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Abstract

In light of the challenges posed by climate change and the goals of the Paris Agreement,
electricity generation is shifting to a more renewable and decentralized pattern, while the
operation of systems like buildings is increasingly electrified. This calls for new control
methods to increase the efficiency and coordination of systems, to both lower energy
needs, and offer consumption flexibility as a service to the grid. One key feature for the
acceptance of those new control methods, which often rely on the availability of data and
some form of data-driven modeling, is the guarantee of constraint satisfaction, either op-
erational or related to, e.g., user comfort. This thesis considers the problem of guarantees
in data-driven control, focusing on the robust setting. It covers a spectrum from a more
general learning perspective to a more application-driven perspective, targeting energy
systems.
The first part of the thesis discusses kernel methods for function approximation, such
as Kernel Ridge Regression or Support Vector Regression. Being non-parametric, these
methods offer a way to approximate functions, such as the response of a dynamical system,
with varying complexity, based on the choice of hyperparameters and the available data
samples. Depending on assumptions on the complexity of the ground truth function,
deterministic error bounds of the approximations are developed, bounding the difference
of the approximation to the true function, under noisy sampling. These bounds are further
improved by formulating the bounding problem as an infinite-dimensional variational
problem and reformulating it into a finite-dimensional version, using representer-theorem
arguments. The tightness of those bounds is demonstrated through different simulation
examples.
In the second part of the thesis, an open-source tool for controller benchmarking is
introduced, to bridge the gap between the general control setting, and the specific
application of building control. This Python library, called Energym, collects different
building models from the simulation tools EnergyPlus and Modelica and interfaces them
for direct usage in Python. Through an API that resembles the one of the reinforcement
learning benchmarking library Gym, control signals can be sent to the individual models,
and performance can be evaluated based on predefined metrics.
In the third part, a method to estimate the consumption flexibility potential of individual
buildings is presented. By learning the parameters of a virtual battery model and express-
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Abstract

ing uncertainties as parameter uncertainties, this method combines robust estimation and
its application to buildings. The flexibility potential of individual buildings is represented
by flexibility envelopes, which are used in the formulation of a coordination problem
of a pool of buildings. By solving a mixed-integer problem, a schedule of activation
is fixed, while the actual flexibility requests are dispatched by a heuristic algorithm.
This coordination is demonstrated in large-scale simulations, using building models from
Energym, for the scenarios of self-consumption and peak reduction.

Key words: Kernel methods, error estimation, robustness, building control, benchmarking,
consumption flexibility, building coordination
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Zusammenfassung

Angesichts der Herausforderungen des Klimawandels und der Ziele des Pariser Abkommens
verlagert sich die Stromerzeugung hin zu erneuerbaren und dezentralisierten Strukturen,
während der Betrieb von Systemen wie Gebäuden zunehmend elektrifiziert wird. Dies
erfordert neue Regelungsmethoden, um die Effizienz und Koordination der Systeme zu
erhöhen, den Energiebedarf zu senken und dem Netz eine flexible Nutzung zu ermöglichen.
Ein Schlüsselelement für die Akzeptanz dieser neuen Regelungsmethoden, die oft auf der
Verfügbarkeit von Daten und einer Form der datengesteuerten Modellierung beruhen,
ist die Garantie der Erfüllung von Randbedingungen, die entweder betrieblich oder z. B.
in Bezug auf den Benutzerkomfort sind. Diese Arbeit befasst sich mit dem Problem der
Garantien in der datengesteuerten Regelung und konzentriert sich dabei auf den robusten
Bereich. Sie deckt ein Spektrum ab, das von einer allgemeineren Lernperspektive bis hin
zu einer eher anwendungsorientierten Perspektive reicht, die auf Energiesysteme abzielt.
Der erste Teil der Arbeit befasst sich mit Kernel-Methoden zur Funktionsapproximation,
wie z.B. Kernel-Ridge-Regression oder Support-Vector-Regression. Da diese Methoden
nichtparametrisch sind, bieten sie eine Möglichkeit, Funktionen, wie z. B. die Reaktion
eines dynamischen Systems, mit unterschiedlicher Komplexität zu approximieren, die auf
der Wahl von Hyperparametern und den verfügbaren Daten basiert. Abhängig von den
Annahmen über die Komplexität der wahren Funktion werden deterministische Fehlergren-
zen für die Approximationen entwickelt, die die Differenz der Approximation zur wahren
Funktion bei verrauschten Daten bestimmen. Diese Schranken werden weiter verbessert,
indem das Problem der Fehlerbegrenzung als unendlich-dimensionales Variationsproblem
formuliert und in eine endlich-dimensionale Version umformuliert wird, wobei Argumente
des Repräsentationstheorems verwendet werden. Die Genauigkeit dieser Schranken wird
anhand verschiedener Simulationsbeispiele demonstriert.
Im zweiten Teil der Arbeit wird ein Open-Source-Tool für den Vergleich von Reglern
vorgestellt, um die Lücke zwischen dem allgemeinen Regelungsumfeld und der spezifi-
schen Anwendung der Gebäuderegelung zu schließen. Diese Python-Bibliothek mit dem
Namen Energym vereint verschiedene Gebäudemodelle aus den Simulationswerkzeugen
EnergyPlus und Modelica und stellt sie für die direkte Verwendung in Python bereit.
Über eine API, die derjenigen der Reinforcement-Learning-Benchmarking-Bibliothek Gym
ähnelt, können Regelungssignale an die einzelnen Modelle gesendet und die Leistung
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Abstract

