.25)

resulting in very simple in-momenta

pµ
a =

{√
|p|2 +m2

a, 0, 0,+|p|
}

pµ
b =

{√
|p|2 +m2

b , 0, 0,−|p|
} (2.26)

and the state is still invariant under J3 rotations. Using this leftover rotation,
the general CoM out-state

pµ
c =

{√
|p′|2 +m2

c ,+|p′| sin θ cosϕ,+|p′| sin θ sinϕ,+|p′| cos θ
}

pµ
d =

{√
|p′|2 +m2

d,−|p′| sin θ cosϕ,−|p′| sin θ sinϕ,−|p′| cos θ
} (2.27)

can be fixed to almost as simple

pµ
c =

{√
|p′|2 +m2

c , 0,+|p′| sin θ,+|p′| cos θ
}

pµ
d =

{√
|p′|2 +m2

d, 0,−|p′| sin θ,−|p′| cos θ
} (2.28)

2One can try to form another invariants to describe scattering of more particles. This
is difficult. For S-matrix bootstrap it means ‘impractical’. And for computers it means
‘impossible’

3Note that s depends on in-state or out-state only.
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Note that via rotation by π in J3 the sign of sin θ may be flipped, and the in
and out momenta are related by

s = −
(√

|p|2 +m2
a +

√
|p|2 +m2

b

)2
= −

(√
|p′|2 +m2

c +
√

|p′|2 +m2
d

)2

(2.29)
Which allows to argue that S-matrix is sufficiently defined as a function of

in-momentum |p| and scattering angle cos θ.
Introducing shorthand for zeroth components of 4-momentuma

Ea =
√
m2

a + |p|2 Eb =
√
m2

b + |p|2

Ec =
√
m2

c + |p′|2 Ed =
√
m2

d + |p′|2
(2.30)

one can relate COM momentum and angle to Mandelstam invariants

s ≡ (Ea + Eb)2 = (Ec + Ed)2
,

t ≡ m2
a +m2

c − 2EaEc + 2|p||p′| cos θ ,
u ≡ m2

a +m2
d − 2EaEd − 2|p||p′| cos θ

(2.31)

To complete the picture, one can use s and cos θ to parametrize scattering4,
with momenta being dependent as

|p| = Lab(s)
2
√
s
, |p′| = Lcd(s)

2
√
s

(2.32)

where quantity

Lij =
√(

s− (mi −mj)2
)(

s− (mi +mj)2
)

(2.33)

will be useful shorthand not only here, but also in the later sections.
To conclude that section, one can express the Mandelstam variables t and u

from (2.31) in terms of s and cos θ. As the details are tedious, just stating the
answer shall be enough5:

t = 1
2s
(
Ω2 − s2 + cos θLabLcd − ∆

)
u = 1

2s
(
Ω2 − s2 − cos θLabLcd + ∆

)
with Ω2 = s+ t+ u = m2

a +m2
b +m2

c +m2
d

∆ = (m2
a −m2

b)(m2
c −m2

d)

(2.34)

2.4 Analyticity and crossing
As shown previously, the S-matrix can be described using so-called Mandelstam
invariants:

s ≡ − (pa + pb)2
, t ≡ − (pa − pc)2

, u ≡ − (pa − pd)2 (2.35)
4Careful reader may think ”what about |p| that doesn’t correspond to any |p′|” – yes, this

is the exciting part and foreshadowing of the next chapter.
5With Ea = s−m2

a+m2
b

2
√

s
and a bit of symbolic programming it can be done with tolerable

amount of suffering.
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where the third one is dependent on the previous two via

s+ t+ u = m2
a +m2

b +m2
c +m2

d (2.36)

Therefore, the definition in (2.14) shall rather be presented as

Sab→cd(s, t) × (2π)4
δ(4)(p) ≡ out〈φc, φd|φa, φb〉in

= 〈φc, φd|Ŝ|φa, φb〉
(2.37)

with δ(4)(p) being shorthand for 4-momentum conservation.
It’s useful to separate the trivial part of scattering from the rest. For matrix

elements it is

iTab→cd(s, t) × (2π)4
δ(4)(p) ≡ out〈φc, φd|φa, φb〉in − in〈φc, φd|φa, φb〉in

= 〈φc, φd|Ŝ − 1|φa, φb〉
(2.38)

with Ŝ = 1 + iT̂ .
This section would present analytic properties of function Tab→cd(s, t) needed

for S-matrix bootstrap. The reader should be aware that properties presented
in this section barely scratch the surface of the topic of analyticity, with many
papers[16–18] and even books[13] written.

For numerical S-matrix bootstrap program, two properties are needed, real
analyticity

Tab→cd(s∗, t∗) = T ∗
cd→ab(s, t) (2.39)

and crossing property [19]

Tab→cd(s, t) = Tc̄b→ād(t, s) (2.40)

Note that this relation, and fact that in-states or out-states may be relabeled

Tab→cd(s, t) = Tba→cd(s, u) = Tab→dc(s, u) (2.41)

implies
Tab→cd(s, t) = Tc̄d̄→āb̄(s, t) (2.42)

This can be thought as a consequence of CPT invariance. In case of elastic
scattering, it follows from Lorentz invariance that

Tab→ab(s, t) = 〈pa, pb|T̂ |p′
a, p

′
b〉 = 〈p′

a, p
′
b|T̂ |pa, pb〉 (2.43)

as Mandelstam invariant s and t are same for both equations. Moreover, for
two-particle states 〈i|, |i〉 which are invariant under charge conjunction, similar
property follows straight from (2.42)

〈i|T̂ |f〉 = 〈f |T̂ |i〉 (2.44)

With these properties, one can expand on unitarity condition

Ŝ†Ŝ = 1 (2.45)

Inserting Ŝ = 1 + iT̂ gives

−i
(
T̂ − T̂ †

)
= T̂ †T̂ (2.46)
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Sandwiching this expression between states 〈f | and |i〉 following (2.44) gives

−i
(

〈f |T̂ |i〉 − 〈f |T̂ †|i〉
)

= 〈f |T̂ †T̂ |i〉

−i
(

〈f |T̂ |i〉 − ( 〈f |T̂ |i〉)∗
)

= 〈f |T̂ †T̂ |i〉

(2π)42δ(4)(
∑

p)Im{Ti→f (s, t)} =
∫∑

X

〈f |T̂ †|X〉 〈X|T̂ |i〉

(2.47)

where X is a complete set of states and sum-integral is carried over with suitable
measure.

Note that for |i〉 = |f〉 the relation gives well-known optical theorem

2 Im {Ti→i(s, 0)} =
∫∑

X

|Ti→X |2 (2.48)

and for any elastic scattering there exist a weaker positivity bound

Im {Ti→i(s, t)} ≥ 0 (2.49)

The equation (2.47) can be separated into number of particles in

2 Im {Ti→f (s, t)} =
∫∑

X∈{1PS}
〈f |T̂ †|X〉 〈X|T̂ |i〉

+
∫∑

X∈{2PS}
〈f |T̂ †|X〉 〈X|T̂ |i〉 + . . .

(2.50)

The many (two or more) intermediate states (if scattering from |i〉 to |X〉
and from |X〉 to |f〉 is not prohibited) imply existence of discontinuity in T (s, t),
starting at s = (

∑
mi)2, where m1,m2, . . . are the masses of particles in the

lightest (n ≥ 2)-particle state. In fully general theory, this will correspond to
s = 4m2 where m is the mass of the lightest stable particle (lightest 2PS state).

Note that the discontinuity6 in s starts at first s = (
∑
mi)2, however each

n particle state would correspond to branch point at particular value of s, with
branch cuts along the real axis, stacked on top of each other. These branch
points are called normal thresholds. However, for numerical S-matrix bootstrap
considerations, the lowest of these thresholds is important, as this is the point
when T (s, t) starts having imaginary part.

The intermediate 1PS behave slightly different. Let’s consider scalar inter-
mediate particle ξ of mass mξ. Via conservation of 4-momentum the interesting
matrix elements have to be

〈f |T̂ †|ξ〉 = (2π)4δ(4)(k − p′
a + p′

b)g∗
f

〈ξ|T̂ |i〉 = (2π)4δ(4)(pa + pb − k)gi

(2.51)

where gi and gf depend only on particle content of the respective in-states and
out-states, and k is 4-momentum of the particle. The integral over intermediate
states is limited to k2 = −m2, therefore (2.47) below normal threshold will
become

2 Im {Ti→f (s, t)} =
{
g∗

fgi if s = m2
ξ

0 otherwise
(2.52)

6Disc()sT (s, t) = 2i Im {T (s, t)} is implied by analytic unitarity.
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This ‘bump’ in imaginary value of T (s, t) implies existence of a pole in ampli-
tude, and via dispersive arguments (skipped here), it may be inferred that

Ti→f (s, t) =
ig∗

fgi

s−m2
ξ

+ . . . (2.53)

Therefore, from analyticity and unitarity it may be inferred that, for transfer
amplitude T (s, t)

• One particle intermediate states create poles in s at locations correspond-
ing to m2 of these particles.

• Many particle states create branch cuts in s, starting at branch point
(
∑
mi)2.

Using crossing

• Different scattering amplitudes may be related by exchanging in-particles
and out-particles

• Non-analyticities created at s-channel in one amplitude are non-analyticities
in t or u channel in other amplitudes.

For example, having theory of real scalar particle a of mass ma, analytic-
ity implies that amplitude Taa→aa(s, t) has pole at s = m2

a and discontinuity
starting at s = 4m2

a, however, via crossing property, also poles at t = m2
a and

s + t = 3m2 (u-channel poles), and discontinuities starting at t = 4m2
a and

u = 4m2
a.

2.5 Partial waves
2-PS states don’t form irreducible representations of Poincaré group, but can
be written as linear combinations of such, with

|φaφb〉 =
∑
`,λ

C`
λ(~pa, ~pb)

∣∣√s, ~p; `, λ〉ab (2.54)

where ~p = ~pa + ~pb due to momentum conservation. Norm of |
√
s, ~p; `, λ〉ab is up

to choice, however, convenient option is to set up〈√
s, ~p′; `, λ

∣∣∣√s, ~p; `, λ〉ab

= (2π)4
δ4(pµ − p′µ) (2.55)

Without loss of generality, one may consider general state in center of mass,
with momenta as in (2.24)

|p, θ, ϕ〉ab = |ma, ~p〉 ⊗ |mb,−~p〉 (2.56)

for different particles, and (following (2.7))

|p, θ, ϕ〉aa = 1√
2
(
|ma, ~p〉 ⊗ |ma,−~p〉 +

∣∣ma, ~−p
〉

⊗ |ma, ~p〉
)

(2.57)
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These two particle states inherit normalization from (2.10), giving (for different
particles)

〈p, θ, ϕ|p′, 0, 0〉ab = (2π)4
δ(p0 − p′0)δ3(0) 16π2√

s
√
~p~p′ sin θ

δ(θ)δ(ϕ) (2.58)

and for same particles

〈p, θ, ϕ|p′, 0, 0〉ab = (2π)4
δ(p0 − p′0)δ3(0)

16π2√
s

√
~p~p′ sin θ

[δ(θ)δ(ϕ) + δ(π − θ)δ(π − ϕ)]
(2.59)

Note that δ3(0) comes from conservation of total momenta, which in COM
frame is automatic. Let’s start by considering a case a 6= b. Writing expression
(2.54) in the rest frame gives

|p, θ, ϕ〉ab =
∑
`,λ

C`
λ(p, θ, ϕ)

∣∣√s, 0, `, λ〉ab (2.60)

Multiplying it with ab 〈
√
s, 0, `, λ| gets rid of the sum and provides

C`
λ(p, θ, ϕ)(2π)4

δ(4)(0) =
〈√

s, 0, `, λ
∣∣p, θ, ϕ〉 (2.61)

However, the state |p, θ, ϕ〉ab can be constructed via rotations, with

|p, θ, ϕ〉ab = e−iϕJ3e−iθJ2e−iαJ3 |p, 0, 0〉ab (2.62)

where the rightmost rotation acts trivially.
Therefore,〈√

s, 0, `, λ
∣∣p, θ, ϕ〉 =

〈√
s, 0, `, λ

∣∣e−iϕJ3e−iθJ2e−iαJ3
∣∣p, 0, 0〉ab (2.63)

As the bra here is irreducible representation of ISO(1, 3), the effect of rotations
on it can be expressed as〈√

s, 0, `, λ
∣∣ e−iϕJ3e−iθJ2e−iαJ3 =∑

λ′

〈√
s, 0, `, λ′∣∣ e−iϕλd

(`)
λ′λ(−θ)e−iαλ′ (2.64)

which assembles to elegant

C`
λ(p, θ, ϕ)(2π)4

δ(4)(0) =
∑
λ′

e−iϕλd
(`)
λ′λ(−θ)e−iαλ′ 〈√

s, 0, `, λ′∣∣p, 0, 0〉 (2.65)

As the left-hand side is independent of α, the terms with λ′ 6= 0 must vanish:〈√
s, 0, `, λ′∣∣p, 0, 0〉 = 0 if λ′ 6= 0 (2.66)

the result is

C`
λ(p, θ, ϕ)(2π)4

δ(4)(0) = e−iϕλd
(`)
0λ (−θ)

〈√
s, 0, `, 0

∣∣p, 0, 0〉 (2.67)
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As the braket on the right is constant, coefficient is defined up to a prefactor

C`
λ(p, θ, ϕ) = C`(p)e−iϕλd

(`)
λ0 (θ) (2.68)

This results in rather familiar

|p, θ, ϕ〉ab =
∑
`,λ

C`(p)e−iϕλd
(`)
λ0 (θ)

∣∣√s, 0, `, λ〉ab (2.69)

To determine the prefactor C`(p) it’s enough to bra the result with 〈p, 0, 0|,
giving

〈p, 0, 0|p, θ, ϕ〉 =
∑
`,λ

C`(p)e−iϕλd
(`)
λ0 (θ)

〈
p, 0, 0

∣∣√s, 0, `, λ〉ab =

=
∑

`

C`(p)d(`)
00 (θ)(2π)4δ(4)(0)C∗

` (p)
(2.70)

where the last equation was obtained by inserting (2.67) with θ = 0, ϕ = 0.
Now, by expanding the Wigner matrix d(`)

00 = P`(cos θ) and applying the (2.58),
one gets

16π2√
s

p sin θ δ(θ)δ(ϕ) =
∑

`

|C`(p)|2P`(cos θ) (2.71)

Multiplying both sides by P`′(cos θ) sin θ and integrating over dϕ and dθ gives

16π2
√
s

p
P`(1) = 4π

2`+ 1 |C`(p)|2 (2.72)

which, as P`(1) = 1, simply gives

C`(p) =

√
4π(2`+ 1)

√
s

p
(2.73)

Note that this is the result for two different particles. For two identical ones,
inserting the norm (2.58) gives

16π2√
s

p sin θ (δ(θ)δ(ϕ) + δ(π − θ)δ(π + ϕ)) =
∑

`

|C`(p)|2P`(cos θ) (2.74)

which is integrated to

16π2
√
s

p
(P`(1) + P`(−1)) = 4π

2`+ 1 |C`(p)|2 (2.75)

This is absolutely delightful result. With P`(−1) = (−1)`P`(1) one gets only 0
for each odd spin. Identical scalars form only spin-even partial waves.
This is important, it very often cuts down number of computations by two.

To summarize this rather long computation, each two particle state in center
of mass can be decomposed into irreducible representations of ISO(1, 3), and this
decomposition is given by

|p, θ, ϕ〉ab =
∑
`,λ

Cab
` (p)e−iλϕd

(`)
λ0 (θ)

∣∣√s, 0, `, λ〉ab (2.76)



2.5. PARTIAL WAVES 15

where

Cab
` (p) =

√
4π(2`+ 1)

√
s

p
if a 6= b

Caa
` (p) =

√
8π(2`+ 1)

√
s

p
if ` = 2n

Caa
` (p) = 0 if ` = 2n+ 1

(2.77)

It also shall come to no surprise, that equation (2.76) can be readily inverted∣∣√s, 0, `, λ〉ab = 2`+ 1
4πC`(p)

∫ 2π

0
dϕ
∫ π

0
dθ sin θe−iλϕd

(`)
0λ (θ) |p, θ, ϕ〉ab (2.78)

Let’s define scattering operator for partial waves

(2π)4
δ4(0)S(`,λ)

ab→cd(s) = cd
out
〈√

s,~0, `, λ
∣∣√s,~0, `, λ〉ab

in (2.79)

Considering the states in COM frame,

|φaφb〉in = |p, 0, 0〉ab
in (2.80)

|φcφd〉out = |p, θ, ϕ〉cd
out (2.81)

and their decomposition into irreducible representations

|φaφb〉in =
∑
`,λ

Cab
` (p) e−iλϕd

(`)
λ0 (θ)

∣∣√s,~0; `, λ
〉ab

in (2.82)

|φcφd〉out =
∑
`,λ

Cab
` (p) e−iλϕd

(`)
λ0 (θ)

∣∣√s,~0; `, λ
〉cd

out (2.83)

one can expand the matrix element

in 〈φa, φb|φc, φd〉out =
∑
`,λ

Cab
` (p)Ccd

` (p′) d(`)
λ0 (θ) e−iλϕ×

× ab
in
〈√

s,~0; `, λ
∣∣√s,~0; `, λ

〉cd

out (2.84)

to get

Sab→cd(s, cos θ) =
∑
`,λ

Cab
` (p)Ccd

` (p′) d(`)
λ0 (θ) e−iλϕS

(`)
ab→cd(s) (2.85)

This can be readily inverted to

S(`,λ)
ab→cd(s) = 2`+ 1

4πCab
` Ccd

`

∫ π

0
dθ sin θ

∫ 2π

0
dϕeiλϕd

(`)
λ0 (θ)Sab→cd(s, cos θ) (2.86)

As the scattering amplitude does not depend on ϕ angle, the integral over ϕ is
trivial and

S(`,λ)
ab→cd(s) = 0 if λ 6= 0 . (2.87)

For the rest of this paper the superscript λ will be dropped, and lack of it will
implicitly denote λ = 0 element, with

S(`)
ab→cd(s) = 2`+ 1

2Cab
` (p)Ccd

` (p′)

∫ π

0
sin θ dθ d(`)

00 (θ)Sab→cd(s, cos θ) (2.88)
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which is further simplified by expanding d
(`)
00 (θ) = P`(cos θ). Inserting values

for Cab
` , Ccd

` , one gets a practical expression

S(`)
ab→cd(s) =

√
pp′

8πκ
√
s

∫ π

0
sin θ dθ P`(cos θ)(θ)Sab→cd(s, cos θ) (2.89)

with κ =
√

1 + δab

√
1 + δcd to account for symmetry factors. However, it’s still

important to keep in mind that if either a = b or c = d, the partial amplitudes
for odd values of ` all vanish. Per analogia to general frame, a nontrivial part
of amplitude (transfer amplitude) may be defined as

i(2π)4
δ4(0)T (`)

ab→cd(s) = cd
out
〈√

s,~0, `, λ
∣∣√s,~0, `, λ〉ab

in − cd
in
〈√

s,~0, `, λ
∣∣√s,~0, `, λ〉ab

in
(2.90)

This seems to exactly the same at the first glance to previously defined
scattering and transfer amplitudes, however, assembling the included pieces
gives

S(`)
ab→ab(s) = 1 + iT (`)

ab→ab(s) (2.91)

S(`)
ab→cd(s) = 0 + iT (`)

ab→cd(s) if ab 6= cd (2.92)

Careful reader should notice a big difference to (2.90), namely 1 occurring
there. Not 1.

1 (a number.)

Therefore, when dealing with partial amplitudes, the relationship between
transfer amplitude and scattering amplitude does not consist of any distribu-
tional properties, just a number. A number 1.