anhand von vordefinierten Metriken bewertet werden.
Im dritten Teil wird eine Methode zur Abschätzung des Verbrauchsflexibilitätspotenzials
einzelner Gebäude vorgestellt. Indem die Parameter eines virtuellen Batteriemodells
erlernt und Unsicherheiten als Parameterunsicherheiten ausgedrückt werden, kombiniert
diese Methode eine robuste Schätzung und ihre Anwendung auf Gebäude. Das Flexi-
bilitätspotenzial einzelner Gebäude wird durch Flexibilitätsbereiche dargestellt, die in
der Formulierung eines Koordinationsproblems für einen Gebäudebestand verwendet
werden. Durch die Lösung eines gemischt-ganzzahligen Problems wird ein Zeitplan für die
Aktivierung festgelegt, während die tatsächlichen Flexibilitätsanforderungen durch einen
heuristischen Algorithmus abgewickelt werden. Diese Koordination wird in groß angelegten
Simulationen mit Gebäudemodellen von Energym für die Szenarien Eigenverbrauch und
Spitzenlastreduzierung demonstriert.

Stichwörter: Kernel-Methoden, Fehlerabschätzung, Robustheit, Gebäuderegelung, Bench-
marking, Verbrauchsflexibilität, Gebäudekoordination

vi



Résumé

À la lumière des défis posés par le changement climatique et des objectifs de l’Ac-
cord de Paris, la production d’électricité évolue vers un modèle plus renouvelable et
décentralisé, tandis que l’exploitation de systèmes tels que les bâtiments est de plus en
plus électrifiée. Cela nécessite de nouvelles méthodes de contrôle pour accroître l’effi-
cacité et la coordination des systèmes, afin de réduire les besoins en énergie et d’offrir
une flexibilité de consommation en tant que service au réseau. Une caractéristique clé
pour l’acceptation de ces nouvelles méthodes de contrôle, qui dépendent souvent de la
disponibilité des données et d’une certaine forme de modélisation basée sur les données,
est la garantie de la satisfaction des contraintes, qu’elles soient opérationnelles ou liées,
par exemple, au confort de l’utilisateur. Cette thèse examine le problème des garanties
dans le contrôle piloté par les données, en se concentrant sur le cadre robuste. Elle couvre
un spectre allant d’une perspective d’apprentissage plus générale à une perspective plus
orientée vers les applications, ciblant les systèmes énergétiques.
La première partie de la thèse traite des méthodes à noyau pour l’approximation de
fonctions, telles que la régression de crête à noyau ou la régression à vecteur de support.
Étant non paramétriques, ces méthodes offrent un moyen d’approximer des fonctions, telles
que la réponse d’un système dynamique, avec une complexité variable, basée sur le choix
des hyperparamètres et des échantillons de données disponibles. En fonction des hypothèses
sur la complexité de la fonction de vérité de base, des limites d’erreur déterministes des
approximations sont développées, limitant la différence de l’approximation par rapport à la
vraie fonction, dans le cas d’un échantillonnage bruyant. Ces bornes sont encore améliorées
en formulant le problème de borne comme un problème variationnel à dimension infinie
et en le reformulant en une version à dimension finie, à l’aide d’arguments du théorème
du représentant. L’étanchéité de ces bornes est démontrée à l’aide de différents exemples
de simulation.
Dans la deuxième partie de la thèse, un outil open-source pour l’évaluation comparative
des contrôleurs est introduit, afin de combler le fossé entre le réglage général du contrôle
et l’application spécifique du contrôle des bâtiments. Cette bibliothèque Python, appelée
Energym, recueille différents modèles de bâtiments à partir des outils de simulation
EnergyPlus et Modelica et les interface pour une utilisation directe en Python. Grâce à
une API qui ressemble à celle de la bibliothèque d’analyse comparative de l’apprentissage
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par renforcement Gym, des signaux de contrôle peuvent être envoyés aux différents
modèles et les performances peuvent être évaluées sur la base de paramètres prédéfinis.
La troisième partie présente une méthode permettant d’estimer le potentiel de flexibilité
de la consommation de chaque bâtiment. En apprenant les paramètres d’un modèle de
batterie virtuelle et en exprimant les incertitudes comme des incertitudes de paramètres,
cette méthode combine une estimation robuste et son application aux bâtiments. Le
potentiel de flexibilité des bâtiments individuels est représenté par des enveloppes de
flexibilité, qui sont utilisées dans la formulation d’un problème de coordination d’un
ensemble de bâtiments. La résolution d’un problème mixte permet de fixer un calendrier
d’activation, tandis que les demandes de flexibilité réelles sont réparties par un algorithme
heuristique. Cette coordination est démontrée dans des simulations à grande échelle, en
utilisant des modèles de bâtiments d’Energym, pour les scénarios d’autoconsommation et
de réduction des pics.