The nontrivial step is relating T (`)
ab→cd to Tab→ab. The relationship (2.92) is

simple, as both the scattering amplitude and the partial amplitude are related
just by prefactor of i. Let’s show the relation between T (`)

ab→ab and Tab→ab.
In center of mass frame the defining equation (2.38) is

iTab→ab(s, cos θ)×(2π)4
δ(4)(0) = out〈φa, φb|φa, φb〉in − in〈φa, φb|φa, φb〉in (2.93)

which, when inserting the definition (2.14) and normalization (2.58) or (2.58),
becomes

iTab→ab(s, cos θ) × (2π)4
δ(4)(0) = Sab→ab(s, cos θ) × (2π)4

δ(4)(0)+

−(2π)4
δ4(0) 16π2√

s
√
~p~p′ sin θ

(δ(θ)δ(ϕ) + δabδ(π − θ)δ(π + ϕ))
(2.94)

Factoring out delta functions and projecting using partial wave projector

Π` = 1
16π2κ

√
pp′

√
s

∫ 2π

0
dϕ
∫ π

0
sin θ dθ P`(cos θ) (2.95)
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one gets

i

8πκ

√
pp′

√
s

∫ 2π

0
dϕ
∫ π

0
sin θ dθ P`(cos θ)Tab→ab(s, cos θ) =

1
8πκ

√
pp′

√
s

∫ 2π

0
dϕ
∫ π

0
sin θ dθ P`(cos θ)Sab→cd(s, cos θ)+

− 1
8πκ

√
pp′

√
s

∫ 2π

0
dϕ
∫ π

0
sin θ dθ P`(cos θ) 16π2√

s
√
~p~p′ sin θ

(δ(θ)δ(ϕ) + δabδ(π − θ)δ(π + ϕ))

(2.96)
The first term in the sum is obviously S(`)

ab→ab(s). The second part needs a bit
more love. The integration over ϕ is not terribly difficult7, via

∫ 2π

0 dφδ(ϕ) = 1
and via

∫ 2π

0 dφδ(π + ϕ) = 1. However, the integral over cos θ is slightly more
complex, with Dirac delta giving a factor of half:∫ π

0
dθP`(cos θ)16π2√

s√
~p~p′

(δ(θ) + δ(π − θ)) = (P`(1) + δabP`(−1)) 8π2√
s√

~p~p′
(2.97)

For a 6= b the symmetry factor κ is 1, and everything gathered together gives

i

8πκ

√
s√
pp′

∫ π

0
sin θ dθ P`(cos θ)Tab→ab(s, cos θ) = S(`)

ab→ab − 1

= iT (`)
ab→ab

(2.98)

In case of identical particles, for even spins, the additional factor of 2 coming
from two Dirac deltas exactly cancels with prefactor of 1

κ = 1
2 , making the

equation (2.99) valid again, and for odd spins, the identity 0 = 0 is obtained,
with no surprise, keeping in mind the previous results.

Merging this and the earlier case ab 6= cd, and, as a final touch, expressing
the prefactor using (2.33) gives the elegant formula

iT (`)
ab→cd = i

√
LabLcd

16πκs

∫ 2π

0
dϕ
∫ π

0
sin θ dθ P`(cos θ)Tab→cd(s, cos θ) (2.99)

2.6 Unitarity
In unitary QFT, every state has non-negative norm, e.g. ∀ |ψ〉 : 〈ψ|ψ〉 ≥ 0.
Let’s enlist all the in-states

Vin ≡
⊕

|φa, φb〉in (2.100)

and all the out-states
Vout ≡

⊕
|φa, φb〉out (2.101)

As in- and out- states are related by scattering operator, one can write a norm
of any |v〉 ∈ Vin ⊕ Vout, as following

〈v|v〉 = (〈vin| ⊕ 〈vout|) (|vin〉 ⊕ |vout〉) ≥ 0 (2.102)
7At the first glance it looks like it shall be 1

2 , because one integrates δϕ from 0 to something,
effectively taking half of it. However, the integration from 2π − ε to 2π is providing another
half of integration range.
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However, both Hilbert spaces are related by S matrix, with |vout〉 = S |v′
in〉, and

similarly for bras8.
Therefore, the inner product is

〈v|v〉 =
(
〈vin| ⊕ 〈v′

in| S†) (|vin〉 ⊕ S |v′
in〉) ≥ 0 . (2.103)

Defining |w〉 = |v〉 ⊕ |v′〉, one can write

〈w|
(

1 S
S† 1

)
|w〉 ≥ 0 (2.104)

Therefore, unitarity implies semidefinitness of the matrix

M =
(

1 S
S† 1

)
� 0 (2.105)

where S describes scattering of states.
This is rather difficult to tackle in such form. However, one can consider a

subspace, constructed from 2PS partial waves

Win ≡
⊕

`

⊕
s

⊕
a,b

∣∣√s, 0, `, 0〉ab

in (2.106)

Wout ≡
⊕

`

⊕
s

⊕
a,b

∣∣√s, 0, `, 0〉ab

out (2.107)

This allows to express a matrix of inner product as a direct sum of unitarity
matrices of partial waves,

M`(s) =
(

1 S(`)(s)
(S(`))†(s) 1

)
(2.108)

where the matrix S(`) is formed over all two particle content forming in-states,
and out-states.

cd
out
〈√

s, 0, `, 0
∣∣S(`)(s)

∣∣√s, 0, `, 0〉ab

in = (2π)4δ(4)(0)S(`)(s)ab→cd (2.109)

To give some example, if a theory has in-states and out-states composed of
particles φa, φb, §(`) is very concretely

S(`)(s) =

S(`)(s)aa→aa S(`)(s)aa→ab S(`)(s)aa→bb

S(`)(s)ab→aa S(`)(s)ab→ab S(`)(s)ab→bb

S(`)(s)bb→aa S(`)(s)bb→ab S(`)(s)bb→bb

 (2.110)

and 1 is again, quite concretely,

1 =

1 0 0
0 1 0
0 0 1

 (2.111)

The general unitarity constraint is therefore, if put in terms of single matrix,
is

M =
⊕
`,s

M`(s) � 0 (2.112)

8If the Hilbert space doesn’t lose dimensionality with the flow of time. I hope it doesn’t.
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However, this is equivalent to imposing unitarity on each component of the
direct sum.

M`(s) =
(

1 S`(s)
(S`)†(s) 1

)
� 0 for ∀s, ` (2.113)

Of course, one may try to express the unitarity condition in terms of transfer
amplitudes

M`(s) =
(

1 1 + iT `(s)
1 − i(T `)†(s) 1

)
� 0 for ∀s, ` (2.114)

This is not very practical formula, as (potentially small) transfer amplitude
may occur next to 1 from trivial part, introducing round-off errors in practical
computations.

However, with an invertible matrix

A =
(

1 1
0 i

)
(2.115)

an equivalent condition can be written

A†M`(s)A =
(

1 (T `)†(s)
T `(s) 2 Im(T )

)
� 0 (2.116)

So, having answered numerical stability problems, and running out of good
letters for matrices, let’s use the name M for this ultimate unitarity matrix

M`(s) =
(

1 (T `)†(s)
T `(s) 2 Im(T `(s))

)
� 0 for ∀s, ` (2.117)

This is the set of unitarity conditions every set of amplitudes has to obey
for physical values of s (above the normal threshold).

2.7 S-matrix bootstrap program
With all properties described in previous sections, one can finally dive into S-
matrix bootstrap. The goal is to find the space of amplitudes consistent with
unitarity, while having analytic properties described in previous sections.

To account for kinematic non-analyticities one starts with following ”building
block” (function)

ρw(z; z0) =
√
w − z0 −

√
w − z√

w − z0 +
√
w − z

(2.118)

which is an expression with branch cut starting at z = w, and going to infinity.
One can use it to construct a series describing an amplitude with suitable

branch cuts

Tab→cd (s, t, u) =
∞∑

a,b,c

αabcρscut(s; s0)aρtcut(t; t0)bρucut(u;u0)c + . . . (2.119)

This ansatz has a lot of redundancy, as s+ t+ u = m2
a +m2

b +m2
c +m2

d. This
can be crudely mitigated by setting αabc = 0 if abc 6= 09.

9Neither it’s the most justified way, nor one that makes αabc unique, but when limiting
the ansatz size to a + b + c ≤ maxN, the number of free parameters in bootstrap declines from
O(maxN3) to O(maxN2). This is enough to jump from ”eternity” to ”quite long” in terms of
computational time.
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One can and should expand the ansatz to account for other non-analyticities
encountered in the problem, for example the poles

Tab→cd (s, t, u) = · · · + g

s−m2
X

+ . . . (2.120)

or threshold bound states

Tab→cd (s, t, u) = · · · + ξ

ρscut(s; s0)a − 1 + . . . (2.121)

Although second of these non-analyticities can be reproduced by a suitable
linear combination in (2.119), the number of terms in series for the numerical
computations must be limited, by introducing truncation

αabc = 0 if a+ b+ c > maxN (2.122)

and the convergence is greatly improved by adding (2.121). Expanding the
ansatz by suitable ‘improvement terms’ for a particular problem is a bit of
physics, a bit of art and a bit of trial and error. For example, the logarithmic
terms coming from 1-loop perturbation theory[20], proportional to log(−s) or
log2( t

u

)
may be used to expand the ansatz.

2.8 Numerical bootstrap
Given set of unitarity constraints

M`(s) =
(

1 (T `)†(s)
T `(s) 2 Im(T )

)
� 0 for ∀s, ` (2.123)

one already formulated the problem in terms of already well-known convex
optimization task:

For a set of i free parameters, and i∗j ‘building blocks’ [Mj ]0 and [Mj ]i find
the space of parameters αi such that matrices Mj = [Mj ]0 +

∑
i αi · [Mj ]i

are all positive semidefinite.

with, in this case, Mj is set of matrices M(`)(s) for chosen finite subset of values
of s and `.

This family of tasks is named Semifdefinite Problems (SDP), and optimized
interior-point method solvers like SDPB are available and used.

In practice mapping the entire space of functions is impossible, but the so-
lutions that, consistently with unitarity, maximize or minimize some interesting
parameters, can be computed, and indeed, solvers such as SDPB10, are com-
puting optimization tasks:

For a set of i free parameters αi, goal vector bi, and i ∗ j ‘building blocks’
[Mj ]0 and [Mj ]ifind the vector αi such that matrices Mj = [Mj ]0 +

∑
i αi ·

[Mj ]i are all positive semidefinite, and value c = αi · bi is maximized.

For example goal vector bi = {1, 0, 0, 0, . . . } describes a task to maximize α1
parameter, and bi = {−1, 0, 0, 0, . . . } creates a task to minimize it.

10There are many solvers available, but sparsity optimizations in SDPB make it especially
efficient in numerical S-Matrix problems.
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Figure 2.1: Regular grid vs Chebyshev grid, of 30 points each.

Except the finite grid of values of s, and an ansatz (2.119) truncated to some
value maxN, the set of spins ` must also be limited (by limiting ` ≤ maxJ). The
nature of these computational constraints is rather annoying, as with denser
grid of s, and larger maxJ the grid becomes stricter (one’s adding additional
constraints, approaching the ‘true’ unitarity bound), and looser with increasing
maxN (as the amplitude ansatz is getting more degrees of freedom).

In practice, one has to experiment with number of grid points in s, and
their distribution. Again, with it being a bit of art and a bit of physics, a good
grid has a lot of points in s near the normal threshold, and reasonably spaced
points up to an infinity. The decent guess is spacing the grid in ϕ such that
ρscut(s; s0) = eiϕ for the range ϕ ∈ (0, π).

In most papers, either equally spaced grid of N points ϕk = k
N π is used,

or, given by slightly more involved expression, ‘Chebyshev grid’, consisting of
xk = cos

(
π(k+1/2)

N

)
, ϕk = π(1 + xk)/2. The nodes of Chebyshev polynomials,

xk, are often used in integration methods, however, this reason is irrelevant
in case of S-matrix bootstrap, but such grid is slightly denser in s’s near the
threshold (see fig. 2.8), and in high energies (which has rather vague meaning
in this case), resulting in better convergence in similar grid sizes11. Throughout
this paper, ‘Chebyshev grid’ is universally used. Note that

ϕ = arg ρscut(s; s0) (2.124)

is a handy way variable to plot entire amplitude, as it maps the region [scut; ∞)
onto [0, π] range.

The last technicality is getting rid of complex numbers, as the solvers are
made for real and symmetric matrices, not complex and hermitian. However, it
may be addressed using row-doubling

M < 0 ⇐⇒
(

Re M Im M
Im M Re M

)
< 0 (2.125)

This is easily proven, as the matrix on the right is just
(

M 0
0 M∗

)
in different

basis. For (2.117), this gives
1 Re T `(s) 0 Im T `(s)

Re T `(s) 2 Im T `(s) − Im T `(s) 0
0 − Im T `(s) 1 Re T `(s)

Im T `(s) 0 Re T `(s) 2 Im T `(s)

 � 0 (2.126)

11And as the time is money, smaller grids are better, if the result is the same.
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and is the commonly implemented matrix for practical computations.
This concludes the chapter about setup. The next part presents how the

numerical experiment described above may be set up using SMatrixToolkit, a
package made for facilitating the steps of partial waves computation, generation
of actual input for solver, and parsing the results.



Chapter 3

The Toolkit

The previous section introduced the concept of scattering amplitudes, their
analytic properties, and the unitarity constraints.

Setting up the numerical S-matrix bootstrap experiment follows a series of
steps

1. Constructing the amplitude ansatz/ansatze – a linear combination of build-
ing blocks ai · fn[s,t,u]i

2. Imposing further constraints on the ansatze. These may include soft con-
ditions, extra symmetries, etc.

3. Expanding the ansatze with ’improvement terms’, that are redundant
building blocks improving convergence in practical computations.

4. Setting up partial integrals using (2.95). For every building block fn[s,t,u]i

the partial integral int[s, `]i = Π`fn[s,t,u]i shall be found. In prac-
tice lots of time can be saved by factoring out as large part dependent
only on s from fn[s,t,u]i, as then many integrals can be reused.

5. Set up a grid of values of s, for which partial amplitudes shall be computed
(and on which unitarity constraints shall be imposed).

6. Perform ”precomputation” – create a table of int[s, `]i (or objects to
construct them) for set all the building blocks, all values of s from the
grid and set of spins `.

7. Create ‘unitarity matrix’ from amplitudes, as in (2.117).

8. By plugging in the objects int[s, `]i into unitarity matrix for each s and
`, construct a semidefinite problem (SDP), which, can be optimized for
some goal gi ·ai. Usually the goal is to maximize or minimize a parameter
(which corresponds to goal vector of g = 0, · · · ,±1, · · ·).

9. Use the dedicated solver to solve the SDP.

10. Analyze the data, publish a paper, earn Nobel Prize, etc.

23
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One can notice that only three of these steps require physics, and the rest is
just following the recipe.

The author noticed that, and created a package that tries to automatize
as much of these steps as possible, creating1 the SMatrixToolkit, Wolfram
Mathematica package.

The toolkit is fully Free and Open Source Software, and the repository is
publicly available at https://github.com/jmarucha/SMatrixToolkit. This
chapter aims to describe the usage and inner workings of the project, showing
the room for further possible development.

3.1 Setting up
The first step of constructing amplitude is defining the particles involved. Declar-
ing particle is as simple as

p1 = Particle[name, mass]

where name is arbitrary string, and mass is particle’s mass2. For particles in
particular scattering process one shall define

particles = ParticleContent[
{inparticle1, inparticle2},
{outparticle1, outparticle2}

]

The core building block for amplitude anzatz is the ρ series (2.119), con-
structed out of ρ variables. They are available using

RhoVariable[z, Cut-> w, Center -> z0]

The branch cuts are chosen in such a way Im (ρw(z; z0)) > 0 for z > w, unlike
with default Mathematica branch cuts resulting from Sqrt[] . There is no
need to define separate variables for z > w and z < w.

The (truncated) rho ansatz described in (2.119) is constructed with dedi-
cated function

RhoSeries[
particles, (* ParticleContent[] described before *)
alpha, (* coefficients are named alpha[a,b,c] *)
RhoVariable[s, ...],
RhoVariable[t, ...],
RhoVariable[u, ...],
maxN (* terms with a+b+c > maxN are set to 0 *)

]

The crossing symmetries will be inferred from particle content, however it can
be overridden with option Symmetry -> "none" or "ST" , "SU" , "TU" and
"STU" . Similarly, poles can be declared by

1Ideas for the better name are welcome.
2Particles are considered same or different on the basis of name. Having particles of same

name, but different properties lead to unpredictable behavior

https://github.com/jmarucha/SMatrixToolkit
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Pole[
particles, (* ParticleContent[] again *)
g, (* name of residue coefficient *)
s, (* channel, shall be s, t, or u *)
1 (* pole location *)

]

This is in fact just a shorthand for more general option, allowing to add arbitrary
coefficients:

ExtraParam[
particles, (* ParticleContent[] again and again *)
weirdthing, (* name of associated coefficient *)
Log[t/u]^2 (* some arbitrary function of s,t,u *)

]

In case of building blocks other than RhoSeries and Pole , Symmetry option
may become really handy. An example of improvement term explicitly braking
stu symmetry (but still useful) will be given in case of bootstrapping a-anomaly.
The ansatze are joint using standard addition:

amplitude = RhoSeries[particles, alpha,
RhoS, RhoT, RhoU, maxN] + Pole[particles, g, s, 1]

which also allows to use Sum for example for constructing amplitude with
multiple poles

manyPoles = Sum[
Pole[particles, g[location], s, location],
{location, 2, 3, 1/10}

]
(* resonances at 20/10, 21/10, ..., 30/10 *)

For constructing amplitude ansatze related by crossing, one uses the function

amplitudeABtoAB = Crossing[amplitudeAAtoBB, "I2"<->"O1"]

The shorthand in second arguments is describing crossing between second in-
particle ("I2") and first out-particle ("O1"). "I2" and "O2" are other available
options.

To fix a particular coefficient in amplitude, a function FixCoefficient is
available

newAmplitude = FixCoefficient[amplitude, g == 4]

and to impose value of the entire ansatz expression at given point s0, t0, u0 the
function Reshape shall be used
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amplitude = Pole[particles, g, s, 1, Symmetry -> "none"] +
ExtraParam[particles, x, 2, Symmetry -> "none"]
(* Creates ansatz g * 1/(1-s) + x * 2 *)

Reshape[amplitude == 2 a, {s -> 0, t -> 0, u -> 0}]
(* ansatz of a*(1-1/s-1) + x* (2 + 2/(s-1) *)

Reshape[amplitude == 2 a, {s -> 0, t -> 0, u -> 0},
KeepCoefficients -> g]
(* ansatz of a*(1-1/s-1) + g* (-1 - 1/(s-1) *)

Unfortunately it requires numerical prefactor different to 1 in front of the
new coefficient (to be fixed). In conjunction with FixCoefficient it is very
handy tool for imposing some soft conditions.

3.2 Partial waves and precomputation
The precomputation step needs integrals, which are obtained from each ampli-
tude

integrals = amplitude["PartialIntegrals"]

This is an association, the key corresponds to a building block (with as many
factors of s or ρ(s) factored out), and the value is (inactivated) integral, that
has prefactor from (2.99) applied, along with (2.31) expanding t and u inside
the integral. Creating list of integrals from many amplitudes can be achieved
with Mathematica built-in functions

amplitudes = {amplitude1, amplitude2, amplitude3}
integrals = Union[Through[amplitudes["PartialIntegrals"]]]

The second secret ingredient is grid of values of s, and there are two options
already implemented.

The function RegularGrid creates a list of points where
RhoVariable[s] = Exp[ii Pi n/N] , so grid points are regularly spaced in

argument of RhoVariable[s] , and the function ChebyshevGrid creates list
of points that have arguments of RhoVariable[s] in roots of Chebyshev
polynomials Ti(cosφ) = 0. It’s useful, as it is way denser next to brunch cut of
ρ, and in large values of s. This is where exciting things happen, so in practice
ChebyshevGrid is a go-to grid generator.

At the most basic level, constructing grid is as simple as inserting
RhoVariable and number of points.

rho1 = RhoVariable[s, Cut->4, Center->4/3]
grid = ChebyshevGrid[rho1, 250]

However, the RhoVariable s have to be precomputed as well (for performance
reasons, when constructing the problem, having these values precomputed mas-
sively reduce memory footprint and construction time). This is done with option
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ExtraObjects . The second allowed option is WorkingPrecision , which is
quite self-explanatory3. The example (as later used in a-anomaly computations)

rho1 = RhoVariable[s, Cut->4, Center->0]
rho2 = RhoVariable[s, Cut->4, Center->4/3]
rho3 = RhoVariable[s, Cut->4, Center->1]
grid = ChebyshevGrid[rho2, 250,

ExtraObjects->{rho1, rho3},
WorkingPrecision->110
]

bases the grid on rho2 , however also precomputes values of rho1 and rho3
at grid points.

These two are enough for precomputation, and to pull the trigger one shall
use command PrecomputeGrid , which, along with previously mentioned s grid
and integrals needs output directory and list of spins. For example,

directory = "/home/marucha/grid";
spins = Range[0, 40];
PrecomputeGrid[directory, integrals, grid, spins]

The last command takes the same options as NIntegrate , e. g.
AccuracyGoal , WorkingPrecision or MaxRecursion . This command takes

a while and is paralelized by separate spins (however, on home computers the
program seems to be limited by memory bandwidth, so the gains are relatively
small, especially in comparison to octa-channel server boards).