Mots clefs : Méthodes à noyau, estimation d’erreur, robustesse, contrôle des bâtiments,
analyse comparative, flexibilité de la consommation, coordination des bâtiments
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Chapter 1

Introduction

1.1 Energy systems and robustness

Climate change poses one of the largest challenges for humanity today. To reach the goals
of the Paris Agreement and to limit the impact of global warming, drastic changes are
required across many aspects of daily life. Among the most important levers to address
the issue is the operation of energy systems, including topics like energy efficiency, and
renewable and distributed electricity generation. To adopt changes in the control of these
systems, different requirements need to be fulfilled: new control algorithms need to be
scalable to be easily transferred between systems, they need to be efficient, compared
to more classical methods, and they need to come with guarantees to be accepted by
practitioners. This dissertation aims to contribute to the rich body of literature for
addressing these three challenges.

Buildings will be the main type of energy system considered in this thesis for different
reasons: first, buildings are responsible for a large share of the final energy consumption
and CO2 emissions worldwide (about 34% and 37 % respectively in 2021 (Global Alliance
for Buildings and Construction, 2022)) and exhibit a great potential for energy savings
through the use of advanced control strategies in contrast with the prevalent classical
control approaches (Drgoňa et al., 2020; Mařík et al., 2011). Second, they are promising
candidates for helping grid operators balance the power grid through frameworks like
Demand Response (DR) since their energy consumption patterns show a certain flexibility
in which they can be changed without negatively impacting the occupants (Darwazeh
et al., 2022; H. Li et al., 2021). Third, due to increased electrification of, e.g., heating
systems and adoption of local generation through Photovoltaic (PV) systems, the potential
impact of buildings with respect to the two previously mentioned measures is expected to
increase even further (IEA, 2022).

Data-driven methods for building control have proven to be promising in addressing
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the mentioned challenges (Maddalena et al., 2020). Relying on data to build prediction
models, controllers, or estimate available consumption flexibility, makes the approaches
in principle scalable to many different assets since the need for in-depth modeling is
circumvented. However, the quality of the results strongly depends on the amount and
quality of the available data. This does not only hold true for data-driven methods for
buildings, but data-driven methods and Machine Learning (ML) in general (Budach et al.,
2022). Sources of uncertainty for the learning, but also the real-time operation, are to
be found in erroneous measurements (Dong et al., 2019), unmeasured disturbances, like
occupancy (Oldewurtel, Sturzenegger, & Morari, 2013), and inaccurate forecasts, e.g., of
the weather conditions (Oldewurtel et al., 2012).

The field of uncertainty quantification (Smith, 2013) aims at assessing the magnitude
and influence of the different sources of uncertainty, which can then be dealt with in the
form of stochastic (Mesbah, 2016) or robust (Bhattacharyya, 2017; Petersen & Tempo,
2014) methods. The former assumes information about the underlying distribution of
the uncertainty-generating process and the latter usually requires the uncertainty to lie
in a predefined set. These methods are also vital in the case of building operation, to
guarantee occupant comfort despite various uncertainties and disturbances, and thus
to achieve a broad acceptance of advanced control among practitioners and occupants
(O’Grady et al., 2021).

This thesis contributes by proposing a method for robust uncertainty quantification in
the framework of kernel methods, which can, e.g., be used to verify that certain control
actions respect constraints, a building model library for comparing control algorithms with
predefined metrics, and a framework to estimate and coordinate consumption flexibility of
buildings, while considering uncertainty with a user-defined risk level. The contributions
are explained in more detail next.