The effect of this computation is a bunch of files in grid directory:

grid/
integralObjectsMap.m
spin=0.mx
spin=1.mx
...
spin=40.mx

The first one maps each integrand onto integralObject### , and the rest
of files contain associations mapping each integralObject### into a precom-
puted value on each grid point. That allows to do computationally-heavy inte-
grand matching only once when constructing the SDPB problem.

Note that, for precomputation one needs only integrals and grid, so to launch
precomputation on the remote server, it’s enough to

(* on local machine *)
Export["precomputeTask.m", {integrals, grid}]

(* on remote machine *)

3Setting this to number higher than WorkingPrecision of NIntegrate allows getting
way less annoying errors about integrand precision.
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Get["SMatrix`"];
{integrals, grid} = Import["precomputeTask.m"];
directory = "/home/marucha/grid";
spins = Range[0, 40];
PrecomputeGrid[directory, integrals, grid, spins]

Note that to use multiple cores on Slurm clusters one needs to launch script
requesting multiple cores for process, for example for 41 spins

srun -c 41 wolframscript -f precomputeScript.wls

3.3 Creating problems
With amplitude ansatze constructed, and integrals precomputed one can finally
construct S-matrix problem.

To load the data one uses

data = LoadData["path/to/grid"]

To define S-matrix one declares a (linear) function from amplitudes to ma-
trix, for example, for one amplitude, using (2.126)

matrixFunct = {
{ 1, Re[#], 0, Im[#]},
{Re[#], 2Im[#], -Im[#], 0},
{ 0, -Im[#], 1, Re[#]},
{Im[#], 0, Re[#], 2Im[#]}

}&

or, using the simplified unitarity condition from [15] (not generalizable beyond
one amplitude)

matrixFunct = {
{1+Re[#], 1-Im[#]},
{1-Im[#], 1-Re[#]}

}&

With such function, and amplitude ansatz amplitude , one declares unitar-
ity matrix

uMatrix = UnitarityMatrix[matrixFunct, amplitude]

which correspond to expanding the amplitude using its partial wave into ma-
trix generated by matrixFunct .

For unitarity matrices containing more than one amplitude, a function
of many variables shall be defined, and all the ansatze shall be passed to
UnitarityMatrix :
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matrixFunct = {amp1, amp2, ...} |-> {
{1, Re[amp1], Re[amp2], ...},
...

}
uMatrix = UnitarityMatrix[

matrixFunct,
{amplitude1, amplitude2, ...}

]

Of course, in more complex problems, many unitarity matrices may need to
be defined.

Now, a problem template can be constructed. This is an object containing
amplitude ansatze in terms of precomputed integralObject .

This is done by using function CreateProblemTemplate .

template = CreateProblemTemplate[{uMatrix}, data]

or for multiple unitarity matrices

template = CreateProblemTemplate[{uMatrix1, umatrix2,...}, data]

However, sometimes, despite the best effort, automatic resolution of symbolic
expression into integral objects fail. The option ExplicitBindings is a rather
ugly last resort into solving that.

The option syntax

ExplicitBindings->{weirdCoefficient->{0,0,s*integralObject2137}}

means “the coefficient weirdCoefficient resolves to 0 for the first and second
amplitude, but to s*integralObject2137 for the third amplitude”. Second
available option is MaxN , which limits the rho series to maxN terms.

Now, the final step is actually constructing the SDPB input via function
BuildSMatrix . The basic syntax is

BuildSMatrix[template, goal, data]

where goal is one of Maximal[coeff] , Minimal[coeff] or Manual[...] .
The first two are pretty self-explanatory, asking to minimize or maximize coef-
ficient of given name.

The last one is a definition of goal vector ~b, as described in [14], with syntax

Manual[{coeff1->weight1, coeff2->weight2,..., _->0}]

meaning “construct such ~b that ~bi · coeffi = coeff1 ∗ weight1 +
coeff2 ∗ weight2 + . . . ”. The goal Maximal[coeff] is equiv-
alent to Manual[{coeff->1,_->0}] , and Minimal[coeff] to
Manual[{coeff->-1,_->0}] .
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The additional options are MaxN and MaxJ , to limit maxN and maxJ of
constructed problems. The set of spins and s values for each UnitarityMatrix
is limited automatically based on Bose symmetry and branch cuts.

The user can pass additional semi-definite constraints using option
AdditionalConstraints , which takes a list of matrices of coefficients. For

example

AdditionalConstraints->{
{{a[0,0,0]}},
{{a[0,0,1]}}

}

would force inequalities a[0, 0, 0] ≥ 0, a[0, 0, 1] ≥ 0, and

AdditionalConstraints->{
{

{g1, g2},
{g2, g3}

}
}

would add constraint (
g1 g2
g2 g3

)
< 0 (3.1)

This allows to add analytic high-energy constraints (for example∑
αabc(−1)a+b+c

a ≥ 0, as described in [15]), or relationships between
residues of the poles (as later seen in (4.114)).

The result of function BuildSMatrix is a Mathematica input for SDPB,
conforming to [21],

SDP[objective, normalization, {
PositiveMatrixWithPrefactor[1, ...],
PositiveMatrixWithPrefactor[1, ...],
...

}]

ready to be exported and processed by sdp2input and sdpb.
Last, it is very useful to save the relation between coefficient names and

parameters of SDPB problem (as SDP[...] operates on unnamed list of pa-
rameters), using

template["Keys"]
template["Keys", maxN]

These arrays will allow to decode the parameter names from output file y.txt
of SDPB.

Having constructed and exported the problem and keys

Export["sdpbInput.m", CreateProblemTemplate[...]]
Export["sdpbInput.key.m", template["Keys", maxN]]
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one finally does processing using SDPB, and, although running it is very de-
pendent on machine one works with, the author feels in duty to provide at least
one example of starting the task on Slurm cluster.

srun sdp2input -i sdpbInput.m -o sdpbInput.gz --precision 512 #
binary digits↪→

# run on 24 cores for 12 hours
srun -n 24 -t 12:00:00 sdpb \

-s sdpbInput.gz \
--procsPerNode 24 \
--writeSolution y \
--precision 512

This will generate the directory sdpbInput.gz_out, containing the result of
the numerical experiment.

To load the data into the notebook, the function LoadSDPBOutput is avail-
able, with usage of

LoadSDPBOutput[directory, keyfile]

which in the example given shall be

LoadSDPBOutput[sdpbInput.gz_out, sdpbInput.key.m]

This results in association, of all status fields of out.txt, like
terminateReason or primaryGoal, along with vector column, which contains
the association of coefficients and their respective optimized values. The route
from now on is entirely in hands of scientist that wants to understand the data,
and the author wishes all the best to the readers with their papers.

3.4 Example: φ4 theory
The example presented below replicates part of the experiment presented in [15].
The full code of this example is available as a part of SMatrixToolkit repository
in the notebook pionScattering.nb.

3.4.1 Particles and amplitudes
Starting with definition of massive pion

pion = Particle["π0", 1]

and input and output particles for scattering amplitude

particles = ParticleContent[{pion, pion}, {pion, pion}]

Now, let’s set up ρ variable

Rho[x]:= RhoVariable[x, Cut -> 4, Center -> 4
3 ]

https://github.com/jmarucha/SMatrixToolkit/blob/main/pionScattering.nb
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and build up the ansatz

amplitude = RhoSeries[
particles, α,
Rho[s], Rho[t], Rho[u],
$MaxN

]

Output of the last command should be displayed as fancy table with list of
free coefficients α[a, b, c] and the amplitude ansatz. The correct crossing
symmetry is inferred from particle content.

Adding poles and improvement terms is simply done by summation

amplitude += Pole[particles, g, s, 1]
amplitude += ExtraParam[particles, xi, 1

1−Rho[s] ]

3.4.2 Precomputation
Let’s generate a list of integrals using constructed amplitude ansatz:

integrals = amplitudes["PartialIntegrals"]

and grid of s values

grid = ChebyshevGrid[$GridSize, Rho[s], WorkingPrecision->80]

At this point it maybe handy to export precomputation task (the variables
{integrals, grid} are sufficient), and run it on remote machine. Launching

the task is done by

PrecomputeGrid[
$GridDirectory,
integrals,
grid,
Range[0,$MaxSpin],
options

]

where options can be any set of parameters passed to NIntergate , for ex-
ample

options = Sequence[
WorkingPrecision->80,
AccuracyGoal->60,
PrecisionGoal->60

]

After computation, the catalog $GridDirectory will contain text file
integralObjectsMap.m along with binary files spin=N.mx for each spin; the
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first one contains a dictionary that translate symbolic expressions to names,
and second is populated with actual partial wave integrals.

To load,

data = LoadData[$GridDirectory]

3.4.3 Constructing problems
The general form of unitarity matrix as a function of amplitude is

matrixFunct =
(

1 + Re[#] 1 − Im[#]
1 − Im[#] 1 − Re[#]

)
& ;

In one go, one can modify existing amplitudes for:

• Experiments on quartic coupling

uMatrixQuartic =
UnitarityMatrix[matrixFunct, amplitude ~

FixCoefficient ~ (g == 0) ~
FixCoefficient ~ (xi == 0)]

(* without improvement term *)
uMatrixQuarticImprov =

UnitarityMatrix[matrixFunct, amplitude ~
FixCoefficient ~ (g == 0)]

(* with improvement term *)

• Experiments with cubic coupling

uMatrixCubic = UnitarityMatrix[matrixFunct, amplitude ~
FixCoefficient ~ (xi == 0)]

3.4.4 Creating tasks
One needs to match declared amplitude with precomputed integral table, for
example

template = CreateProblemTemplate[{uMatrixQuartic}, data]

and with that, constructs SDPB input tasks with

Table[
baseName="amplitude"<>

"_n_"<>ToString[maxN]<>
"_j_"<>ToString[maxN+deltaJ];

(* the names for parameters *)
Export[$OutputDir<>baseName<>".key.m",

LimitKeys[template[[1,"keys"]],maxN]];
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(* the SDPB input *)
Export[$OutputDir<>baseName<>".m",

BuildSMatrix[
template,
Maximize[α[0,0,0]],
data,
MaxN->maxN,
MaxJ->maxN+deltaJ

]
],
{deltaJ, {8,12}}, (* maxJ = maxN+deltaJ *)
{maxN, 10, 20, 2}

]

3.4.5 Computing
This heavily depends on infrastructure used, however

srun sdp2input \
-i amplitude_n_22_j_30.m\
-o amplitude_n_22_j_30.gz\
--precision 256

srun -n 72 sdpb \
-s amplitude_n_22_j_30.gz\
--procsPerNode 72

shall do the trick for slurm-based clusters (switch 72 for suitable core count).

3.4.6 Results
For the sake of demonstration, example computations were done for the follow-
ing problem. Both raw data, and the notebook to generate the plots is presented
in pionScatteringResult directory of the repository. To provide at least some
eye-candy diagrams, the figures 3.1 and 3.2 are attached.

https://github.com/jmarucha/SMatrixToolkit/tree/main/pionScatteringResult
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Figure 3.1: Upper bound of λ – comparison between ansatz with and without
the improvement terms.
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Figure 3.2: Lower bound of λ – the improvement term doesn’t make any differ-
ence in this case.
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Chapter 4

Bootstrapping a-anomaly

This chapter contains the work of the author with Dr. D. Karateev, Dr. Biswajit
Sahoo and Prof. João Penedones, published in [9], along with the continuation of this
work in [10]. The author also wants to acknowledge the work of Sébastien Reymond in
his master thesis[22], which gave the foundations the author’s paper[10] builds upon.

As mentioned in the introduction, the eventual goal of the bootstrap program
is mapping out the space of consistent Quantum Field Theories.

To make the question bit more manageable, one can define a Quantum Field
Theory non-perturbatively, as a renormalization group (RG) flow from the UV
to the IR fixed points. These fixed points are assumed to have conformal in-
variance, and are described by Conformal Field Theories (CFTs). These CFT
endpoints have parameters, which do not increase along the RG flow, giving the
natural ‘axis’ along which these theories can be mapped1.

In case of 2d CFTs such quantity is central charge c, related to Operator
Product Expansion (OPE) of stress-energy tensor

〈T (z)T (0)〉 = c

2z4 (4.1)

The full classification of 2d CFTs has been done for unitary theories between c =
0 and c = 1, via Minimal Models, explicitly constructed CFTs with finite number
of primary operators and c = 1 − 6

p(p−1) . Some explicit relevant deformations
are known to trigger RG flow from one theory to another. This map of 2d CFT
space is presented on the figure 4, along the map of 4d CFTs with respect to
trace anomaly a.

This trace anomaly has a slightly more involved definition, which involves
putting the CFT onto the curved background.

〈Tµ
µ(x)〉g = −a× E4 + c×W 2, (4.2)

The relation of this quantity to purely CFT expected value of three-point func-
tion of the stress tensor will be discussed in the next section, along with a review
of the proof of monotonicity of a along the RG flow.

1These theories are not uniquely defined by aforementioned parameters. In 2D tetracritical
Ising model and 3-state Potts model share same central charge, and in 4D a theory of 62
massless scalar fields have same a as a massless vector field.

37
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c

Ising FT

2D

Full classification unknown

Unitary
Minimal
Models

0 trivial CFT

0.5 Ising CFT
0.7 Tricritical Ising

1 Massless free boson

a
afree 4D

No known CFTs

???

Massless free fermion (a = 11afree)
Massless free vector (a = 62afree)

0 trivial CFT

1 Massless free boson

Figure 4.1: Sketch of the space of 2d and 4d CFTs[23].

One may ask where is the place of S-matrix bootstrap. As proven by [24], in
4d, the anomaly coefficients of UV CFT may be probed by taking QFT along the
renormalization group flow, and couple it to compensator field ϕ, schematically

AQF T −→ AQF T +
∫

d4xϕ(x)Tµ
µ (x) +

∫
d4x f2(∂ϕ(x))2 (4.3)

If the theory AQF T is gapped, RG flow would result in some effective field
theory for field ϕ in IR. This EFT allows to probe the aUV via dilaton scattering
amplitude

TBB→BB = aUV

2f4

(
s2 + t2 + u2)+ O

(
s3) (4.4)

The numerical experiments described in this chapter aim to find a lower
bound of a-anomaly using S-matrix bootstrap. A QFT with single real scalar
will be put under the scrutinizing glass of bootstrap method.

As a result of S-matrix bootstrap computations, bounds are found on aUV,
presented in the table below:

Theory a-anomaly Annotations

Single free scalar afree = 1
5760π2

Derived analyticaly in [25], confirm to sat-
urate unitarity bounds.

Single stable
Z2-odd scalar & 0.32 · afree

Single stable scalar & 0.15 · afree
No resonances at s < 4m2

A, with mA the
mass of the lightest particle.

Two stable scalars & 0.034 · afree
The minimal a-anomaly occurs for m2

X ≈
(2.5 ± 0.1) m2

A.

Many stable
scalars & 0.036 · afree

The data comes only from preliminary in-
vestigations, which explains why the ex-
trapolated bound is slightly inconsistent
with the previous case.
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4.1 Review of classic results
All the quantum field theories have a very special operator called the stress-
tensor Tµν(x). It is symmetric in its two Lorentz indices and obeys the conser-
vation law, namely

Tµν(x) = T νµ(x), ∂µT
µν(x) = 0. (4.5)

4.1.1 Stress tensor and trace anomaly in CFTs
Let us start the discussion by considering conformally invariant quantum field
theory. The conformal symmetry puts severe constraints on the form of correla-
tion functions. In [25] it was shown that the most general two- and three-point
functions of the stress tensor in CFTs have the following form

〈0|Tµν(x1)T ρσ(x2)|0〉 = CT

x8
12

× Tµν;ρσ
0 , (4.6)

〈0|Tµν(x1)T ρσ(x2)Tαβ(x3)|0〉 = 1
x4

12x
4
23x

4
31

(
ATµν;ρσ;αβ

1 + BTµν;ρσ;αβ
2 + CTµν;ρσ;αβ

3

)
.

(4.7)

Here the objects T0, T1, T2 and T3 take care of the correct behaviour of the
correlation functions under conformal transformations. They are called tensor
structures. The standard basis for these tensor structures is defined in appendix
4.A. The coefficient CT ≥ 0 is usually referred to as the central charge. The
coefficients A, B and C are called the OPE coefficients since they appear in the
OPE expansion of the stress-tensor with itself. All of them are real quantities.
Due to the conformal Ward identities2 the following relation holds

CT = π2

3

(
14A − 2B − 5C

)
. (4.8)

Summarizing, there are three independent parameters describing the 2- and the
3-point function of the stress-tensor. One can choose these three parameters to
be for example {CT , A, B}. It is standard to also define the following quantities

a ≡ π4

64 × 90

(
9A − 2B − 10C

)
, c ≡ π4

64 × 30

(
14A − 2B − 5C

)
= π2

64 × 10CT .

(4.9)
Finally we recall that in CFTs the trace of the stress-tensor vanishes, namely

Tµ
µ(x) = 0. (4.10)

Let us now discuss CFTs on the curved background which is described by
the metric gµν(x). Conformal invariance on a curved background is achieved
by requiring diff × Weyl invariance. We recall that the Weyl transformation is
defined as

gµν(x) → e2σ(x)gµν(x), O(x) → e−∆Oσ(x)O(x), (4.11)
2All the generators of the conformal transformation can be written as certain integral of the

stress-tensor, see for example [25]. By performing appropriate integrals over one stress-tensor
in (4.7) and using the properties of the generators we effectively obtain the two-point function
(4.6).
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where σ(x) is an arbitrary scalar function, O(x) is a local scalar operator and
∆O is the scaling dimension of the operator O(x). Contrary to the flat space-
time where (4.10) holds, for CFTs on the curved background we instead have

〈0|Tµ
µ(x)|0〉g = −a× E4 + c×W 2, (4.12)

where E4 is the Euler density defined in (4.148) and W 2 is the square of Weyl
tensor defined in (4.149). The subscript g in the left-hand side of (4.12) indicates
that the CFT is on the curved background rather than on the flat one. The
coefficients a and c are exactly the ones introduced in (4.9). They are called
the Weyl anomalies as well as trace anomalies. The name Weyl anomaly is
appropriate because exact Weyl invariance implies 〈0|Tµ

µ(x)|0〉g = 0.

4.1.2 Compensator field and the dilaton particle
Let us define a generic quantum field theory as the renormalization group flow
from the UV to the IR fixed points which are described by the UV and the IR
conformal field theories. Such a theory in curved background can be described
by the action

A(g,Mi) ≡ AUV CFT(g) +Adeformation(g,Mi), (4.13)

where the deformation of the UV CFT has the form

Adeformation(g,Mi) =
∑

i

∫
d4x

√
−g
(
λiM

4−∆i
i Oi(x)

)
. (4.14)

Here Oi(x) are relevant scalar UV CFT operators (operators obeying ∆i < 4),
λi are dimensionless coefficients and Mi are the mass scales which control when
the deformation due to a particular operator becomes important. The explicit
dependence on gµν(x) indicates that we work on a generic curved background.
The QFT in flat space-time is recovered by setting gµν(x) to the flat metric ηµν .
The determinant of the metric is defined as follows

g ≡ det gµν(x). (4.15)

The action (4.14) is diff invariant by construction.
In curved background the stress-tensor is defined as

Tµν(x) = 2√
−g

δA(g,Mi)
δgµν(x) . (4.16)

Under the Weyl transformation (4.11), the trace of the stress-tensor can be
defined as a variation of the action with respect to the infinitesimal Weyl trans-
formation parameter σ in the following way,

Tµ
µ (x) ≡ 1√

−g
δWA(g,Mi)

δσ(x) . (4.17)

Performing the Weyl transformation (4.11) in (4.13) and focusing on flat space-
time we obtain the trace of the stress-tensor using the above definition, which
reads

gµν = ηµν : Tµ
µ(x) =

∑
i

λi(4 − ∆i)M4−∆i
i Oi(x). (4.18)
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This is the standard result in QFT, namely the trace is proportional to the
deforming operators.

The correlation functions of the stress-tensor both in the UV and IR are
described by (4.6) and (4.7) where the coefficients CT , A, B and C have an
additional label UV and IR respectively. Out of all the above coefficients the a
trace anomaly is the most interesting. In [26] it was conjectured that

aUV − aIR ≥ 0, (4.19)

where the equality can hold only if there is no flow and the theory remains
conformal, in other words if Adeformation = 0 in (4.13). The inequality (4.19) is
known as the a-theorem. It was shown to hold in perturbation theory in [27,
28]. It was proven non-perturbatively in [29], for further discussion see also [29–
31]. The proof of [29] gives also the prescription on how to probe/compute the
difference (aUV −aIR) in a given QFT. One of the main ingredients of this proof
is the compensator field and the associated particle which we call the dilaton.
In the rest of this section we will define the compensator field and the dilaton
particle.

Let us work with the action (4.13) on a curved background. It is diff invariant
but not Weyl invariant. There are two sources which break the Weyl symmetry,
namely the trace anomaly of the UV and IR CFTs given by (4.12) and the
deformation part of the action Adeformation in (4.13) which explicitly depends
on the scale. The latter breaking can be compensated for in a modified theory
with the following action

A′(g,Mi,Ω) ≡ A(g,MiΩ(x)) +Adynamics(g,Ω), (4.20)

where Ω(x) is a real scalar field called the compensator field and the action
A was defined in (4.13). Both the metric gµν(x) and the compensator field
Ω(x) are non-dynamical fields. We can however promote them to dynamical
probe fields by adding a kinetic term Adynamics(g,Ω). We will discuss possible
convenient choices for this term in the end of this subsection. The compensator
field Ω(x) can be represented in the following two ways

Ω(x) = e−τ(x) = 1 − ϕ(x)√
2f
. (4.21)

We refer to the real scalar fields τ(x) and ϕ(x) also as the compensator or the
dilaton fields interchangeably. Here f is a new parameter with mass dimension
one. The following relation holds

τ(x) = ϕ(x)√
2f

+O

(
1
f2

)
. (4.22)

Let us now emphasize that the action (4.20) can be made invariant under the
Weyl transformation (4.11) given that the dilaton transforms in the following
way

τ(x) → τ(x) + σ(x) (4.23)

and that the term Adynamics is chosen appropriately. The particle created by the
compensator (or the dilaton) field ϕ(x) from the vacuum is called the dilaton
particle. It will be denoted by B throughout this paper.
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The simplest3 choice for Adynamics(g,Ω), already used in [29], reads as

Adynamics(g,Ω) = 1
6 f

2
∫
d4x

√
−ĝ R(ĝ), (4.24)

where we have defined
ĝµν ≡ e−2τgµν . (4.25)

The action (4.24) is Weyl invariant at the classical level but not at the quan-
tum level. One can simply see this for instance by taking the f → ∞ limit
and focusing on the flat space. The action (4.24) then reduces to the standard
kinetic term describing free massless scalar. Free massless scalar gives a partic-
ular example of a CFT with trace anomalies a and c reported in (4.153). The
latter break Weyl invariance via (4.12). There are many other possible choices
of Adynamics(g,Ω). Let us stress, that these choices do not have to be Weyl
invariant even classically.

Let us now focus on flat space-time gµν = ηµν . Using (4.14), (4.18), (4.21)
and (4.24) we can rewrite the modified action (4.20) in the following equivalent
way4

A′(Mi, ϕ) ≡ A(Mi)−
1√
2f

∫
d4x Tµ

µ(x)ϕ(x)−
∫
d4x

(
1
2∂µϕ(x)∂µϕ(x)

)
+O

(
1
f2

)
.

(4.26)
From (4.26) it becomes obvious that in the limit f → ∞ the interaction between
the dilaton and the rest of the system disappears and the action (4.20) simply
becomes the original one plus the freely propagating dilaton field. The dilaton
field ϕ(x) should be seen as a probe for a given QFT which does not disturb it
in the limit f → ∞.

4.1.3 a-theorem
Let us now take the UV and IR limits of the action (4.20). They can be written
as5

A′
UV(g,Ω) ≡ AUV CFT(g) +Adynamics(g,Ω),
A′

IR(g,Ω) ≡ AIR CFT(g) +Adilaton EFT(g,Ω) +Adynamics(g,Ω).
(4.27)

Here Adilaton EFT is the effective field theory (EFT) action describing the dilaton
interaction at low energy. In order to obtain it in some explicit QFT model one
needs to integrate out all the “massive” degrees of freedom throughout the RG

3As it will be shown in section 4.2, the low energy constrains are not influenced by the
choice of dynamics term.

4If in the UV CFT there exists more than one relevant operator which can be used
to deform the theory (i.e. for i > 1), the neglected terms starting from order O(f−2)
in equation (4.26) can not be expressed in terms of the trace of the stress-tensor in gen-
eral. Indeed, the order O(f−2) contribution in A′(Mi) turns out to be 1

4f2

∑
i

(4 − ∆i)(3 −

∆i)
∫

d4x ϕ2(x)
(

λiM
4−∆i
i Oi(x)

)
, which is not expressible in terms of the trace of the stress

tensor given in equation (4.18) for i > 1.
5Let us emphasize that we have made here a very non-trivial statement that the IR dilaton

EFT action completely decouples from the IR CFT even though dilaton self interaction is
present. One can argue for this at least in the limit of flat space-time: by construction
(4.20), dilaton couples only to mass parameters, IR CFT instead does not have dimensionful
parameters.
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flow which is almost impossible in practice. Luckily there is a model independent
way to compute Adilaton EFT which we will now review.

Consider the action (4.20). It breaks Weyl invariance in a very special way.
The Weyl symmetry breaking is coming only from the UV and IR fixed points
(4.27). Taking into account (4.12) we get

δWA′
UV(g,Ω) =

∫
d4x

√
−gσ(x)

(
− aUV × E4

+ cUV ×W 2
)

+ δWAdynamics(g,Ω),

δWA′
IR(g,Ω) =

∫
d4x

√
−gσ(x)

(
− aIR × E4 + cIR ×W 2

)
+ δWAdilaton EFT(g,Ω) + δWAdynamics(g,Ω).

(4.28)

Here δW stands for the infinitesimal Weyl variation.
Let us now assume that the Weyl anomaly in the UV matches the Weyl

anomaly in the IR, in other words

δWA′
UV(g,Ω) = δWA′

IR(g,Ω). (4.29)

Notice that contrary to the ’t Hooft anomaly matching, there is no proof for the
Weyl anomaly matching (4.29) and it might not be true in general.6 For further
discussion on Weyl anomaly matching and its consequences see [11]. Plugging
(4.28) in (4.29) we obtain the following variational equation

δWAdilaton EFT(g,Ω) =∫
d4x

√
−gσ(x)

(
−
(
aUV − aIR)× E4 +

(
cUV − cIR)×W 2

)
. (4.30)

The most general solution for this equation can be written in the following form

Adilaton EFT(g,Ω) = − (aUV − aIR) ×Aa(g,Ω)
+ (cUV − cIR) ×Ac(g,Ω)
+ Ainvariant(g,Ω),

(4.31)

where the two newly introduced terms Aa(g,Ω) and Ac(g,Ω) behave in the
following way under the infinitesimal Weyl transformation

δWAa(g,Ω) =
∫
d4x

√
−gσ(x)E4, δWAc(g,Ω) =

∫
d4x

√
−gσ(x)W 2.

(4.32)
The term Ainvariant instead remains completely invariant. The solution to the
above requirement was found in [29, 33], it reads

Aa(g,Ω) =
∫
d4x

√
−g
(
τE4 + 4

(
Rµν − 1

2g
µνR

)
(∂µτ)(∂ντ)

− 4(∂τ)2(∂2τ) + 2(∂τ)4
)
,

Ac(g,Ω) =
∫
d4x

√
−gτ(x)W 2.

(4.33)

6In fact the authors of [32] found an apparent mismatch of the c-anomaly on the Higgs
branch of N = 2 super-conformal field theory where conformal symmetry is spontaneously
broken.
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This solution is not easy to obtain but it is easy to check that it satisfies (4.32).
It is also important to stress that even though (4.29) might not hold for every
QFT, the weaker Wess-Zumino consistency condition exists, see [11], which
implies that at the very least the first line in (4.33) always holds true.

The most general Weyl invariant action can be parametrized as follows

Ainvariant(g,Ω) =
∫
d4x

√
−ĝ

(
M4λ+M2r0R̂ + r1R̂

2 + r2Ŵ
2 + r3Ê4 + . . .

)
.

(4.34)
Here the Ricci scalar, Weyl tensor and the Euler density are built out of the
metric (4.25). The real dimensionless parameters λ, r0, r1, r2 and r3 depend
on a particular QFT. The EFT cut-off scale M can be chosen to be the lowest
deformation energy scale of the UV CFT. In spontaneously broken QFTs λ = 0,
but in generic QFTs λ 6= 0. However, when defining the action (4.20), if needed,
one can fine tune the counterterms in such a way that λ = 0.

In flat space the solution (4.31) together with (4.33) and (4.34) simply leads
to

Adilaton EFT(ϕ) = M4λ

4f4

∫
d4x
(
ϕ(x))4 + 6M2r0

f2

∫
d4x
(

− 1
2pµϕ(x)pµϕ(x)

)
+ 36r1

∫
d4x
( 1

2f2 + ϕ(x)√
2f3

+ 3ϕ(x)2

4f4

)
(p2ϕ(x))2

+ aUV − aIR

2f4 ×
∫
d4x

(
∂ϕ(x)

)4 + O
(
f−5p4ϕ5 , f−4p6ϕ4). (4.35)

The term proportional to r0 gives an O(f−2) correction to the dilaton kinetic
term coming from Adynamics(g,Ω). In the limit f → ∞ it should be neglected.
The interacting part of the dilaton scattering process B(p1)B(p2) → B(p3)B(p4)
at low energy is described by the effective action (4.35) and has the following
form

lim
f→∞

f4TBB→BB(s, t, u) = 6M4λ+ (aUV −aIR) × (s2 + t2 +u2) +O(s3). (4.36)

where s = −(p1 + p2)2 , t = −(p1 − p3)2 , u = −(p1 − p4)2 with s+ t+ u = 0.
Note, that the term proportional to r1 in (4.35) does not contribute to this
scattering amplitude, since it vanishes under the dilaton equation of motion.
Using the standard approach one can write the following dispersion relation in
the f → ∞ limit

aUV − aIR = f4

2
1

2πi

∮
0

ds

s3 TBB→BB(s, 0,−s)

= f4

π

∫ ∞

0

ds

s3 ImTBB→BB(s, 0,−s).
(4.37)

Since ImTBB→BB(s, 0,−s) = s σ(s) ≥ 0 where σ(s) is the total cross section
for the scattering of BB → anything, (aUV − aIR) is non-negative. This proves
the a-theorem.

Note that the dispersion relation (4.37) conveniently provides the sum rule

aUV − aIR = f4

2 = 16f4
∑

`=0,2,4...

∫ ∞

0

ds

s3 ImT `
BB→BB (4.38)
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Application in free scalar theory As an application of the a-theorem con-
sider the UV CFT which is generated by the free massless field Φ(x), namely
we have the action

AUV CFT = −
∫
d4x

(
1
2∂µΦ(x)∂µΦ(x)

)
. (4.39)

It is straightforward to compute then the two- and tree-point correlation func-
tions of the stress-tensor with itself. One obtains (4.6) and (4.7) with

CUV
T = 1

3π4 , AUV = 1
27π6 , BUV = − 4

27π6 , CUV = − 1
27π6 .

(4.40)
Let us now add the following deformation

Adeformation(m) = −1
2m

2Φ(x)2, (4.41)

where m becomes the mass of the field Φ. This triggers the flow to an empty
IR fixed point, thus in the deep IR we simply have

CIR
T = 0, AIR = 0, BIR = 0, CIR = 0. (4.42)

As a result according to (4.9) we get the following UV an IR a-anomaly

aUV = 1
5760π2 , cUV = 1

1920π2 , aIR = 0, cIR = 0. (4.43)

Using the the modified action (4.26) we can also compute the dilaton scat-
tering at low energies. We get

lim
f→∞

f4TBB→BB(s, t, u) = 1
5760π2 × (s2 + t2 + u2) +O(s3). (4.44)

The details of the computation are given in appendix 4.B. The result (4.44) is
in a perfect agreement with CFT result (4.43).

4.2 Matter - dilaton scattering at low energy
In [29] the authors derived the most general low energy effective action of the
dilaton field in a curved background. As reviewed in section 4.1.3 this action is
given in (4.31). It is found by solving the ’t Hooft anomaly matching conditions
which can be written as a system of differential equations (4.32). In flat space
this action reduces to (4.35) and leads to the explicit expression of the low
energy BB → BB amplitude given by equation (4.36).

Here we perform a similar analysis for the AB → AB amplitude. We start in
section 4.2.1 by writing the most general low energy effective action in curved
background which describes this process. In section 4.2.2 we evaluate it in
flat space and derive the resulting scattering amplitude at low energy. The final
result turns out to be universal (independent of a particular model) and is given
by equation (4.77).

For simplicity, first and a theory where asymptotic particle A obeys Z2
symmetry. Afterwards the difference introduced by lifting this symmetry will
be discussed.
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4.2.1 The most general effective action – Z2-symmetric
case

The assumption of this paper is the presence of a single Z2 asymptotic particle
A. Let us denote by Φ(x) the effective field associated to this particle. We
would like to find the most general low energy effective action Aeff[Φ, ϕ], using
which we can compute the S-matrix for the scattering process AB → AB.7 We
remind that the filed ϕ(x) creates the dilaton particle B from the vacuum.

Following the discussion of section 4.1.2 we work with the diff and Weyl
invariant action (4.20). We would like to rewrite this action in terms of low
energy degrees of freedom Φ(x) and ϕ(x) using only diff and Weyl symmetry.
The main ingredients for doing this are the Weyl invariant metric ĝµν(x) and
scalar Φ̂(x), defined in terms of background metric gµν(x) and scalar field Φ(x)
in the following way

ĝµν(x) = e−2τ(x) gµν(x), Φ̂(x) = e∆τ(x)Φ(x), (4.45)

where τ(x) is the dilaton field related to ϕ(x) according to (4.21) and ∆ is some
effective scaling dimension of the field Φ(x). Now we want to write the most
generic form of the effective action Ag

eff[Φ, ϕ] in the curved background, which
should be general coordinate invariant in the metric ĝµν(x) and should contain
the scalar Φ̂(x). Finally, to get the flat space effective action (only perturbed
by soft dilaton field ϕ), we need to substitute gµν = ηµν in Ag

eff[Φ, ϕ], resulting
in Aeff[Φ, ϕ], which describes the scattering process AB → AB. For the con-
struction of Ag

eff[Φ, ϕ] we adapt a variation of the covariantization prescription
originally developed in [34, 35] for the soft gravitational background.

Let us start from the tangent space with locally flat metric ηab. The connec-
tion between the curved and tangent space is provided by the objects ea

µ(x) and
Eµ

a (x) called the vierbein and inverse vierbein respectively. They are defined
via the relations

ĝµν(x) = ea
µ(x)eb

ν(x)ηab, ηab = Eµ
a (x)Eν

b (x)ĝµν , (4.46)

where ηab is the flat Minkowski metric. We start with the quadratic part of the
tangent space 1PI effective action for scalar field Φ(x),

Atangent = 1
2

∫
d4x Φ(x)K(∂a)Φ(x) , (4.47)

where we dropped all the terms with cubic and higher powers of Φ since they
will not contribute to the scattering process AB → AB after covariantization.
The most general form of the kinetic operator K can be written as8

K(∂a) ≡
∞∑

n=0
ca1a2...an

n ∂a1∂a2 . . . ∂an
, (4.48)

where the coefficients cn are built out of all possible combinations of ηab with
arbitrary numerical coefficients and ca1...an

n is symmetric under the exchange
7One can think of the effective action Aeff[Φ, ϕ] as the Legendre transform of the generating

function W [ζ, ϕ] where ζ(x) is the source that couples to a local operator O∆(x) that can
create particle A from the vacuum.

8The form of the kinetic operator as Taylor series expansion in derivatives is always possible
for a EFT where massless particles are absent.
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of tangent space indices. Now we would like to first covariantize the tangent
space action (4.47). This requires to make the following replacements: d4x →
d4x

√
−ĝ together with

K(∂a) →
∞∑

n=0
ca1a2...an

n Eµ1
a1
Eµ2

a2
· · ·Eµn

an
Dµ1Dµ2 · · ·Dµn ≡ F. (4.49)

Above F is obtained only by minimally covariantizing the kinetic operator. In
principle F could contain non-minimal terms involving one or more Riemann
tensors and derivatives on them. Since those non-minimal terms contain two
or more derivatives of the dilaton field, they start contributing at higher orders
in low dilaton momentum expansion of AB → AB scattering amplitude. Since
our interest is to constrain first two terms in low dilaton momentum expansion
of the scattering amplitude AB → AB, we are not including those terms under
our covariantization process. Now on top of the covariantization we also need
to make the action Weyl invariant which is achieved by replacing Φ(x) → Φ̂(x).
Also in Ag

eff[Φ, ϕ] we should include general coordinate invariant scalar term
purely constructed out of metric ĝµν(x) given in (4.34) as well as the classically
Weyl invariant action (4.24) to make the dilaton dynamical. As a result of all
these, our curved space effective action becomes

Ag
eff[Φ, ϕ] = 1

2

∫
d4x

√
−ĝ Φ̂(x)F Φ̂(x) +Adynamics(g,Ω) +Ainvariant(g,Ω) + · · ·

(4.50)
We denote by . . . all the possible non-minimal terms appearing in the covari-
antization procedure as described earlier. From here on to reduce complexity
we ignore Ainvariant(g,Ω) part of the above action as it always contribute terms
at higher power in f−1 compare to similar terms coming from Adynamics(g,Ω)
and won’t affect our result later on.

Now to read off the flat space effective action from Aeff[Φ, ϕ] from (4.50) we
need to set gµν(x) = ηµν which in turn requires the following substitutions in
(4.50)

ĝµν(x) = e−2τ(x) ηµν =
(

1 − ϕ√
2f

)2
ηµν ,

ea
µ(x) = e−τ(x)δa

µ =
(

1 − ϕ√
2f

)
δa

µ,

Eµ
a (x) = eτ(x)δµ

a =
(

1 − ϕ√
2f

)−1
δµ

a . (4.51)

With these substitutions the flat space effective action becomes

Aeff[Φ, ϕ] = 1
2

∫
d4x

(
1 − ϕ(x)√

2f

)4−∆
Φ(x)

∞∑
n=0

ca1a2...an
n

(
1 − ϕ(x)√

2f

)−n

δµ1
a1
δµ2

a2
· · · δµn

an

× Dµ1Dµ2 · · ·Dµn

(
1 − ϕ(x)√

2f

)−∆
Φ(x)

+
∫

d4x

(
−1

2∂µϕ(x)∂µϕ(x) + 1
f
O(p4ϕ3)

)
+ · · · (4.52)

Now we expand the effective action Aeff in power of f to the second order around
f = ∞. The result can be written in the following form

Aeff = A0
eff + A1

eff + A2
eff + . . . . (4.53)
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where the superscript n in An
eff indicates the order in f−n expansion of Aeff

around f → ∞. The first term in (4.53) reads as

A0
eff = 1

2

∫
d4x

∞∑
n=0

ca1a2...an
n

(
Φ(x)pa1pa2 · · · pan

Φ(x)
)

− 1
2

∫
d4x ∂µϕ(x)∂µϕ(x).

(4.54)
In the second term A1

eff we grouped all the contributions proportional to a single
dilaton field ϕ up to one derivative acting on it and also schematically kept the
order of three dilaton field interaction term. The result reads

A1
eff = 1

2
√

2f

∫
d4x

( ∞∑
n=0

ca1a2...an
n

{
n− (4 − 2∆)

}
ϕ(x)Φ(x)pa1pa2 · · · panΦ(x)

+
∞∑

n=2
ca1...an

n

n∑
i,j=1
i<j

{
δν

ai
paj

ϕ(x) + δν
aj
pai

ϕ(x) − ηaiaj
pνϕ(x)

}
× Φ(x)pa1 · · · pai−1pai+1 · · · paj−1paj+1 · · · panpνΦ(x)

+
∞∑

n=1
ca1...an

n

n∑
i=1

∆paiϕ(x) Φ(x)pa1 · · · pai−1pai+1 · · · panΦ(x)

+O(Φ2p2ϕ, p4ϕ3)
)
.