1.2 Contributions

This dissertation is organized into three chapters with individual conclusions and next
steps. The main contributions are summarized as follows:

Chapter 2: Robust uncertainty quantification in a non-parametric setting

In this chapter, we address uncertainty quantification in data-driven function approxi-
mation with kernel methods. Utilizing their non-parametric nature, error bounds are
developed that depend only on the sample locations. They rely on prior knowledge about
the complexity of the data-generating function and the magnitude of possible noise cor-
ruption of the samples, which is assumed to be bounded without further knowledge of an
underlying distribution. Different types of bounds are developed, starting with closed-form
ones that are centered around a nominal model, to optimal model-free bounds that rely on
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solving a quadratically-constrained linear program, as well as its dual formulation, which
can provide an overapproximation of the actual bound for each suboptimal but feasible
solution. The distinguishing factor of our bounds is that they provide deterministic error
estimation instead of a probabilistic one. The efficacy of the bounds is demonstrated in
different simulation examples, from a standard function approximation to a nonlinear
system identification, to the verification of the feasibility of control actions. The results
have been developed in collaboration with Emilio T. Maddalena, Yuning Jiang, and Colin
N. Jones, and this chapter is based on the following publications:

• P. Scharnhorst, E. T. Maddalena, Y. Jiang, & C. N. Jones. (2023). Robust
Uncertainty Bounds in Reproducing Kernel Hilbert Spaces: A Convex Optimization
Approach. IEEE Transactions on Automatic Control, 68 (5), 2848-2861, https:
//doi.org/10.1109/TAC.2022.3227907.

• E. T. Maddalena, P. Scharnhorst, & C. N. Jones. (2021). Deterministic error
bounds for kernel-based learning techniques under bounded noise. Automatica, 134,
109896, https://doi.org/10.1016/j.automatica.2021.109896.

An MPC scheme based on the closed-form bounds, which is not covered in this thesis,
was presented in

• E. T. Maddalena, P. Scharnhorst, Y. Jiang, C.N. & Jones. (2021). KPC: Learning-
Based Model Predictive Control with Deterministic Guarantees. Proceedings of the
3rd Conference on Learning for Dynamics and Control, in Proceedings of Machine
Learning Research, 144, 1015-1026.

as well as in the dissertation of Emilio T. Maddalena.

Chapter 3: A controller benchmarking tool for buildings

The Python library Energym for controller benchmarking on buildings is presented
in this part. The library provides an intuitive interface to different building models
from the simulation tools EnergyPlus and Modelica, inspired by the Reinforecement
Learning (RL) benchmarking library Gym. The covered models range from a single
zone, lightweight residential building with controllable Heat Pump (HP) power, to a
seminar center model with temperature Setpoint (SP) control of 22 zones. Predefined
Key Performance Indicators (KPIs) are tracked and evaluated during the simulations. To
the best of our knowledge, this library constituted the most extensive building control
benchmarking library at the time of publication. Since its release, new libraries have
been released and existing ones have been upgraded. We furthermore provide an example
of the usage of Energym in an MPC scheme. This collaborative work is based on the
publication
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• P. Scharnhorst, B. Schubnel, C. Fernández Bandera, J. Salom, P. Taddeo, M.
Boegli, T. Gorecki, Y. Stauffer, A. Peppas, & C. Politi. (2021). Energym: A
Building Model Library for Controller Benchmarking. Applied Sciences, 11(8), 3518,
https://doi.org/10.3390/app11083518.

The calibration of the different building models was done by the collaborators in the
scope of the European project SABINA under grant agreement n◦731211 and is therefore
not covered in this dissertation.

Chapter 4: Uncertainty-aware flexibility estimation, scheduling, and dispatch
in buildings

This chapter discusses the development of a consumption flexibility estimation and
coordination framework for energy systems, specifically buildings and other thermal
systems. Risk measures are used to quantify uncertainty in a data-driven virtual battery
modeling approach, which is in turn used to quantify feasible request trajectories. Request
trajectories with different characteristics are considered in the estimation, which leads
to a flexibility representation in the form of flexibility envelopes. Those envelopes are
used in the formulation of a Mixed Integer Linear Program (MILP) to schedule the
activation of a pool of assets for flexibility provision, based on an external request signal.
The actual dispatch of incoming requests is done by a heuristic algorithm, using the
active assets according to the determined schedule. This approach combines the strengths
of data-driven methods, which allow its application to many assets without the need
for in-depth modeling, uncertainty quantification, which results in a freely choosable
risk level in the estimation, and an efficient MILP formulation, which permits the use
of many assets in a day ahead scheduling scheme. Both the flexibility estimation and
the scheduling and dispatch are tested in simulation for buildings from Energym. The
following works are the base for this part:

• P. Scharnhorst, B. Schubnel, R. E. Carrillo, P. -J. Alet, & C. N. Jones. (2023).
Uncertainty-aware Flexibility Envelope Prediction in Buildings with Controller-
agnostic Battery Models. 2023 American Control Conference (ACC), San Diego,
CA, USA, 583-590, https://doi.org/10.23919/ACC55779.2023.10156041.