(4.55)
In the above expression the first term is linear in ϕ(x). It is obtained by
replacing all the covariant derivatives in (4.52) by ordinary derivatives and

commuting
(

1 − ϕ(x)√
2f

)−∆
through the derivatives (in other words neglecting

terms containing derivatives operating on ϕ(x)). Expansion of the resulting
expression at linear order in ϕ(x) generates the first term. In the second and
third terms in (4.55) one derivative operates on ϕ(x). In presence of two co-
variant derivatives on Φ(x) in the first term in (4.52), we need to substitute
Dµi

Dµj
Φ(x) = pµi

pµj
Φ(x) − Γν

µiµj
pνΦ(x). Then writing down the Christoffel

connection up to linear order in ϕ(x) for any pair of such covariant derivatives
and setting ϕ = 0 in all other places we get the second term above. On the other
hand when any one of the ordinary derivative from the set of covariant deriva-
tives operates on

(
1− ϕ(x)√

2f

)−∆
in the first term in (4.52), we get the third term

above at the linear order in ϕ(x) from the expansion of the resulting expression.
First non-vanishing contribution to three dilaton interaction appears at four
derivative order as schematically written as O(p4ϕ3) in the above expression.

In the third term of (4.53), we grouped all the contributions involving ϕ(x)2

and no derivative on it, and the result reads

A2
eff = 1

2

∫
d4x

(ϕ(x)√
2f

)2
Φ(x)

∞∑
n=0

(
(4 − 2∆)(3 − 2∆)

2 − (4 − 2∆) n+ n(n+ 1)
2

)

× ca1a2···an
n pa1pa2 · · · pan

Φ(x) + 1
f2O(Φ2ϕpϕ). (4.56)

To get the above contribution we first replace all the covariant derivatives in

(4.52) by ordinary derivatives and commute
(

1 − ϕ(x)√
2f

)−∆
through the deriva-
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tives neglecting terms containing derivatives operating on ϕ(x). Then we expand
the resulting contribution and collect terms at quadratic order in ϕ(x). We do
not need to compute An

eff for n ≥ 3 as these terms of the effective action do
not contribute to AB → AB scattering amplitude. Another important point
is that once the expansion is done in power of f about f → ∞ in (4.53), in
the expressions of An

eff both tangent space indices a1, a2, · · · and curved space
indices µ1, µ2, · · · can be treated as just flat space Lorentz indices.

Momentum space It is cleaner to present further discussion in momentum
space. We would like to rewrite A0

eff, A1
eff and A2

eff as integrals in momenta
variables. Let us start by Fourier transforming the object in (4.48) in momentum
variable q

K(∂a) −→ K(q) ≡
∞∑

n=0
(i)n ca1a2...an

n qa1qa2 . . . qan
. (4.57)

In appendix 4.E we have derived some other important identities under Fourier
transformations which we use below.

Using the definition of (4.57) the momenta space expression of (4.54) be-
comes

A0
eff = 1

2

∫ d4q1

(2π)4
d4q2

(2π)4 (2π)4δ(4)(q1 + q2) Φ(q1)K(q2)Φ(q2)

−1
2

∫ d4k1

(2π)4
d4k2

(2π)4 (2π)4δ(4)(k1 + k2)ϕ(k1)k2
2ϕ(k2). (4.58)

The kinetic operator K(q) should vanish on-shell as follows from the equation
of motion. Using the definition (4.57) and equalities from appendix 4.E in
momentum space the expression (4.55) can be written as

A1
eff = 1

2
√

2f

∫ d4q1

(2π)4
d4q2

(2π)4
d4k

(2π)4 (2π)4δ(4)(q1 + q2 + k) Φ(q1)Φ(q2) ϕ(k)({
− (4 − 2∆)K(q2) + qµ

2
pK(q2)
pqµ

2

}
+ 1

2
{
δν

µkρ + δν
ρkµ − ηµρk

ν
}

×q2ν
p2K(q2)
pq2µpq2ρ

+ ∆ kµ pK(q2)
pqµ

2
+ O(k2)

)
. (4.59)

In the above expression we are not explicitly writing down the three dilaton
interaction part, as this term involves four power of dilaton momenta and will
not be important for the computation of AB → AB scattering amplitude up to
the order we are interested in. Using the definition (4.57) and the properties
(4.194) and (4.198) the expression (4.56) can be written in momentum space as

A2
eff = 1

4f2

∫ d4q1

(2π)4
d4q2

(2π)4
d4k1

(2π)4
d4k2

(2π)4 (2π)4δ(4)(q1+q2+k1+k2)Φ(q1)Φ(q2)ϕ(k1)ϕ(k2)(
(2 − ∆)(3 − 2∆)K(q2) + (−3 + 2∆)qµ

2
pK(q2)
pqµ

2
+ 1

2q
µ
2 q

ν
2
p2K(q2)
pqµ

2 pq
ν
2

+O(k1, k2)
)
.

(4.60)
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4.2.2 Low energy amplitude

Having obtained the low energy effective action components given by (4.58) -
(4.60) we can finally compute the scattering amplitude AB → AB. We start by
deriving the Feynman rules. The Feynman propagators are defined as

(2π)4δ(4)(q1 +q2)×D−1
F (q1) ≡ −i δ

2Aeff[Φ, ϕ]
δΦ(q1)δΦ(q2)

∣∣∣∣∣
Φ,ϕ=0

, DF (q1) ≡
q1

(4.61)

(2π)4δ(4)(k1+k2)×∆−1
F (k1) ≡ −i δ

2Aeff[Φ, ϕ]
δϕ(k1)δϕ(k2)

∣∣∣∣∣
Φ,ϕ=0

, ∆F (k1) ≡
k1

(4.62)
The cubic effective vertex ΦΦϕ is defined as

(2π)4δ(4)(q1+q2+k)×Γ(3)(q1, q2; k) ≡ i
δ3Aeff[Φ, ϕ]

δΦ(q1)δΦ(q2)δϕ(k)

∣∣∣∣∣
Φ,ϕ=0

≡ Γ(3)

q2q1

k

(4.63)
The quartic ΦΦϕϕ vertex is defined as

(2π)4δ(4)(q1 + q2 + k1 + k2) × Γ(4)(q1, q2; k1, k2)

≡ i
δ4Aeff[Φ, ϕ]

δΦ(q1)δΦ(q2)δϕ(k1)δϕ(k2)

∣∣∣∣∣
Φ,ϕ=0

≡ Γ(4)

q1 q2

k2k1
(4.64)

The cubic ϕϕϕ vertex is defined as

(2π)4δ(4)(k1 + k2 + k3) × V (3)(k1, k2, k3)

≡ i
δ3Aeff[Φ, ϕ]

δϕ(k1)δϕ(k2)δϕ(k3)

∣∣∣∣∣
Φ,ϕ=0

≡ V (3)

k2k1

k3

(4.65)

Applying these definitions to (4.58) - (4.60) we conclude that the Feynman
propagators read as

DF (q) = i
(
K(q)

)−1 ≡ {q2 +m2 − iε}−1Ξ(q), ∆F (k) = −i(k2 − iε)−1.
(4.66)

where we have introduced for later convenience a new object Ξ(q) which is the
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Γ(3) Γ(3)

p1 p1 + p2 p3

p2 p4

Γ(3) Γ(3)

p1 p1 − p4 p3

p4 p2

Γ(4)

p1 p3

p4p2

Γ(3)

V (3)

p1 p3

p2 − p4

p4p2

Figure 4.2: The set of diagrams contributing to the TAB→AB amplitudes. Here
the solid lines represent scalar particles A and dashed lines represent dilatons
B.

numerator of the scalar field propagator. The cubic vertex ΦΦϕ reads

Γ(3)(q1, q2; k) = i

2
√

2f

(
− (4 − 2∆)K(q2) + qµ

2
pK(q2)
pqµ

2
+ 1

2
{
δν

µkρ + δν
ρkµ − ηµρk

ν
}

× q2ν
p2K(q2)
pq2µpq2ρ

+ ∆ kµ pK(q2)
pqµ

2
+ O(k2)

)
+ (q1 ↔ q2),

(4.67)
where q1 + q2 + k = 0. In the above expression of Γ(3) the terms linear in k
actually vanishes when we explicitly write the terms under q1 ↔ q2 exchange
and substitute q2 = −q1 − k. The quartic vertex ΦΦϕϕ reads as

Γ(4)(q1, q2; k1, k2) = i

2f2

(
(2 − ∆)(3 − 2∆)K(q2)

− (3 − 2∆)qµ
2
pK(q2)
pqµ

2
+ 1

2q
µ
2 q

ν
2
p2K(q2)
pqµ

2 pq
ν
2

+O(k1, k2)
)

+ (q1 ↔ q2),

(4.68)
where q1 + q2 + k1 + k2 = 0. Three dilaton field interaction vertex ϕϕϕ reads as

V (3)(k1, k2, k3) = i

f
O(k4

i ). (4.69)

We can now compute the AB → AB amplitude using the Feynman diagrams
depicted in figure 4.2. The total amplitude describing the scattering process
AB → AB becomes

TAB→AB = T1 + T2 + T3 + T4, (4.70)
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where we have

iT1 = Γ(3)(p1,−p1 − p2; +p2)DF (p1 + p2)Γ(3)(p1 + p2,−p3; −p4),
iT2 = Γ(3)(p1,−p1 + p4; −p4)DF (p1 − p4)Γ(3)(p1 − p4,−p3; +p2),
iT3 = Γ(4)(p1,−p3; p2,−p4),
iT4 = Γ(3)(p1,−p3; p2 − p4)∆F (p2 − p4)V (3)(−p2 + p4, p2,−p4).

(4.71)

Plugging the explicit expressions of the Feynman propagators and the effective
vertices, expanding around pµ

2 = 0 and pµ
4 = 0 one obtains the following

f2T1 = m4(p1 · p2)−1 − 2m2(∆ − 1) − 2im4Ξ′(m2) +O
(
(p1 · p2), (p3 · p4)

)
,

f2T2 = −m4(p1 · p4)−1 − 2m2(∆ − 1) − 2im4Ξ′(m2) +O
(
(p1 · p2), (p3 · p4)

)
,

f2T3 = (4∆ − 5)m2 + 4im4Ξ′(m2) +O
(
(p1 · p2), (p3 · p4)

)
,

f2T4 = 0 +O
(
(p1 · p2), (p3 · p4)

)
,

(4.72)
where Ξ′(m2) ≡ pΞ(q)

pq2

∣∣∣
q2=−m2

.
In deriving these we have used several straightforward relations which follow

from the fact that K is a scalar quantity and thus can depend only on q2. As a
consequence the same is true for Ξ defined in (4.66). These relations read as

K(q) = K(−q), Ξ(q) = Ξ(−q), pK(q)
pqµ

= 2qµ
pK(q)
pq2 ,

pΞ(q)
pqµ

= 2qµ
pΞ(q)
pq2 ,

(4.73)
together with

pK(q)
pqµ

Ξ(q) + K(q)pΞ(q)
pqµ

= 2iqµ,

p2K(q)
pqµpqν

Ξ(q) + pK(q)
pqν

pΞ(q)
pqµ

+ pK(q)
pqµ

pΞ(q)
pqν

+ K(q) p
2Ξ(q)
pqµpqν

= 2iηµν .

(4.74)

At the end of the evaluation of the Feynman diagrams we use the following
on-shell conditions,

K(q)
∣∣∣
q2=−m2

= 0 , Ξ(q)
∣∣∣
q2=−m2

= −i , pK(q)
pqµ

∣∣∣
q2=−m2

= −2qµ,

p2K(q)
pqµpqν

∣∣∣
q2=−m2

= −2ηµν + 8iqµqν Ξ′(m2).
(4.75)

Plugging (4.72) into (4.70) we obtain

f2TAB→AB = m4

(p1 · p2) − m4

(p1 · p4) −m2 +O
(
(p1 · p2), (p3 · p4)

)
. (4.76)

Using the definition of the Mandelsatm variables (2.20) and the definition of the
tilded amplitudes (4.87) we obtain the final result

T̃AB→AB(s, t, u) = −2m4

s−m2 + −2m4

u−m2 −m2 + O(u−m2, s−m2). (4.77)

The above result is independent of ∆, which is not surprising since ∆ appears in
the definition of Φ̂(x) which is nothing but a field redefinition of Φ(x). Here we
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want to emphasize that up to the subleading order in the expansion parameters
s − m2 and u − m2, our amplitude T̃AB→AB(s, t, u) is theory independent. In
addition, in appendix 4.D we argue for this universal soft behavior by analysing
the worldline action of a massive particle in a dilaton background.

At the next order in O(u−m2, s−m2) the contribution to (4.77) will depend
on Ξ′(m2),Ξ′′(m2) and the non-minimal interaction strength of the scalar field
with the dilaton e.g. flat space interaction follows from R̂µνpµΦ̂pνΦ̂.9 Our
derivation is also motivated from the literatures [37–39], where tree level single
and double soft dilaton theorems have been studied.

4.2.3 The most general effective action – no Z2 symmetry
The situation changes only slightly if the symmetry is lifted. Without restriction
of Z2 other terms. Now the odd powers of Φ can appear in the new effective
action as well:

A′g
eff[Φ, ϕ] = Ag

eff[Φ, ϕ] +
∫

d4x
√

−ĝ
(
κ0Φ̂3 + κ1R̂Φ̂+

+ κ2R̂
2Φ̂ + κ3R̂µνR̂

µνΦ̂ + . . .

)
(4.78)

The terms of order Φ̂3 will simply provide vertex

(2π)4δ(4)(q1+q2+q3)×X(3)(q1, q2, q3) ≡ i
δ3Aeff[Φ, ϕ]

δΦ(q1)δΦ(q2)δΦq3

∣∣∣∣∣
Φ,ϕ=0

≡ X(3)

q2q1

q3

(4.79)
along with contributions to vertices ΦΦΦϕ and so on. These, however, as they
do contain higher powers of Φ, don’t contribute to low energy effective action.

More of interest are terms with single Φ and curvature scalars10.
With ĝ =

(
1 − φ(x)√

2f

)2
one can compute

R̂ = 3
√

2 ∂2ϕ

f
(

1 − φ(x)√
2f

)3 (4.80)

R̂2 = 18
f2

(
∂2ϕ

)2 + 1
f3 O

(
φ3) (4.81)

R̂µνR̂µν = 1
f2

(
6(∂2φ)2 + 2∂µ∂νφ ∂

µ∂νφ
)

+ 1
f3 O

(
φ3) (4.82)

This implies the term
(
κ1R̂Φ̂

)
= 3

√
2κ1
f Φ∂2ϕ+ . . . can be removed via field

redefinition, as the kinetic terms always can be made diagonal in fields. The
term ∂2ϕ is proportional to equations of motion, therefore it doesn’t contribute

9The theory dependence of sub-subleading soft graviton theorem along the same line of
derivation has been worked out in [36].

10With RµνρσRµνρσ = W 2 + 2RµνRµν − 1
3 R2, and Weyl scalar being invariant under Weyl

transformation, only two independent quadratic invariants can contribute to the action.
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to vertices with dilatons on shell (and dilaton internal lines introduce extra
factor of 1

f2 to diagram, which makes it vanish in probe limit). Therefore, the
vertex factor introduced by quartic curvature-Φ terms

(2π)4δ(4)(k1+k2+q)×Y (3)(k1, k2; q) ≡ i
δ3Aeff[Φ, ϕ]

δΦ(q1)δΦ(q2)δϕ(k)

∣∣∣∣∣
Φ,ϕ=0

≡ Y (3)

k2k1

q

(4.83)
is

Y (3)(k1, k2; q) = i
4κ3

f2 (k1 · k2)2 + O
(

1
f3

)
(4.84)

This term is obviously non-universal, and gives rise to another diagram

Γ(3)

V (3)

p1 p3

p2 − p4

p4p2

= i
4tκ2

f2(t−m2)X
(3)(p1, p3, p1 − p3) + O

(
1
f3

)
(4.85)

This implies nothing more than existence of pole of non-universal residue
in t channel. Note that due to prefactor of t from derivative coupling, the low
energy expansion (4.77) holds true for non-Z2 symmetric theories as well.

4.3 S-matrix bootstrap setup
To probe a quantum field theory, one introduces the dilaton, a massless scalar
particle basically coupled to the trace of the energy-momentum tensor [24].
The S-matrix bootstrap setup containing the lightest stable scalar particle of
the theory, called A (and of mass mA, in practical computations normalized to
1), and dilaton B (of mass mB = 0) contains the following amplitudes:

AA → AA, AA → AB, AA → BB,

AB → BB, BB → BB, AB → AB.
(4.86)

Note that AB → AB is s-t crossing of AA → BB, and the other amplitudes
are fully crossing symmetric.

As shown in the section before, each vertex with at least p dilaton legs
introduces factor of 1

fp into the diagram, allowing to sort amplitudes into leading
part (which may be interpreted as diagrams without dilaton internal lines), and
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subleading terms, vanishing in probe limit f → ∞:

TAA→AA = T̃AA→AA +O(f−1)

TAA→AB = 1
f

T̃AA→AB +O(f−2)

TAA→BB = 1
f2 T̃AA→BB +O(f−3)

TAB→BB = 1
f3 T̃AB→BB +O(f−4)

TBB→BB = 1
f4 T̃BB→BB +O(f−5)

TAB→AB = 1
f2 T̃AA→BB +O(f−3)

(4.87)

The amplitude T̃BB→BB = aUV
(
s2 + t2 + u2), via [24], relates the a-

anomaly of UV CFT to dilaton scattering and is the central point of interest of
the numerical experiments described in this paper.

4.3.1 Partial Waves

Following steps described in chapter 2, one shall decompose the amplitudes into
partial waves, with

T (`)
AA→AA = 1

32π
(
1 − 4m2/s

) 1
2

∫ +1

−1
d(cos θ)P`(cos θ)TAA→AA

T (`)
AA→AB =

√
2

32π
(
1 − 4m2/s

) 1
4
(
1 −m2/s

) 1
4

∫ +1

−1
d(cos θ)P`(cos θ)TAA→AB

T (`)
AA→BB = 1

32π
(
1 − 4m2/s

) 1
4

∫ +1

−1
d(cos θ)P`(cos θ)TAA→BB

T (`)
AB→BB =

√
2

32π
(
1 −m2/s

) 1
4

∫ +1

−1
d(cos θ)P`(cos θ)TAB→BB

T (`)
BB→BB = 1

32π

∫ +1

−1
d(cos θ)P`(cos θ)TBB→BB

T (`)
AB→AB = 1

16π
(
1 −m2/s

) 1
2

∫ +1

−1
d(cos θ)P`(cos θ)TAB→AB

(4.88)
Note the suitable prefactors in agreement with (2.99). The expressions for t and
u in each case given by (2.31)
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4.3.2 Unitarity

Writing out (2.117)


1 0 0 T ∗`

AA→AA T ∗`
AA→AB T ∗`

AA→BB

0 1 0 T ∗`
AB→AA T ∗`

AB→AB T ∗`
AB→BB

0 0 1 T ∗`
BB→AA T ∗`

BB→AB T ∗`
BB→BB

T `
AA→AA T `

AB→AA T `
BB→AA 2 Im T `

AA→AA 2 Im T `
AA→AB 2 Im T `

AA→BB

T `
AA→AB T `

AB→AB T `
BB→AB 2 Im T `

AA→AB 2 Im T `
AB→AB 2 Im T `

AB→BB

T `
AA→BB T `

AB→BB T `
BB→BB 2 Im T `

AA→BB 2 Im T `
AB→BB 2 Im T `

BB→BB

 < 0

(4.89)
In probe limit, f → 0, this condition simplifies to


1 T̃ ∗`

AA→AA T̃ ∗`
AA→AB T̃ ∗`

AA→BB

T̃ `
AA→AA 2 Im T̃ `

AA→AA 2 Im T̃ `
AA→AB 2 Im T̃ `

AA→BB

T̃ `
AA→AB 2 Im T̃ `

AA→AB 2 Im T̃ `
AB→AB 2 Im T̃ `

AB→BB

T̃ `
AA→BB 2 Im T̃ `

AA→BB 2 Im T̃ `
AB→BB 2 Im T̃ `

BB→BB

 < 0 (4.90)

Introducing this full matrix (4 × 4 with 5 independent amplitudes) is com-
putationally very expensive. Instead, via Sylvester’s criterion, two necessary
conditions are investigated numerically:

 1 T̃ ∗`
AA→AA T̃ ∗`

AA→BB

T̃ `
AA→AA 2 Im T̃ `

AA→AA 2 Im T̃ `
AA→BB

T̃ `
AA→BB 2 Im T̃ `

AA→BB 2 Im T̃ `
BB→BB

 < 0,
(
2 Im T̃ `

AB→AB

)
< 0,

(4.91)
Note that these two conditions are sufficient if processes AA → AB and AB →
BB are forbidden by a Z2 symmetry of theory as assumed in [9]. Looking at this
subset of unitarity conditions reduces problem to three independent amplitudes:

AA → AA, AA → BB, BB → BB .

4.3.3 Analyticity and crossing

The kinematic non-analycities introdued previously2.4 are taking rather unusual
form. The existence of masseless state BB suggests branch cuts starting at
s = 0.

However, as previously shown, the transfer amplitude T{xi}→{xj} has pref-
actor f−n where n is number of dilaton external particles. Therefore, in the
equation (2.50) the intermediate states involving dilatons will vanish. To give
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an explicit example,

Disc[TAA→AA] =
∫∑

TAA→XTX→AA =

=
∫∑(

TAA→AATAA→AA +
∫∑

TAA→ABTAB→AA +
∫∑

TAA→BBTBB→AA + . . .

)
=

=
∫∑

TAA→AATAA→AA+

+ 1
f2

∫∑
T̃AA→AB T̃AB→AA+

+ 1
f4

∫∑
T̃AA→BB T̃BB→AA →

→
∫∑

TAA→AATAA→AA

(4.92)
The similar reasoning applies to other amplitudes – the only contributing

intermediate states are ones of A particles only

AA,AAA, . . . (4.93)

If the process TX→AA is allowed, the branch cut starts at 4m2. However, if
particle A is constrained by Z2 symmetry, the process AB → AA is prohibited.
The corresponding amplitude TAB→AB has a branch cut starting at 9m2 then.

To set up respective branch cuts,

ρ1(z; z0) =
√

4m2
A − s0 −

√
4m2

A − s√
4m2

A − s0 +
√

4m2
A − s

(4.94a)

ρ2(z; z0) =
√

9m2
A − s0 −

√
9m2

A − s√
9m2

A − s0 +
√

9m2
A − s

(4.94b)

are defined, and the ansatz for (finite part) of the amplitudes is

T̃AA→AA(s, t, u) =
∑
a,b,c

αabcρ
a
1

(
s; 4

3

)
ρb

1

(
t; 4

3

)
ρc

1

(
u; 4

3

)
+ . . . (4.95a)

T̃BB→BB(s, t, u) =
∑
a,b,c

γabcρ
a
1(s; 0)ρb

1(t; 0)ρc
1(u; 0) + . . . (4.95b)

with the amplitude AA → BB depending on symmetry of the problem

T̃ Z2
AA→BB(s, t, u) =

∑
a,b,c

βabcρ
a
1(s; 0)ρb

2(t; 1)ρc
2(u; 1) (4.95c)

T̃AA→BB(s, t, u) =
∑
a,b,c

βabcρ
a
1(s; 0)ρb

1(t; 1)ρc
1(u; 1) (4.95d)

The choice for origin points (second argument of rho variables) is made to
facilitate imposing soft conditions and residues related to poles

With amplitudes AA → AA and BB → BB being fully crossing symmetric,
the crossing conditions imply αabc = αbac = αcba and γabc = γbac = γcba. The
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amplitude AA → BB is symmetric in tu variables, implying βabc = βacb, is
related to amplitude AB → AB by s-t crossing.

T̃AB→AB(s, t, u) = T̃AA→BB(t, s, u) (4.96)

As described in previous section, to reduce the redundancy in parametriza-
tion of T̃ ’s, one imposes αabc = 0 if a 6= 0 ∧ b 6= 0 ∧ c 6= 0 and similar for other
amplitudes.

4.4 Poles and improvement terms
4.4.1 Pole structure and soft conditions
As shown previously, a one-particle intermediate state in (2.50) implies existence
of pole in scattering amplitudes. As in previous section, intermediate states of
dilaton B are introduced with extra factor of 1

f2 , so there are no poles due
to dilaton exchange. Keeping in mind crossing symmetries, the poles due to
exchange of particle A in aforementioned amplitudes are

T̃AA→AA = g0 g0 +
g0

g0

+
g0

g0

+ · · · =

= − |g0|2
(

1
s−m2

A

+ 1
t−m2

A

+ 1
u−m2

A

)
+ . . .

(4.97a)

T̃AA→BB = g0 g2 +
g1

g1

+
g1

g1

+ · · · =

= − g0g2

s−m2
A

− |g1|2
(

1
t−m2

A

+ 1
u−m2

A

)
+ . . .

(4.97b)

T̃BB→BB = g2 g2 +
g2

g2

+
g2

g2

+ . . .

= − |g2|2
(

1
s−m2

A

+ 1
t−m2

A

+ 1
u−m2

A

)
+ . . .

(4.97c)

where solid line is propagation of A and dashed line is propagation of B. At
least this is the general case. For particle A constrained by Z2-symmetry the
only occuring pole is
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T̃ Z2
AA→BB =

g1

g1

+
g1

g1

+ . . .

= − |g1|2
(

1
t−m2

A

+ 1
u−m2

A

)
+ . . .

(4.98)

If one introduces an additional particle X of mass mX , other poles are
introduced due to its exchange:

T̃AA→AA = g′
0 g′

0 +
g′

0

g′
0

+
g′

0

g′
0

· · · =

= − |g′
0|2
(

1
s−m2

X

+ 1
t−m2

X

+ 1
u−m2

X

)
+ . . .

(4.99a)

T̃AA→BB = g′
0 g′

2 + · · · = − g′
0g

′
2

s−m2
X

+ . . . (4.99b)

T̃BB→BB = g′
2 g′

2 +
g′

2

g′
2

+
g′

2

g′
2

+ · · · =

= − |g′
2|2
(

1
s−m2

X

+ 1
t−m2

X

+ 1
u−m2

X

)
+ . . .

(4.99c)

The vertex factor

g′
1 = 0 (4.99d)

vanishes, as the theory perturbed by the dilaton is diagonal in kinetic terms,
so mixed terms involving two different matter fields and the dilaton cannot be
constructed.

4.5 Numerical implementation
In practical computations, the amplitude is parametrized as linear combination
of ‘building blocks’:

T (s, t, u) =
∑

coeffi · fi(s, t, u) (4.100)



60 CHAPTER 4. BOOTSTRAPPING A-ANOMALY

Constructing an ansatz with analytic properties described in previous sec-
tion, and imposing unitarity conditions on a set of matrices (4.91) derived from
these amplitudes11 allows to form the question about a-anomaly bounds as a
semidefinite matrix problem (SDP), which allows using specialized solvers.

Therefore, using SDPB[14] to find a vector coeffi that minimizes a-anomaly
given by (4.4), and describes amplitudes that obey unitarity bounds (4.91) can
be done. However, besides including ρ series, described by (4.95a) (already a
linear combination), the ansatz need to contain poles, and follow soft conditions
described in previous section.

4.5.1 Poles
As mentioned previously, the terms in amplitude resulting from exchange of
(4.97) are non-linear functions of coupling constants g0, g1, g2. To be able to
put the problem into semidefinite linear form, one shall define ‘independent’
linear coefficients

ga := g2
0

gb := g2
1

gbb := g0g2

gdila := g2
2

(4.101)

For this parametrization to be equivalent, these parameters have to obey
equation

ga · gdila = gbb · gbb (4.102)
which may be written as a condition on matrix determinant

∣∣∣∣ ga gbb
gbb gdila

∣∣∣∣ = 0 (4.103)

As ga ≥ 0 and gdila ≥ 0, the semidefinitness of such matrix

(
ga gbb
gbb gdila

)
� 0 (4.104)

does impose the inequality

ga · gdila ≥ gbb · gbb (4.105)

without any additional unwanted conditions.
As the term in amplitude T̃BB→BB related to parameter gdila, to be precise

T̃BB→BB ⊃ −gdila ·
(

1
s− 1 + 1

t− 1 + 1
u− 1

)
, (4.106)

is purely real, and the unitarity conditions (4.91) contain only Im T̃BB→BB ,
there is no additional bound on gdila than imposed by (4.104). In later section
it will be shown that to minimize a-anomaly gdila is also to be minimized, and
without any further constraints, that will lead to (4.104) being saturated, and
(4.102) holding true.

11The matrices are therefore linear functions of coeffi as well.
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4.5.2 Soft conditions
To impose soft conditions (4.77) around points s = 0, t = 1, u = 1, first, one
fixes gb = 2 to match the residue, and then changes ansatz terms related to
gbb. With ρ(t; 1) = O(t− 1), and ρ(u; 1) = O(u− 1) this is particularly simple:

T̃AA→BB = − 2
(

1
t− 1 + 1

u− 1

)
− gbb

(
1 + 1

s− 1

)
+ (4.107)

+
∑
a,b,c

βabcρ(s; 0)a
ρ(t; 1)b

ρ(u; 1)c (4.108)

That guarantees the finite part of amplitude to be independent of value of gbb,
therefore, all needed to impose correct soft condition is setting β000 = −1.

4.5.3 The goal: a-anomaly
To relate a-anomaly to coefficients of ansatz one needs to compare the relation

T̃BB→BB = a
(
s2 + t2 + u2)+ . . . (4.109)

to terms of the ansatz. Expanding the ansatz

T̃BB→BB = − gdila
(

1
s− 1 + 1

t− 1 + 1
u− 1

)
+ (4.110)

+
∑
a,b,c

γabc ρ(s; 0)a
ρ(t; 0)b

ρ(u; 0)c (4.111)

around s = t = u = 0 gives

T̃BB→BB = (const.) +
(

gdila + γ001

128 + γ002

256 − γ011

512

) (
s2 + t2 + u2)+ . . .

(4.112)

The constant term is purely real, so, in practice, as the unitarity matrices
contain only Im T̃BB→BB , doesn’t have to be explicitly fixed to 0.

4.5.4 Additional particles
The procedure of including another particles, as described by (4.99), follows
very similarly. Again, one has to introduce ‘independent’ linear coefficients

gaX := g2
0

gbbX := g0g2

gdilaX := g2
2

(4.113)

with semidefinite condition

(
gaX gbbX
gbbX gdilaX

)
� 0 . (4.114)
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To keep the soft conditions on T̃AA→BB intact, the amplitude term related
to gbbX is

T̃AA→BB ⊃ −gbb
(

1
m2

X

+ 1
s−m2

X

)
(4.115)

which again, has no contribution to finite part of amplitude around s = 0, t =
u = 1.

The contribution to a-anomaly from terms described in (4.99c), is derived
as before, giving additional contribution of

T̃BB→BB = · · · + gdilaX
m6

X

(
s2 + t2 + u2)+ . . . (4.116)

Such construction can be repeated to include arbitrary many resonances
resulting from exchange of particles of masses 1 < mX < 2. The condition
(4.114) will again always be saturated when minimizing a-anomaly.

4.5.5 Improvement terms
Although, any amplitude of analytical properties described before can be repro-
duced by a linear combination of resonances, and (infinite) ρ series mentioned
before, in practical computations one needs to limit the experiment to finite
number of terms, usually with αabc 6= 0 only for some a+ b+ c ≤ maxN. Given
these limitations, it is often beneficial to include ‘redundant’ terms in the ansatz
to improve convergence in such case.

The ‘threshold singularity term’, as introduced in [15] corresponds to bound
state of two A particles, and is included in AA → AA amplitude ansatz as

T̃AA→AA ⊃ ξ ·

(
1

ρ
(
s; 4

3
)

− 1
+ 1
ρ
(
t; 4

3
)

− 1
+ 1
ρ
(
u; 4

3
)

− 1

)
(4.117)

with analytic bound on the related coefficient ξ ∈ [ξmin, 0], with ξmin = −32
√

6π.
The early trials (not plotted in this paper) showed better convergence with such
addition, and its behavior in experimental data is discussed in the next section.

Along with improvement terms in amplitude AA → AA, dilaton-to-dilaton
scattering scattering amplitude can be expanded by including term proportional
to T̃ free

BB→BB , corresponding amplitude in theory of free massive boson (so derived
from T̃AA→AA = 0). Details of such derivation were described extensively in [9],
and, quoting the relevant part,

Im[T̃ free
BB→BB(s, t)] = 1

32π

√
1 − 4

s
− 1

4πs ln
(

1 +
√

1 − 4
s

1 −
√

1 − 4
s

)

− 1
4π

1
su

1√
1 + 4t

su

ln
( 1

s − u
st + u

2t

[
1 +

√
1 − 4

s

√
1 + 4t

us

]
1
s − u

st + u
2t

[
1 −

√
1 − 4

s

√
1 + 4t

us

])

− 1
4π

1
st

1√
1 + 4u

st

ln
( 1

s − t
su + t

2u

[
1 +

√
1 − 4

s

√
1 + 4u

ts

]
1
s − t

su + t
2u

[
1 −

√
1 − 4

s

√
1 + 4u

ts

])
(4.118)
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and

T̃ free
BB→BB = afree

(
s2 + t2 + u2)+ . . . (4.119)

with afree = 1
5760π2 .

Expanding ansatz with a term

T̃BB→BB ⊃ freeAmp · T̃BB→BB

afree
(4.120)

along with other contribution gives a goal for the optimization problem

a = freeAmp + gdila + gdilaX
m6

X︸ ︷︷ ︸
or sum of such terms for multiple resonances

+γ001

128 + γ002

256 − γ011

512 (4.121)

4.5.6 The grid, the limitations, the (CPU) time.
The unitarity condition (4.91) has to be imposed on every s ∈ (4,∞). In
practice, SDP computations are limited to finite number of samples in s. The
grid of values of s has to be chosen carefully to ensure convergence. As the most
variation in T ’s occur around physical threshold s & 412, and shall cover entire
range from 4 to infinity somewhat uniformly (on log scale) for large energies.

The grid used for the computations is based on Chebyshev grid in ρ variables.
With

ρ(4; 0) = 1
ρ(∞; 0) = −1

we introduced grid of

δk =
1 + cos

( 2k−1
2n π

)
2

for n grid points (and δi ∈ (0, 1)), which is used to construct a grid of values in
s via relation

ρ(sk; 0) = eiπδk .

The resulting grid of points si has the desired properties mentioned before (large
number of points around threshold, and rapidly increasing spacing between
points for large s, allowing to decently probe the infinity).

With pilot computations to establish sufficient grid size, we found no dif-
ference between computations made for n = 250 and n = 300 grid points in s,
and smaller sizes, like n = 100, n = 150 giving different, and explicitly wrong
answers. All computations presented in following section were made using grid
of 300 values in s, constructed using algorithm above.

The main building block of each amplitude is the ρ series,

T̃ =
∑
a,b,c

αabcρ(s; s0)a
ρ(t; t0)b

ρ(u;u0)c + · · · (4.122)

12This statement is intentionally broad, and comes from trials and errors. If an answer to
SDP was computed on too small grid, the unitarity violations between grid points are usually
found in vicinity of threshold.
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that must be terminated for real computations. With time complexity of prob-
lem growing like O

(
|coeffi|3

)
[14], the evaluation time sharply grows with

number of terms in ρ series. Truncating each ρ series by imposing αabc = 0 for
a+b+c > maxN is how limiting the number of free coefficients is done. However,
with overall time complexity O

(
maxN6), the line between almost impossible and

fast and inexpensive SDPB computation is thin. This line, with hardware acces-
sible for computations in this paper is around maxN = 40. The convergence with
maxN is something that needs to be discussed separately for each experiment.

Other limitation is the number of spins included in (4.91). The computation
time grows linearly with number of spins included, so pushing maxJ to the safe
side is not computationally prohibitive. The experiment in this paper show that
maxJ = maxN + 12 is a safe choice, and it is used for later numerics.

The precision of numerical values is another important topic in bootstrap
computations. Many term cancelations in computations need large precision
floating point numbers, and the experiments described later are no exception.
512 bits of mantissa precision was found to be (safely) more than enough and
was used in the numerics for this paper.

4.6 Results

4.6.1 Z2-symmetric case
We start in section 4.6.1 by addressing the simplest possible question: what is
the lowest value of the a-anomaly in the UV CFT which leads to a single Z2
odd asymptotic state given some relevant deformation. We will reconstruct the
spin=0 partial amplitudes of our setup which lead to the absolute minimum
of the a-anomaly. In section 4.6.1 we discuss several consistency checks of our
numerical code. In section 4.6.1 we construct a lower bound on the a-anomaly as
a function of λ0, λ2, Λ0 and Λ2. We reconstruct the spin=0 partial amplitudes
of our setup corresponding to the maximally allowed value of λ0.

Absolute minimum of the a-anomaly

Let us start by addressing the following question: what is the lowest value of
the a-anomaly in the UV CFT which leads to a single Z2 odd asymptotic state
given some relevant deformation. For running the numerics we have found the
optimal size of the grid to be Ngrid = 300. We have checked that Ngrid = 350
and Ngrid = 400 lead to the same solution. For Ngrid = 200 the results differ
significantly from the ones found with larger grids.

Let us fix the size of the ansatz to be Nmax = 20. The minimum of the
a-anomaly for various values of Lmax is found to be

{Lmax, a/afree} = {(16, 0.4015), (18, 0.4074), (20, 0.4100),
(22, 0.4115), (24, 0.4125), (26, 0.4133),
(28, 0.4140), (30, 0.4146), (32, 0.4150), (34, 0.4154)}.

(4.123)
We see that the lower bound on the a-anomaly is stable under the change of
Lmax and gets stronger when Lmax increases. In all the future numerical studies
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we make the following conservative choice for

Lmax = Nmax + 10. (4.124)

Let us now investigate the dependence of the numerical solution on Nmax. We
obtain the following values for the minimum of the a-anomaly for various values
of Nmax

{Nmax, a/afree} = {(16, 0.4401), (18, 0.4223), (20, 0.4146),
(22, 0.4058), (24, 0.4001), (26, 0.3897)}. (4.125)

Using Nmax = 16, 18, 20, 22, 24 and 26 we can extrapolate our data to Nmax =
∞ with the following linear function

a/afree = 0.316 + 1.969/Nmax. (4.126)

The dependence of the minimum of the a-anomaly on Nmax and its extrapo-
lation is given in figure 4.3. We conclude that the absolute minimum of the
a-anomaly in our setup is

a/afree & 0.316 ± 0.015. (4.127)

Here we have also included the estimated extrapolation error.
At the absolute minimum of the a-anomaly we can actually reconstruct

numerically scattering and partial amplitudes of all the process of our setup. In
figures 4.4 - 4.6 we present the spin zero partial amplitudes of the AA → AA
and AA → BB processes. In the left figure 4.5 we have plotted the real part
of the spin zero phase shift of the AA → AA process. We recall that the spin `
phase shift δ` of the AA → AA process is defined via

S`
AA→AA(s) = e2iδ`

AA→AA(s). (4.128)

From the right figure 4.5 we see that the amplitude is fully “elastic” up to very
high energies.

In figure 4.7 we plot the integrand of the sum-rule (4.37) for various values
of Nmax. Numerical integration of these functions gives the values a/afree =
0.4146, 0.4058, 0.4001 and 0.3897 which are in a perfect agreement with (4.125).
In figure 4.8 we plot the integrand of the sum-rule (4.38) for spin 0, 2 and
4. Numerical integration of these functions gives the following value of the a-
anomaly a/afree = 0.2396 + 0.1605 + 0.0105 + . . . = 0.4106 + . . ., where the
three entries correspond to spin 0, 2 and 4 respectively and the dots indicate
the contribution due to higher spins..

Consistency checks

Before presenting more bounds let us perform several consistency checks.
First, we can set all the coefficients α and β in the ansatz (4.95a) to zero

after. This situation corresponds to particle A being a free massive scalar,
with the AA → BB scattering amplitude given by (4.165). As computed in
appendix 4.B this inevitably leads to a/afree = 1. We successfully reproduce
this theoretical outcome numerically. It is important to notice that the ansatz
(2.119) requires very large numbers Nmax in order to reproduce the free theory
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0.01 0.02 0.03 0.04 0.05 0.06
1/Nmax

0.1

0.2

0.3

0.4

a/afree

Figure 4.3: Minimum possible value of the a-anomaly without any further as-
sumptions as a function of 1/Nmax with Lmax = Nmax + 10. The numerical
results are depicted by blue points. Linear extrapolation to Nmax → ∞ de-
picted by the red line gives 0.316 ± 0.015 for the minimum of a/afree.

accurately. In practice it is very non-economical to work with such a big value
of Nmax. This was the motivation behind the introduction of the additional
term (4.118) in the BB → BB ansatz which improves the convergence with
Nmax drastically in this particular situation.

Second, let us set all the α coefficients to zero and leave β coefficients to be
completely free. One might expect the same outcome as before, however solving
the optimization problem we obtain

a/afree ≈ 0.9071. (4.129)

This result was obtained with Nmax = Lmax = 20. For comparison we get
0.9107 for Nmax = Lmax = 10. This result is very stable under the change of
Nmax and Lmax. The solution of the optimization problem gives the coefficients
of the ansatz such that only

β00n 6= 0. (4.130)

Under closer inspection of the unitarity conditions one observes that setting α
to zero forces the imaginary part of the T̃ `

AA→BB(s) partial amplitude to be zero
due to right-bottom minor of (4.91). However, the real part can still be non-zero.
The solution (4.130) exactly reproduces such a situation. We, thus, conclude
that the unitarity conditions we use do not fully constraint the behavior of the
matter - dilaton scattering given the form of the matter scattering.