• P. Scharnhorst, B. Schubnel, R. E. Carrillo, P. -J. Alet, & C. N. Jones. (2023).
Risk-aware scheduling and dispatch of flexibility events in buildings. ArXiv preprint,
https://arxiv.org/abs/2311.05402.
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Chapter 2

Robust uncertainty quantification in
a non-parametric setting

2.1 Introduction

An integral part of employing advanced control strategies like MPC is the availability
of an accurate model of the controlled system. The approaches to get such a model
are usually grouped into three categories: white-box, grey-box, or black-box modeling.
An overview of these three paradigms in the context of building systems can be found
in (Boodi et al., 2018; Drgoňa et al., 2020). While white-box models solely rely on
in-depth equation-based modeling, see e.g., (Salakij et al., 2016), black-box models are
fully data-driven, using e.g. Neural Networks (NNs) (Y. Li & Tong, 2021), and grey-box
models use data to fit the parameters of models with incorporated physical knowledge
(Di Natale et al., 2022). The former, while potentially being very accurate, suffer from
the effort and knowledge required to build the models, which especially makes it difficult
to scale up to a large set of systems (H. Gao et al., 2019). Data-driven approaches on the
other hand become more viable due to the increasing number of sensors and increased
data collection for control systems (Soudbakhsh et al., 2023). Depending on the amount of
available data, different methods can be applied to achieve the best results: linear models
often provide a good approximation while having low data requirements, non-parametric
methods like GPs or KRRs can represent nonlinear relationships with low to medium
data requirements, and NNs require large amounts of data to learn complex structures
and dependencies (Drgoňa et al., 2020). The framework of data-driven modeling promises
an easy application and scalability, however, its advantages come with a drawback: poor
data quality, e.g., through noisy measurements or incomplete data, can have a large effect
on the resulting prediction and control quality, potentially affecting the ability of the
controller to satisfy constraints (Maddalena et al., 2020).
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Uncertainty quantification deals with the assessment of, e.g., experimental uncertainties,
modeling errors, or numerical errors (Smith, 2013). In this chapter, we focus on the
uncertainty quantification problem in modeling or more generally in learned functional
relationships. This is done in the setting of kernel methods, which use evaluations of
so-called kernel functions at sample locations as basis functions, to create a surrogate
of the true underlying function. Using basis functions based on available data instead
of fixed ones is what gives them the attribute “non-parametric”. Popular methods in
this domain encompass GP regression (Rasmussen & Williams, 2005), KRR, or SVR
(Murphy, 2012; Schölkopf & Smola, 2018).

In the noise-free case, deterministic generalization error bounds have been developed
in the field of scattered data approximation (Wendland, 2004). The popularity of GPs
is partly due to their ability to provide probabilistic error intervals for the predictions,
based on available data affected by Gaussian noise and prior assumptions like the choice
of the kernel function. Numerous works make use of these Bayesian confidence levels in
predictive control schemes to mitigate the impact of uncertainty, see e.g., (Hewing et al.,
2020; Nghiem & Jones, 2017).

A frequentist way of quantifying uncertainty, based on assumptions on the complexity of
an underlying ground-truth function in a function space, in the form of a norm upper
bound in an RKHS, is given in (Koller et al., 2018) for the application of safe exploration
in learning-based MPC. Similar types of probabilistic error bounds have been developed,
focusing on the out-of-sample prediction error quantification while assuming the noise
affecting the data samples to be (sub-)Gaussian. Especially in the multi-armed bandit
setting, where the goal is to find the maximum of an unknown function from noisy samples
while minimizing the cumulative regret, these bounds are used. (Srinivas et al., 2012)
provides one of the earliest examples of such bounds in the context of the mentioned
setting, followed by (Chowdhury & Gopalan, 2017), both relying on the information-gain
for the error quantification. Utilizing the results from (Chowdhury & Gopalan, 2017),
(Fiedler et al., 2021) forgoes the need for the information-gain, thus deriving uncertainty
bounds that are practically usable in control settings. (Lederer et al., 2019) uses a
different approach to derive uniform error bounds for GP regression with Gaussian noise,
relying on Lipschitz constants for the underlying kernel, instead of a direct assumption
on the ground-truth complexity. The bounds are targeted for the control setting as well.
Extending the approach to online learning through using a model composed of local GPs,
the bounds are made available for efficiently incorporating new data samples in (Lederer
et al., 2021). Another extension is presented in (Capone et al., 2022), to provide bounds
that hold in the case of hyperparameter misspecification in GPs.

The previously mentioned approaches all present probabilistic methods for error quan-
tification, whereas in robust control settings often deterministic guarantees are desired,
comprising situations where noise is bounded rather than Gaussian. The importance
of bounded noise in the control context has been acknowledged multiple decades ago
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(Fogel & Huang, 1982), and also plays an important role in other branches of science
(d’Onofrio, 2013). Despite this, only a limited number of works are available tackling this
problem in RKHSs. Exploiting the bounded noise assumption and building on results
from (Srinivas et al., 2012), (Hashimoto et al., 2022) presents deterministic error bounds
around a nominal GP model. A potentially model-free way of bounding the values of
a ground-truth function, without the complexity assumption, is given in (Fiedler et al.,
2022). Through the use of hard shape constrained kernel machines (Aubin-Frankowski
& Szabo, 2020), the authors are able to incorporate geometric constraints into the con-
struction of deterministic uncertainty sets, to ensure e.g. differentiability of the resulting
bounding functions.

In this chapter, we derive deterministic error bounds, in closed form and through a
convex programming approach, for the function approximation problem in an RKHS with
samples affected by bounded noise. Building on the results for noise-free interpolation
bounds, we propose bounds that are applicable to any approximation expressed as a sum
of partial kernel evaluations at the sample locations and demonstrate their application to
the examples of the KRR and SVR regressors. The tightest possible bounds, considering
the given information, are formulated as the pointwise solution to an infinite-dimensional
problem and reformulated as a convex program through representer theorem arguments.
These bounds are not centered around a fixed nominal model, and it is shown how the
dual formulation can be used to get feasible bounds in an iterative scheme. All the bounds
are tested and compared on different learning and control-related examples.

2.2 Kernels and RKHSs

We start by reviewing the theory behind kernels and their associated function spaces,
after which we formalize the problem setting considered in this chapter. For further
details, see e.g. (Schaback & Wendland, 2006).

Definition 1 (Kernel Function). A function k : Ω×Ω→ R that is symmetric, defined
on a non-empty input set Ω, is called a kernel function.

Definition 2 (Kernel Matrix). For a kernel function k and X = {x1, . . . , xN} ⊂ Ω, the
matrix KXX defined by

[KXX ]i,j = k(xi, xj) (2.1)

is called the kernel matrix.

In the following analysis, we restrict ourselves to a specific class of kernel functions,
namely Positive Definite (PD) kernels. This class still contains many interesting kernel
choices, e.g., the popular squared-exponential kernel, which is known to have the universal
approximation property over compact domains (Micchelli et al., 2006).
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Definition 3 (Positive Definite Kernels). A kernel function that additionally fulfills

n∑
i=1

n∑
j=1

αiαjk(xi, xj) > 0, ∀n ∈ N, ∀α1, . . . , αn ∈ R\{0},∀x1, . . . , xn ∈ Ω (2.2)

is called a PD kernel.

Remark 1. A kernel function can be interpreted as a measure of similarity between
elements of Ω. Considering Ω ⊂ Rm for simplicity, an example of this is given by the
squared exponential kernel, also known as the Radial Basis Function (RBF) kernel since
its value only depends on the distance of its arguments:

k(x1, x2) = exp

(
−‖x1 − x2‖2

2`2

)
(2.3)

with a lengthscale parameter `. Like this, it can be seen that 0 < k(x1, x2) ≤ 1 for the
squared exponential kernel, with k(x1, x2) = 1 iff x1 = x2.

Each kernel spans a unique space of functions, called Reproducing Kernel Hilbert Space
(RKHS), as defined in the following:

Definition 4 (Reproducing Kernel Hilbert Space). Let Ω be a non-empty set and
H ⊂ RΩ a Hilbert space with inner product 〈·, ·〉H : H×H → R. If there exists a kernel
k : Ω×Ω→ R with

g(x) = 〈g, k(x, ·)〉H,∀g ∈ H, x ∈ Ω (2.4)

and

H = clos(span{k(x, ·), x ∈ Ω}) (2.5)

then H is called an RKHS with reproducing kernel k.

The property (2.4) is the so-called reproducing property. For each RKHS there exists a
unique reproducing kernel and vice versa (Aronszajn, 1950). Property (2.5) shows that we
can express elements of H as weighted sums of partial kernel evaluations. To express the
norm of an element of an RKHS, we focus on elements with a finite expansion, while for
elements with infinite expansion, we can consider the limit of a corresponding sequence:
let g(·) =

∑N
i=1 αik(xi, ·), N ∈ N, αi ∈ R, xi ∈ Ω, i = 1, . . . , N . Then we can express its

norm as

‖g‖2H =

〈
N∑
i=1

αik(xi, ·),
N∑
i=1

αik(xi, ·)
〉
H

=

N∑
i=1

N∑
j=1

αiαjk(xi, xj) = α>KXXα (2.6)

where α = [α1, . . . , αN ]>, X = [x1, . . . , xN ]>.
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This norm can be seen as a measure of complexity of the element in the RKHS, where a
low norm corresponds to a low complexity, i.e. a slow-changing function, and a high norm
corresponds to a high complexity and a fast-changing function. This can be observed
by bounding the possible change of a function g ∈ H between two sample locations
x̂1, x̂2 ∈ Ω, assuming a finite expansion g(·) =

∑N
i=1 αik(xi, ·), as well as an RBF kernel:

|g(x̂1)− g(x̂2)| =|〈g, k(x̂1, ·)〉H − 〈g, k(x̂2, ·)〉H| = |〈g, k(x̂1, ·)− k(x̂2, ·)〉H| (2.7)

≤‖g‖H
√
〈k(x̂1, ·)− k(x̂2, ·), k(x̂1, ·)− k(x̂2, ·)〉H (2.8)

=‖g‖H
√

2(1− k(x̂1, x̂2)) ≤
√

2‖g‖H (2.9)

where (2.7) follows from the reproducing property and the bilinearity of the inner product,
(2.8) from the Cauchy-Schwarz inequality, and (2.9) again by the bilinearity and the
positivity and boundedness of RBF kernels.