It is possible to guess analytically the AA → BB scattering amplitude which
gives the solution (4.129), (4.130). Let us assume no discontinuity in the s-
channel of the amplitude AA → BB (as follows from absence of AA → AA
scattering), we can then write the general ansatz

T̃AA→BB = −m2 − 2m4

t−m2 − 2m4

u−m2 +

−
∫ ∞

9m2
dw q(w)

(
m2

t− w
+ m2

u− w
− 2m2

m2 − w

)
, (4.131)
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where q(w) ≥ 0 by unitarity. For the special case when q(w) = Qm2δ(w− 9m2)
we obtain

T̃AA→BB = −m2 − 2m4

t−m2 − 2m4

u−m2 +

−Qm2
(

m2

t− 9m2 + m2

u− 9m2 + 1
4

)
. (4.132)

Plugging it into (4.37) we obtain aUV/afree ≥ 0.905527 for Q = 2.07869. The
amplitude (4.132) matches precisely the one obtained numerically.

Finally, analogously to (4.37) one can write the following dispersion relation

Λ2 = m4

8π2

∫ ∞

4m2

ds
s3 ImTAA→AA(s, 0, 4m2 − s). (4.133)

Setting Λ2 to zero will force the imaginary part of the AA → AA process to be
zero since the integrand is non-zero due to the semidefinitness of left-top minor
in (4.91). Due to the same inequality we see that the imaginary part in turn
forces the whole amplitude to be zero. In practice we indeed observe that by
setting Λ2 to zero the numerical solution leads to all the coefficients α being
zero. In other words our numerics leads to (4.129) if Λ2 = 0.

Lower bound on the a-anomaly as a function of couplings λ0, λ2, Λ0
and Λ2

The non-perturbative couplings, similarly to ones defined in [15, 40], are another
physical observable worth investigating. At crossing-symmetric point one may
define couplings

λ0 ≡ 1
32πTAA→AA

(
4
3 ,

4
3 ,

4
3

)
λ2 ≡ 1

32π∂
2
s TAA→AA

(
4
3 ,

4
3 ,

4
3

)
(4.134)

and at the ‘forward point’ (as it lies on the line of forward scattering t = 0):

Λ0 ≡ 1
32πTAA→AA(2, 0, 2) Λ2 ≡ 1

32π∂
2
s TAA→AA(2, 0, 2) (4.135)

Let us now construct a lower bound on the a-anomaly as a function of the
coupling constants λ0, λ2, Λ0 and Λ2.

We begin by noticing that these couplings are bounded themselves. We can
use our setup of section 4.3 to obtain upper and lower bounds which read as

−6.0253 ≤λ0 ≤ +2.6613, 0 ≤ λ2 ≤ +2.2568,
−2.8145 ≤Λ0 ≤ +2.8086, 0 ≤ Λ2 ≤ +0.6550.

(4.136)

These are obtained by setting a = 5afree in the setup and using Nmax = 20
and Lmax = 30. Increasing the value of a does not change the result. Around
a/afree ∼ 1 we get a non-trivial dependence of the bounds on a which will be
better represented in the later plots. The dependence of these bounds on Lmax is
negligible. The dependence on Nmax is non-trivial and should be taken into ac-
count. The correct bounds are obtained using the extrapolation to Nmax → ∞.
The exception is the upper bound on λ0, it is independent of Nmax due to the
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presence of the singularity term (4.117) which drastically improves the conver-
gence of this particular bound. We do not perform Nmax → ∞ extrapolations
in this section and instead we will always work at Nmax = 20 and Lmax = 30.

We can now pick value of λ0, λ2, Λ0 and Λ2 from the allowed ranges (4.136)
and minimize the a-anomaly. The result is presented in figures 4.9 and 4.10.
The allowed area is shaded in blue. The red dot represents the solution with
the absolute minimum of the a-anomaly found in section 4.6.1. The right plots
in figures 4.9 and 4.10 have a sharp peak around λ2 = 0 and Λ2 = 0. This
point corresponds to a freely propagating particle A and gives the value of the
a-anomaly quoted in (4.129). See the explanation below (4.129) why this value
is not exactly one.

Another interesting point in these plots is the one with λ0 ≈ 2.66 and
a/afree = 1.2. As was done in section 4.6.1 we can plot spin zero partial ampli-
tudes in our setup for this solution. They are given in figures 4.11 - 4.14.
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Figure 4.4: Real and imaginary parts of the spin 0 interacting part of the
AA → AA partial amplitude leading to the absolute minimum of the a-anomaly.
It is constructed at Nmax = 20 and Lmax = 30.
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Figure 4.5: An alternative representation of the amplitude given in figure 4.4.
Left plot represents the real part of the spin 0 phase shift of the AA → AA
scattering defined in (4.128). The apparent jump around s = 8 is due to the
periodicity δ ' δ + π. Right plot represents the absolute value of the spin 0
partial amplitude of the AA → AA scattering. On the real axis instead of the s
variable we use the φ variable defined in (2.124). The amplitude is fully “elastic”
up to very high energies.
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Figure 4.6: Real and imaginary parts of the spin 0 interacting part of the
AA → BB partial amplitude leading to the absolute minimum of the a-anomaly.
It is constructed at Nmax = 20 and Lmax = 30.
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Figure 4.7: Integrand appearing in the sum-rule (4.37) for the absolute minimum
of the a-anomaly. Different colors indicate different values of Nmax. Numerical
integration of these function leads to a/afree = 0.4146, 0.4058, 0.4001 and 0.3896
in a perfect agreement with (4.125).
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Figure 4.8: Integrand appearing in the sum-rule (4.37) for the absolute minimum
of the a-anomaly for spin 0, 2 and 4. Numerical integration of this function
leads to a/afree = 0.2396 + 0.1605 + 0.0105 + . . . = 0.4106 + . . ., where the
three entries correspond to spin 0, 2 and 4 respectively and the dots indicate
the contribution due to higher spins. Plots are constructed at Nmax = 20 and
Lmax = 30. Summing up these three contribution gives the Nmax = 20 curve
of figure 4.7.



4.6. RESULTS 71

-6 -4 -2 2
λ0

0.2

0.4

0.6

0.8

1.0

1.2

a/afree

0.5 1.0 1.5 2.0
λ2

0.2

0.4

0.6

0.8

a/afree

Figure 4.9: Lower bound on the a-anomaly as a function of λ0 in the left plot
and as a function of the λ2 in the right plot. The allowed region is depicted in
blue. Red dot represents the point with the lowest value of the a-anomaly. The
red vertical lines indicate the boundaries of the allowed regions for λ0 and λ2
given in (4.136). The plots are built with Nmax = 20 and Lmax = 30.
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Figure 4.10: Lower bound on the a-anomaly as a function of Λ0 in the left plot
and as a function of the Λ2 in the right plot. The allowed region is depicted in
blue. Red dot represents the point with the lowest value of the a-anomaly. The
red vertical lines indicate the boundaries of the allowed regions for Λ0 and Λ2
given in (4.136). The plots are built with Nmax = 20 and Lmax = 30.
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Figure 4.11: Real and imaginary parts of the spin 0 interacting part of the
AA → AA partial amplitude for λ0 = 2.66 which leads to a/afree = 1.2002. It
is constructed for Nmax = 20 and Lmax = 30.
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Figure 4.12: Left plot represents the real part of the spin 0 phase shift of the
AA → AA scattering defined in (4.128). No resonances are present. Right plot
represents the absolute value of the spin 0 partial amplitude of the AA → AA
scattering. On the real axis instead of s variable we use φ variable defined in
(2.124). The amplitude is fully “elastic” up to very high energies.
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Figure 4.13: Real and imaginary parts of the spin 0 interacting part of the
AA → BB partial amplitude for λ0 = 2.66 which leads to a/afree = 1.2002. It
is constructed for Nmax = 20 and Lmax = 30.
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Figure 4.14: Left plot: integrand appearing in the sum-rule (4.37) for the
absolute minimum of the a-anomaly. Numerical integration of this function
leads to a/afree = 1.2002. Right plot: integrand appearing in the sum-rule
(4.37) for the absolute minimum of the a-anomaly. Numerical integration of
this function leads to a/afree = 0.71146+0.45094+0.03238+ . . . = 1.19477+ . . .,
where the three entries correspond to spin 0, 2 and 4 respectively and the dots
indicate higher spin contributions. The plots are constructed at Nmax = 20 and
Lmax = 30.
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4.6.2 Generalized case (no Z2 symmetry)
A story of one particle

The first performed experiment includes matter (particle A) and dilaton (par-
ticle B) without additional residues. The numerical data allowed to find a
feasible range of ρ series size maxN and number of partial waves maxJ included
in unitarity constraints, and the convergence pattern is shown on figure 4.15.
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Figure 4.15: Absolute minimum of a as a fraction of afree. A line fit to the
best available data (highest maxJ) is marked. Comparing to figure 4.3 (with Z2
symmetry imposes), the bound is lower by roughly a factor of 1⁄2.

The close-to-linear behavior of a
afree

as a function of 1
maxN allows to extrapolate

the limit of maxN → ∞, giving the answer of a & 0.1517 · afree. This can
be concluded to be absolute minimum a-anomaly of any theory with a single
particle of spin 0.

As presented on a figure, the number of spins required for convergence de-
pends on the ansatz size, however over entire range of feasible maxN (as time
complexity grows approximately as O(maxN6) and experiments with maxN > 40
became prohibitively expensive), the difference between solutions found with
maxJ = maxN + 12 and maxJ = maxN + 8 differed only marginally, proving
maxJ = maxN + 12 is a safe choice for next experiments.

The strength of 3-point couplings may be extracted from data. The residue
of pole in T̃AA→AA saturates the previously found bounds [15], however pole in
T̃BB→BB does not contribute significantly to a-anomaly (see figure 4.16).

On the other hand, one would expect that the parameter associated with
bound state at threshold, 1

ρ(s;4/3) would be saturating analytic bounds, as in
scalar theories investigated in [15]. This is not the case, as optimized amplitude
has associated parameter boundState converging to about 0.15 of minimal value
of −32

√
6π, as shown on a plot. The second of improvement terms, fAmp doesn’t

appear to converge to any value, similarly to elements of γabc, as expected with
having an ansatz that is (to some extent) redundant. Both patterns are shown
on figure 4.17.
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Figure 4.16: Size of 3-point couplings g0 and g2. Note difference in scales.
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Figure 4.17: In contrast to amplitude maximizing 3-point coupling found in [15],
the one minimizing a-anomaly doesn’t saturate bounds on threshold term. The
improvement term in T̃BB→BB doesn’t show any convergence pattern.
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A story of two particles

When considering resonances coming from exchange of massive particle X of
mass m2

X > 1, the picture changes drastically. With square of mass mX close
to 1 or 4 the absolute minimum of a-anomaly is close to 0.15 · afree found which
was expected, as these contributions are similar either to pole at s = 1 or to the
threshold singularity. However, in between, the minimal value of anomaly dips
at a ≈ 0.034 · afree for the mass m2

X = 2.5 ± 0.1.
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Figure 4.18: Absolute minimum of a-anomaly as a function of the mass square
of the second particle. For each data point maxJ = maxN + 12

The behavior of three-point couplings (shown on figure 4.19) and threshold
singularity term can be separated into two regions. For m2

X ≤ 2 the value of g0 is
close to 0, and |g′

0| (matter-matter-X) saturates the unitarity bound of 3-point
coupling found in previous S-matrix bootstrap experiments[15]. Above m2

X = 2
the coupling |g0| starts to grow rapidly, maximizing around m2

X = 2.5 ± 0.1.
The opposite applies to threshold singularity term ξ - it decays quickly from
≈ 0.15 of minimal value coming from unitarity bounds (ξmin = −32

√
6π) to

decay to 0 at m2
X = 2. It looks like a pole below m2

X = 2 absolutely consumes
pole at m2

A = 1, and pole above consumes threshold singularity, when it comes
to minimization of a-anomaly.

Somewhat similar behavior (of disappearance of resonance at mass of A) is
observed at dilaton-dilaton-matter and dilaton-dilaton-X couplings, as plotted
in figure 4.20.
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Figure 4.19: Size of 3-point couplings g0 and g′
0 and threshold singularity ξ with

respect to additional particle mass m2
X
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Figure 4.20: Size of 3-point couplings g2 and g′
2 with respect to additional

particle mass m2
X . Note the kink of g′

2 around m2
X = 2 – it is very likely similar
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resolution in m2
X .



80 CHAPTER 4. BOOTSTRAPPING A-ANOMALY

A story of many particles

To approach a general theory containing at least a single particle of spin 0, a
theory with many possible resonances is investigated. Instead of introducing
single extra resonance of mass mX , a set of them is included in the ansatz, with
masses13

m2
i = 1.1, 1.2, . . . , 3.8, 3.9 (4.137)

with respective 3-point couplings g0(mi) and g2(mi), with A’s and with dilatons
respectively. Surprisingly, the absolute value of a-anomaly in such case can be
extrapolated to

amin ≈ 0.036 · afree (4.138)

with convergence pattern presented on the figure 4.21.
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Figure 4.21: Convergence of a-anomaly bounds with multiple poles allowed.
maxJ = maxN + 12 for all data points.

The exact numerical result shall be taken with a grain of salt, as little data
points were evaluated due to high complexity of computations.

However, this value being so close to minimum of a-anomaly from previous
section shall bring attention to 3-point couplings related to each of allowed
intermediate particles.

When taking a closer look on figure 4.22, one can notice the only significant
contribution to the amplitudes results from resonances at mass m2

i = 2.4,mi =
2.5. The natural conjecture from this observation is that the non-trivial theory
that really minimizes a-anomaly contains two stable particles, one of mass mA

(normalized to 1 in the experiment), and another with m2
X between 2.4 and

2.5. The further investigation, with more detailed grid of allowed resonances,
shall eventually bring a definitive answer to question of minimal a-anomaly of
non-trivial theory containing at least one spin-0 particle.

13The resonance at mi = 3.0 is missing due to a numerical error.
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Figure 4.22: Relative size of couplings corresponding to each pole. Note the
logarithmic scale.
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4.A Correlation functions of the stress tensor
In this appendix we summarize results for the two- and three-point correlation
functions of the stress-tensor in four spacetime dimension derived in a seminal
paper [25] by Osborn and Petkou. Let us start by defining the short-hand
notation

xµ
ij ≡ xµ

i − xν
j . (4.139)

All the tensor structures for the stress-tensor correlators are built out of these
elementary tensors

Iµν(x) ≡ δµν − 2 x
µxν

x2 ,

Iµν,ρσ(x) ≡ 1
2I

µρ(x)Iνσ(x) + 1
2I

µσ(x)Iνρ(x) − 1
4η

µνηρσ,

Xµ
3,12 ≡ xµ

13
x2

13
− xµ

23
x2

23
.

(4.140)

According to [25] we have

〈Tµν(x1)T ρσ(x2)〉 = CT
1
x8

12
Tµν;ρσ

0 , (4.141)〈
Tµν(x1)T ρσ(x2)Tαβ(x3)

〉
= 1
x4

12x
4
23x

4
31

[
A Tµν;ρσ;αβ

1 + B Tµν;ρσ;αβ
2 + C Tµν;ρσ;αβ

3

]
.

(4.142)

Here CT is the central charge and A, B and C are the stress-tensor OPE coeffi-
cients with itself. These obey the following relation

CT = π2

3

(
14A − 2B − 5C

)
. (4.143)

The four tensor structures written above are defined as

Tµν;ρσ
0 ≡ Iµν,ρσ(x12),

Tµν;ρσ;αβ
1 ≡ Iµν,µ′ν′

(x13)Iρσ,ρ′σ′
(x23)t1µ′ν′,ρ′σ′

αβ(X3,12),

Tµν;ρσ;αβ
2 ≡ Iµν,µ′ν′

(x13)Iρσ,ρ′σ′
(x23)t2µ′ν′,ρ′σ′

αβ(X3,12),

Tµν;ρσ;αβ
3 ≡ Iµν,µ′ν′

(x13)Iρσ,ρ′σ′
(x23)t3µ′ν′,ρ′σ′

αβ(X3,12),

(4.144)

where

t1µν,ρσ,αβ(X) ≡h5
µν,ρσ,αβ(X) − 2h4

µν,ρσ,αβ(X) − 2h4
ρσ,µν,αβ(X) + 24h2

µν,ρσ(X)h1
αβ(X)

− 16h1
ρσ(X)h2

µν,αβ(X) − 16h1
µν(X)h2

ρσ,αβ(X) + 64h1
µν(X)h1

ρσ(X)h1
αβ(X),

t2µν,ρσ,αβ(X) ≡h4
αβ,µν,ρσ(X) − h4

µν,ρσ,αβ(X) − h4
ρσ,µν,αβ(X) + 6h2

µν,ρσ(X)h1
αβ(X)

− 2h1
ρσ(X)h2

µν,αβ(X) − 2h1
µν(X)h2

ρσ,αβ(X) + 32h1
µν(X)h1

ρσ(X)h1
αβ(X),

t3µν,ρσ,αβ(X) ≡h3
µν,ρσ(X)h1

αβ(X) + h1
µν(X)h3

ρσ,αβ(X) + h1
ρσ(X)h3

µν,αβ(X)
− 6h2

µν,ρσ(X)h1
αβ(X) + 4h1

ρσ(X)h2
µν,αβ(X) + 4h1

µν(X)h2
ρσ,αβ(X)

− 16h1
µν(X)h1

ρσ(X)h1
αβ(X).

(4.145)
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and

h1
µν(X) ≡XµXν

X2 − 1
4ηµν ,

h2
µν,ρσ(X) ≡ 1

X2

[
XµXρηνσ +XµXσηνρ +XνXρηµσ +XνXσηµρ −XµXνηρσ

−XρXσηµν

]
+ 1

4ηµνηρσ,

h3
µν,ρσ(X) ≡ ηµρηνσ + ηµσηνρ − 1

2ηµνηρσ,

h4
µν,ρσ,αβ(X) ≡ 1

X2

[
h3

µν,ραXσXβ + h3
µν,σαXρXβ + h3

µν,ρβXσXα + h3
µν,σβXρXα

]
− 1

2ηρσh
2
µν,αβ(X) − 1

2ηαβh
2
µν,ρσ(X) − 1

2ηρσηαβh
1
µν(X),

h5
µν,ρσ,αβ(X) ≡ηµρηναησβ + ηνρηµαησβ + ηµσηναηρβ + ηνσηµαηρβ + ηµρηνβησα

+ ηνρηµβησα + ηµσηνβηρα + ηνσηµβηρα − 1
2ηµνηρσηαβ

− ηµνh
3
ρσ,αβ(X) − ηρσh

3
µν,αβ(X) − ηαβh

3
µν,ρσ(X).

(4.146)
In curved spacetime one-point function of the trace of the stress-tensor is

non-zero. It has the following form〈
Tµ

µ

〉
g

= −a× E4 + × c W 2, (4.147)

where E4 is the Eular density and W 2 is the square of the Weyl tensor. They
have the following expressions in 4d,

E4 = RαβγδRαβγδ − 4RαβRαβ +R2, (4.148)

W 2 = RαβγδRαβγδ − 2RαβRαβ + 1
3R

2. (4.149)

The coefficients a and c are called the Weyl anomalies. They are related to the
OPE coefficients A, B and C as

a = π4

64 × 90

(
9A − 2B − 10C

)
, c = π4

64 × 30

(
14A − 2B − 5C

)
. (4.150)

As an example let us consider a theory of a free massless (conformally coupled)
scalar Φ(x) which is described by the free CFT. According to [41] it has the
following stress-tensor

Tµν = pµΦpνΦ − 1
12

[
2pµpνΦ2 + ηµνp

2Φ2
]
. (4.151)

Such a CFT has the following parameters

A = 1
27π6 , B = − 4

27π6 , C = − 1
27π6 , CT = 1

3π4 , (4.152)

a = 1
5760π2 , c = 1

1920π2 . (4.153)
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4.B Example of the free scalar theory
In this appendix we consider the theory of a free massive scalar field Φ(x) which
has the following action

Afree(m) =
∫

d4x
[

− 1
2∂µΦ∂µΦ − 1

2m
2Φ2

]
. (4.154)

It can be interpreted as a free massless CFT in the UV deformed by the mass
term. As reviewed in sections 4.1.2 and 4.1.3 one can define the following mod-
ified action

A′
free(m) =

∫
d4x

[
− 1

2∂µΦ∂µΦ− 1
2m

2Φ2 − 1
2∂µϕ∂

µϕ+ m2
√

2f
ϕΦ2 − m2

4f2ϕ
2Φ2

]
.

(4.155)
In what follows using this action we will compute the BB → BB scattering
amplitude, where B is the dilaton particle created by the dilaton field ϕ(x)
from the vacuum. We will show that in this particular model this amplitude at
low energy is given by equation (4.44). The particle created by the field Φ(x)
from the vacuum is referred to as the particle A. We will do the computation
in two different ways.

All the Feynman rules needed for the computation of scattering amplitudes
in the model (4.155) read as

= −i
p2 +m2 − iε

(4.156)

= −i
p2 − iε

(4.157)

= i
√

2m2

f
(4.158)

= − im2

f2 (4.159)

Here solid lines represent the field Φ(x) and dashed lines represent the dilaton
field ϕ(x).

Direct computation The BB → BB dilaton scattering at the order O(f−4)
is described by the Feynman diagram depicted in figure 4.23. We compute these
diagrams one by one using the standard Feynman parametrization. We will
then expand these expressions at the leading order in energy and the perform
the Feynman integrals.

The amplitude described by the first diagram in figure 4.23 together with
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`

k1 + k2 − `

k2

k1

k′
2

k′
1

k1 + k2 − `

`− k′
1

`

k2

k1

k′
2

k′
1

k1

k2 k′
2

k′
1

Figure 4.23: We consider the momenta of incoming dilatons be k1 and k2 and the
momenta of outgoing dilatons be k′

1 and k′
2. In the total amplitude contribution

we also need to add the contributions of two topologically in-equivalent diagrams
for the above individuals which we can easily read off using crossing symmetry.

the ones obtained from it by using crossing symmetry has the following form

iAI(s, t)

= m4

2f4

∫ d4`

(2π)4
1

`2 +m2 − iε

1
(k1 + k2 − `)2 +m2 − iε

+ (cross-sym)

= − im4

32π2f4

∫ 1

0
dx

[
ln
(
m2 − sx(1 − x)

Λ2

)
+

+ ln
(
m2 − tx(1 − x)

Λ2

)
+

+ ln
(
m2 − ux(1 − x)

Λ2

)]
.

(4.160a)
Here Λ is the Pauli-Villars regularisation parameter representing the UV cut-off.
Contribution from the second diagram in figure 4.23 together the ones obtained
from it by corssing symmetry has the form

iAII(s, t)

= −2m6

f4

∫ d4`

(2π)4
1

`2 +m2 − iε

1
(`− k′

1)2 +m2 − iε

1
(k1 + k2 − `)2 +m2 − iε

+ (cross-sym)

= − im6

4π2f4

∫ 1

0
dx dy dz δ(x+ y + z − 1) ·

·

[
1

m2 − sxy
+ 1
m2 − txy

+ 1
m2 − uxy

]
.

(4.160b)
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Contribution from the third diagram in figure 4.23 together the ones obtained
from it by corssing symmetry has the form

iAIII(s, t) = im8

4π2f4

∫ 1

0
dx dy dz dw δ(x+ y + z + w − 1)×

×

[
1[

m2 − {sy(z + w) + tyz + uz(1 − z − w)}
]2

+ 1[
m2 − {ty(z + w) + uyz + sz(1 − z − w)}

]2
+ 1[

m2 − {uy(z + w) + syz + tz(1 − z − w)}
]2
]
.

(4.160c)

Above the Mandelstam variables are defined as s = −(k1 + k2)2 , t = −(k1 −
k′

1)2, u = −(k1 − k′
2)2 with s+ t+ u = 0. Summing all the above contributions

we get the four dilaton scattering amplitude

TBB→BB(s, t, u) = AI(s, t) + AII(s, t) + AIII(s, t) +O(f−5) (4.161)

Let us for simplicity work in the forward limit and focus on low energies when
s << m2. Up to the order O(s2) we obtain

TBB→BB(s, 0,−s) = 3m4

16π2f4 ln
( Λ
m

)
+

+ s2

32π2f4

∫ 1

0
dxx2(1 − x)2+

− s2

4π2f4

∫ 1

0
dx
∫ 1−x

0
dy 2x2y2+

+ 3s2

4π2f4

∫ 1

0
dy
∫ 1−y

0
dz
∫ 1−y−z

0
dw
[

(yz + yw − z + z2 + zw)2

+ (−yz + z − z2 − wz)2 + (yw)2
]

+O(s3)

= 3m4

16π2f4 ln
( Λ
m

)
+ s2

960π2f4 − s2

360π2f4 + s2

480π2f4 +O(s3)

= 3m4

16π2f4 ln
( Λ
m

)
+ s2

2880π2f4 +O(s3).

(4.162)

The amplitude away from the forward limit at the order O(s2) can be obtained
from (4.162) by using crossing symmetry, then it reads

TBB→BB(s, t, u) = 3m4

16π2f4 ln
( Λ
m

)
+ 1

5760π2f4 ×(s2 +t2 +u2)+O(s3). (4.163)

It is obvious that (4.163) reduces to (4.162) in the forward limit. The equation
(4.163) is precisely (4.44) quoted in the main text once we set Λ = m to make
the cosmological constant equals to zero.
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Indirect computation The imaginary part of the BB → BB scattering
amplitude at one loop is related to the tree level scattering amplitude BB → AA
via the optical theorem which can be written as

ImTBB→BB(s, 0,−s) = 1
2

[
1
2

∫ d3~p1

(2π)32E~p1

d3~p2

(2π)32E~p2

]
(2π)4×

× δ(4)(k1 + k2 − p1 − p2) ×
∣∣∣TBB→AA(s, t, u)

∣∣∣2. (4.164)

The terms within the square bracket is the two identical particle phase space
integral. To derive the above relation we considered only two massive parti-
cle exchange in the unitarity cut, which is the leading order contribution in
large f . Above we can use crossing symmetry to write TBB→AA(s, t, u) =
TAA→BB(s, t, u). The tree level Feynman diagrams describing the AA → BB
scattering process are depicted in figure 4.24. This leads to the following explicit

p1

p2

k2

k1

p1

p2

k2

k1

p1

p2

k2

k1

Figure 4.24: Tree level Feynman diagrams describing the AA → BB scattering
amplitude.

expression for the amplitude

iTAA→BB(s, t, u) = − im2

f2

[
1 + 2m2

t−m2 + 2m2

u−m2

]
, (4.165)

where s = −(p1 +p2)2 , t = −(p1 −k1)2 , u = −(p1 −k2)2 with s+ t+u = 2m2.
We recall that in the center of mass frame the t and u variables can be expressed
in terms of total energy squared s and the scattering angle θ according to the
second entry in (2.34). We write this relation here again for convenience

t = m2 − s

2 + 1
2
√
s(s− 4m2) cos θ,

u = m2 − s

2 − 1
2
√
s(s− 4m2) cos θ.

(4.166)
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Plugging (4.165) into (4.164) we obtain

ImTBB→BB(s, 0,−s)

= 1
64π

√
s− 4m2

√
s

m4

f4

∫ 1

−1
d(cos θ)

[
1 + 2m2

t−m2 + 2m2

u−m2

]2

= 1
64π

√
s− 4m2

√
s

m4

f4

∫ 1

−1
dx
[

1 − 8sm2

s2 − s(s− 4m2)x2

]2

= 1
64π

√
s− 4m2

√
s

m4

f4

[
2 + 16m2

s
+

− 16m2(s− 2m2)
s
√
s(s− 4m2)

ln
(
s+

√
s(s− 4m2)

s−
√
s(s− 4m2)

)]
.

(4.167)

At low energy the BB → BB amplitude will have the form (4.36). We remind
that for the QFT under consideration aIR = 0. The aUV is given by the sum rule
(4.37) which is completely determined by the imaginary part (4.167). Plugging
(4.167) into (4.37) we conclude that

aUV = m4

64π2

∫ ∞

4m2

ds

s3

√
s− 4m2

√
s

[
2 + 16m2

s
+

− 16m2(s− 2m2)
s
√
s(s− 4m2)

ln
(
s+

√
s(s− 4m2)

s−
√
s(s− 4m2)

)]

= m4

64π2

[ 1
30m4 + 4

105m4 − 19
315m4

]
= 1

(64 × 90)π2 = 1
5760π2 .

(4.168)

This together with (4.36) is in a perfect agreement with (4.163).
One can obtain the imaginary part of the BB → BB amplitude away from

the forward limit away using (4.161). It reads

Im[T̃BB→BB(s, t)] = 1
32π

√
1 − 4

s
− 1

4πs ln
(

1 +
√

1 − 4
s

1 −
√

1 − 4
s

)

− 1
4π

1
su

1√
1 + 4t

su

ln
( 1

s − u
st + u

2t

[
1 +

√
1 − 4

s

√
1 + 4t

us

]
1
s − u

st + u
2t

[
1 −

√
1 − 4

s

√
1 + 4t

us

])

− 1
4π

1
st

1√
1 + 4u

st

ln
( 1

s − t
su + t

2u

[
1 +

√
1 − 4

s

√
1 + 4u

ts

]
1
s − t

su + t
2u

[
1 −

√
1 − 4

s

√
1 + 4u

ts

]).
(4.169)

We can check that this expression in the forward limit t = 0 reproduces (4.167).

Partial amplitudes and unitarity Using the definitions (2.99) and the ex-
plicit expressions (4.165) and (4.169) in free theory we obtain the following spin
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0 and 2 partial amplitudes

T̃ 0
AA→BB(s) = − 1

32π

(
1 − 4/s

)1/4
[

2 − 8
s
√

1 − 4/s
ln
(

1 +
√

1 − 4/s
1 −

√
1 − 4/s

)]
,(4.170)

T̃ 2
AA→BB(s) = − 1

4π

(
1 − 4/s

)1/4
[

3
s− 4 − 1 + 2/s

s
(

1 − 4/s
)3/2 ln

(
1 +

√
1 − 4/s

1 −
√

1 − 4/s

)]
.(4.171)

Im
[
T̃ 0

BB→BB(s)
]

= 1
2(16π)2

√
1 − 4/s − 1

64π2s
ln
(

1 +
√

1 − 4/s
1 −

√
1 − 4/s

)

+ 1
32π2s2

1√
1 − 4/s

[
ln
(

1 +
√

1 − 4/s
1 −

√
1 − 4/s

)]2

, (4.172)

Im
[
T̃ 2

BB→BB(s)
]

= 9
32π2

1

s2
(

1 − 4/s
)3/2 − 3

16π2
s+ 2

s3
(

1 − 4/s
)2 ln

(
1 +

√
1 − 4/s

1 −
√

1 − 4/s

)

+ 1
32π2

(s+ 2)2

s4
(

1 − 4/s
)5/2

[
ln
(

1 +
√

1 − 4/s
1 −

√
1 − 4/s

)]2

. (4.173)

For the free scalar theory the unitarity condition (4.91) simplifies to the
following expression

∀` = 0, 2, 4, . . .
∀s ∈ [4m2,∞)

:
(

1 T̃ ∗`
AA→BB(s)

T̃ `
AA→BB(s) 2ImT̃ `

BB→BB(s)

)
� 0. (4.174)

One explicitly check that the expressions obtained for spin 0 and 2 partial
amplitude saturate this matrix inequality as expected.

4.C Derivation of poles
Let us consider the scattering amplitude AB → AB defined in previous sections.
Unitarity allows to determine part of this amplitude non-perturbatively. This is
explained for example in section 2.5.1 in [42]. One can argue that the amplitude
AB → AB has a pole in the s-channel due to the presence of one-particle states
A, namely

TAB→AB(s, t, u) = − |g|2

s−m2 + . . . , (4.175)

where the residue g is given as the limit

g ≡ lim
s→m2

g(s). (4.176)

The function g(s) is defined as the following matrix element

g(s) × (2π4)δ4(p− p1 − p2) =
〈
p0, ~p

∣∣T ∣∣mA, ~p1;mB , ~p2
〉
, (4.177)
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where T is the interacting part of the scattering operator and the total energy
squared s reads as

s ≡ −p2 = −(p1 + p2)2. (4.178)
The . . . in (4.175) denote al the finite contributions at s = m2. The physical
range of energies in (4.178) is s ∈ [m2,∞). The masses of particles A and B
are, as in the rest of given by mA = m and mB = 0. Due to the presence of the
Z2 symmetry, the bra-state in the right-hand side of (4.177) is Z2 odd.

From the explicit expression of the modified action (4.26) one can conclude
that the interacting part of the scattering operator has the form

T = − i√
2f

∫
d4x Θ(x)ϕ(x) +O

(
f−2) , (4.179)

where Θ(x) is the trace of the stress-tensor. Plugging this expression into (4.177)
we obtain

g(s) × (2π4)δ4(p−p1 −p2) = − i√
2f

∫
d4x eip2·x 〈p0, ~p

∣∣Θ(x)
∣∣mA, ~p1

〉
+O(f−2).

(4.180)
Here we have used the contraction between the dilaton field ϕ(x) and the dilaton
state |mB , ~p2 〉. The translation symmetry allows us to write

Θ(x) = e−iP ·xΘ(0)e+iP ·x. (4.181)

Here Pµ are the generators of translation. Using (4.181) and taking into account
the fact that the states in (4.180) are eigenstates of Pµ, writing the integral over
x as a δ-function we get the final expression for the function g(s) which reads

g(s) = − i√
2f
〈
p0, ~p

∣∣Θ(0)
∣∣mA, ~p1

〉
+O(f−2). (4.182)

We remind that the total energy squared s was defined in (4.178), as a result
we have

p0 = |~p2| +
√
m2

A + ~p 2
1 , ~p = ~p1 + ~p2. (4.183)

Let us now take the limit (4.176). This limit is achieved by setting ~p2 → 0.
Hence we get,

g = − i√
2f

〈m, ~p1|Θ(0)|m, ~p1〉 +O(f−2) (4.184)

As derived in [42, 43], in particular see appendix G of [43], the following
normalization condition holds

lim
~p2→~p1

〈m, ~p1|Θ(0)|m, ~p2〉 = −2m2. (4.185)

Plugging it into (4.184) we conclude that

|g|2 = 2m4

f2 . (4.186)

In turn, plugging this into (4.175), using crossing symmetry (2.40) and the
definitions (4.87) we finally obtain

T̃AB→AB(s, t, u) = − 2m4

s−m2 − 2m4

u−m2 + . . . (4.187)
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4.D Worldline action in dilaton background
In this appendix, the effective worldline action for a massive particle moving
in a background geometry with metric gµν = e−2τ(x)ηµν is considered. Writing
e−τ(x) = 1 − 1√

2f
ϕ(x), we shall show that the worldline action is universal up

to two derivatives and quadratic order in the dilaton field ϕ(x).
The most general coordinate invariant worldline action is

S = −m
∫
dt [1 + c1ẍ

µẍνgµν + c2R+ c3ẋ
µẋνRµν + . . . ] (4.188)

where m is the mass of the particle and ci are non-universal Wilson coefficients.
The 4-vector ẋµ is equal to dxµ

dt with t the proper time defined by

dt2 = −gµνdx
µdxν . (4.189)

R (Rµν) stands for the Ricci scalar (tensor) of the background metric evaluated
on the worldline, and the dots represent higher derivative terms. Notice that
the extrinsic curvature of a worldline is simply given in terms of ẋµ and ẍµ.

For the conformally flat metric gµν = e−2τηµν , the Riemann curvature tensor
is

Rαβγδ = e−2τ (ηαγTβδ + ηβδTαγ − ηαδTβγ − ηβγTαδ) , (4.190)
with

Tαβ = ∂α∂βτ + ∂ατ∂βτ − 1
2(∂τ)2ηαβ . (4.191)

Therefore, up to quadratic order in the dilaton field, both R and Rµν are of order
O(∂2ϕ, (∂ϕ)2). Clearly, higher derivative terms will contain more derivatives
(and more powers of ϕ in some cases). Notice that ẍµ = 0 is the leading order
equation of motion, thus we can neglect the second term in (4.188). We conclude
that non-universal terms contribute to the scattering amplitude T̃AB→AB at
order at least p2 where p is dilaton 4-momentum. This confirms the universality
of the result (4.77).

4.E Identities for Fourier transforms
In this appendix we derive a set of identities used in section 4.2.1.

Let us start with the following Fourier transform
∞∑

n=0
cµ1µ2...µn

n npµ1pµ2 · · · pµn
Φ(x) −→ H1(q) ≡

∞∑
n=0

(i)ncµ1...µn
n n qµ1qµ2 · · · qµn

Φ(q).

(4.192)
Recall that in section 4.2.1 we introduced the object K(q), it was defined in
(4.57). Let us reproduce this definition here for the readers convenience

K(q) ≡
∞∑

n=0
(i)n ca1a2...an

n qa1qa2 . . . qan . (4.193)

Using the obvious fact that the object K(q) is homogeneous in qµ we conclude
that

H1(q) = qµ ∂K(q)
∂qµ

Φ(q). (4.194)
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Let us denote arbitrary tensors of rank 1 and 3 by E and F respectively. In
section 4.2.1 we had another three Fourier transforms which are

∞∑
n=0

cµ1µ2...µn
n

n(n+ 1)
2 pµ1pµ2 · · · pµnΦ(x) −→

H2(q) ≡
∞∑

n=0
(i)ncµ1...µn

n

n(n+ 1)
2 qµ1qµ2 · · · qµn

Φ(q), (4.195)

∞∑
n=1

cµ1···µn
n

n∑
i=1

Eµi
pµ1 · · · pµi−1pµi+1 · · · pµn

Φ(x) −→

H3(q) ≡
∞∑

n=1
(i)n−1cµ1···µn

n

n∑
i=1

Eµi
qµ1 · · · qµi−1qµi+1 · · · qµn

Φ(q), (4.196)

∞∑
n=2

cµ1...µn
n

n∑
i,j=1
i<j

Fν
µiµj

pµ1 · · · pµi−1pµi+1 · · · pµj−1pµj+1 · · · pµn
pνΦ(x) −→

H4(q) ≡ 1
2

∞∑
n=2

(i)n−1cµ1...µn
n

n∑
i,j=1
i 6=j

Fν
µiµj

qµ1 · · · qµi−1qµi+1 · · · qµj−1qµj+1 · · · qµn
qνΦ(q).

(4.197)

Analogously to (4.194) we can write

H2(q) = 1
2q

µqν ∂
2K(q)
∂qµpqν

Φ(q) + qµ pK(q)
∂qµ

Φ(q), (4.198)

H3(q) = −i Eµ
pK(q)
pqµ

Φ(q), (4.199)

H4(q) = − i

2Fν
µρqν

p2K(q)
pqµpqρ

Φ(q). (4.200)



Chapter 5

Future

As common with research, each question answered creates yet more questions,
each tool developed provides more problems to solve, and each method devel-
oped asks for new applications and new techniques. Bootstrapping S-matrix
provides a powerful technique of ruling out inconsistent theories, and its use
in analyzing the space of 4d CFTs gives a promising insight. The existence of
CFTs of a < 1 is not ruled out, and the lower bound on a has been found in
investigated setup, but to answer what those CFTs are, what properties do they
have and how they can be realized – this is still an open question, and one day
in the future, it will be answered.

Hopefully, with new bootstrapping techniques, more useful tools developed,
and just more effort put into researching the topic, we, as the scientists, will
make yet another step into understanding physics.

SMatrixToolkit, the package developed for these computations, is (as au-
thor believes) a good step forward in helping next scientists develop their own
S-matrix experiments, but its use is so far limited to scattering of scalar parti-
cles in 4d. However, the effort was put into making the code expandable. By
generalizing the function for partial wave expansion one can adapt it to d ≥ 3
number of dimensions, by expanding the crossing equations (and partial wave
expansion), one can generalize the toolkit to spinning particles. Hopefully, the
future for the toolkit exists.

As a being with finite lifetime in this world, it’s likely I won’t see if the
dream of bootstrapper will come true – if we can solve physics just by making
it self-consistent, limiting the vast space of possible theories to a single point
corresponding to our world. However, this enormous island is shrinking with
every conclusion we, the scientist, make, and even the minor ones take us closer
to understanding the world.

I started this thesis with a cliché, and some overly grand statements about
science, so it feels justified to end with the same. This thesis doesn’t solve the
physics, neither any book nor paper published in the history of the universe,
but even the smallest step towards understanding science is a step in the right
direction. And there is a beauty in fact that number of these steps one can take
in the future seems to be limitless, even if it means the goal of understanding
is very, very far.
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