As a last introductory step, we consider a finite subset X ⊂ Ω and define the power
function PX : Ω→ R≥0 of a kernel k as

PX(x) =
√
k(x, x)−KxXK

−1
XXKXx (2.10)

where KXx =
[
k(x, x1) . . . k(x, xN )

]>
∈ RN and KxX = K>Xx. Whenever clear from

the context, the reference to X will be omitted. PX(x) can be interpreted as a form of
statistical covariance, it is positive ∀x ∈ Ω, x 6∈ X, and evaluates to zero ∀x ∈ X.

2.3 The learning problem

With the tools of the previous section at hand, consider the problem of learning an
unknown map f : Ω → R, referred to as the ground-truth or target function.I Herein
Ω ⊂ Rm is assumed to be compact.

Assumption 1. Given a kernel k, we assume that the ground-truth f belongs to its
RKHS, H. Additionally, an upper bound for its norm ‖f‖H ≤ Γ is available.

This assumption will be discussed in more detail in the next section, here we can use it
to make observations about the complexity of different approximations, with the same
kernel k.

In order to reconstruct f , we collect a finite dataset

D = {(xi, yi) | i = 1, . . . , N} (2.11)

IThe more general case f : Ω→ Rk can be handled by learning each output dimension separately.
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composed of sites xi and noisy evaluations of the ground truth

yi = f(xi) + δi, i = 1, . . . , N (2.12)

Assumption 2. The data sites X = {x1, . . . , xN} in D are assumed to be pairwise
distinct.

This assumption is needed for the invertibility of the corresponding kernel matrix. However,
it is not very restrictive, since we can always choose a subset of the dataset that fulfills
the assumption. In Section 2.5 we will lift this assumption and show a model-free way of
computing error bounds that deals with multiple data samples at the same input location.

Assumption 3. The measurement noise δ =
[
δ1 . . . δN

]>
is bounded |δi| ≤ δ̄, with

δ̄ ∈ R≥0 known.

For the learning problem, we restrict our attention to models s : Ω → R built as a
weighted sum of kernels that are centered at the data locations, for a given kernel k

s(x) =

N∑
i=1

αik(xi, x) = α>KXx . (2.13)

Solutions to a number of optimal fitting problems have this form as discussed next.
Since the considered basis functions are defined by the kernel and the sample locations,
constructing a model is equivalent to deciding the α coefficients.

2.3.1 The noise-free case

Before discussing the approximation case, we take a look at the interpolation case for
δ̄ = 0, i.e., for noise-free samples. In the absence of noise, the labels in D perfectly
represent f . We can then solve the approximation problem by finding an s ∈ H such that
the evaluations s(xi) match f(xi) =: fxi for all points in D. This can be posed as the
variational problem

s̄ = arg min
s∈H

‖s‖2H (2.14a)

s.t. s(xi) = fxi ∀i = 1, . . . , N (2.14b)

in which the objective favors low-complexity solutions, measured by the norm ‖ · ‖H.

The optimal recovery property, see e.g., (Wendland, 2004), states that the minimizer
to (2.14) exists and assumes the form (2.13). The solution s̄ can be therefore found
by simply solving the linear system of equations KXXα = fX for α, where fX =[
f(x1) . . . f(xN )

]>
. Given that the kernel k is PD and Assumption 2, KXX is

10



2.3. The learning problem

positive-definite and hence invertible. Therefore, α = K−1
XXfX and the unique optimizer

of (2.14) is

s̄(x) = f>XK
−1
XXKXx (2.15)

Because of (2.6), we see that its norm can be expressed in terms of the data values as
‖s̄‖2H = f>XK

−1
XXfX .

Remark 2. It holds that ‖s̄‖H ≤ ‖f‖H independently of the number of samples in D.
This stems from f being the solution to (2.14) when the equality constraints are imposed
for all x ∈ Ω.

2.3.2 The noisy case

To handle noise in the data, i.e. δ̄ > 0 in Assumption 3, we present two approximation
techniques, namely KRR and SVR. The goal of these approximations, in contrast to
interpolations, is to closely fit the data, while smoothing the response to not follow
noise-related fluctuations.

The KRR problem looks as follows:

s∗ = arg min
s∈H

1

N

N∑
i=1

(yi − s(xi))2 + λ‖s‖2H (2.16)

This unconstrained problem tackles exactly this balance, with a data term to achieve a
close fit, and a norm term to favor a lower complexity function. The balance is dictated by
the regularization weight λ ∈ R≥0, where λ = 0 recovers the solution to the interpolation
problem. The KRR problem only makes indirect use of the noise assumption 3, by
informing the choice of λ. A more direct use of this assumption can be made in the case
of SVR, given in the following form:

s? = arg min
s∈H

‖s‖2H (2.17a)

s.t. |s(xi)− yi| ≤ ε ∀i = 1, . . . , N

which can be seen as ε-SVR with hard margins (Schölkopf & Smola, 2018) and ε ≥ 0.
When choosing ε = 0, the interpolation problem is again recovered, whereas a choice of
ε = δ̄ gives the minimum norm solution that is consistent with our data and assumptions.
In particular, we have ‖s?‖H ≤ ‖s̄‖H and ‖s?‖H ≤ ‖f‖H if ε is chosen in that way.

In the formulation of both the KRR and the SVR problem, we are dealing with an
infinite-dimensional problem over the RKHS H. However, both solutions can be expressed
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Chapter 2. Robust uncertainty quantification in a non-parametric setting

in the form (2.13), as stated by the representer theorem, a general form of which will be
given next, as presented in (Schölkopf et al., 2001):

Theorem 1 (Representer theorem). Given a nonempty set Ω, a PD kernel k, its corre-
sponding RKHS H, a dataset D as in (2.11), a strictly monotonically increasing real-valued
function h on [0,∞), and an arbitrary cost function l : (Ω×R2)N → R∪{∞}. Then any
s ∈ H minimizing

l((x1, y1, s(x1)), . . . , (xN , yN , s(xN ))) + h(‖s‖H) (2.18)

can be represented in the form (2.13).

Proof. See (Schölkopf et al., 2001).

The insights of the representer theorem allow us to reformulate problems (2.16) and
(2.17) into finite-dimensional problems of determining the coefficients α in (2.13). For
KRR, those coefficients can be expressed in closed form, using the dataset D and the
regularization parameter λ. We have that

s∗(x) = α∗>KXx (2.19)

with α∗ = (KXX + NλI)−1y, where I denotes the identity matrix of appropriate size.
The RKHS norm of s∗ can be expressed as ‖s∗‖H = α∗>KXXα

∗ = c>K−1
XXc, where

c = KXX(KXX + NλI)−1y ∈ RN denotes the vector of function values of s∗ at the
sample locations, i.e. s∗(xi) = ci, i = 1, . . . , N .

2.4 Closed form error bounds in RKHSs

Having multiple ways to approximate a function from data or even interpolate the data
points, a natural question arises: What is the accuracy of the learned functions in
approximating the ground truth? More specifically, we look at establishing out-of-sample
error bounds for all kinds of models of the form (2.13). As a first step, we review some
classic results from the field of scattered data approximation in the noise-free setting,
informing the development of error bound in the case that the data samples are affected
by bounded noise.

2.4.1 The noise-free case

In this section, we consider again the case that δ̄ = 0 in Assumption 3. As an approxima-
tion of the ground truth function f given the dataset D, we consider the interpolant s̄,
given by (2.15).

12



2.4. Closed form error bounds in RKHSs

A first bound on the approximation error at a location x ∈ Ω is then given by the following
classic result, see e.g. (Wendland, 2004):

Lemma 1 (Simple noise-free error bound). Let s̄ be the minimum norm interpolant of
the samples fX at the sample locations X and Γ a norm upper-bound for the ground truth
function f as in Assumption 1. Then for x ∈ Ω, we have

|s̄(x)− f(x)| ≤ PX(x)‖f‖2H ≤ PX(x)Γ2 (2.20)

Proof. See e.g. (Fasshauer, 2011).

Remark 3 (On the necessity of Γ). The bound proposed in Lemma 1 and also the following
results depend on the availability of a ground truth norm upper bound Γ. Data alone are
not sufficient to compute any out-of-sample bounds when considering functions f ∈ H,
regardless of the number of samples N <∞. Given any tentative bound ε at x 6∈ X, there
exists fρ ∈ H consistent with the dataset that will violate the bound, that is, fρ(x) > ε+ ρ,
for any pre-specified violation level ρ > 0. This is simply due to the existence of maps that
can interpolate any finite set of samples. Restricting the search to the Γ-ball in H limits
the flexibility of the considered functions, thus allowing for guarantees to be established.
An analogous argument can be made in the space of Lipschitz functions. If no bound is
posed on the Lipschitz constant of the ground truth, assuming Lipschitz continuity per se
becomes vacuous. An example of how to empirically estimate the RKHS norm from data
is given in Appendix 2.8.5.

This error bound is on the conservative side, since it uses only information about the
sample locations in the form of the power function and about the ground truth complexity,
but neglects information about the values y and therefore the resulting interpolant
complexity. This is different for the following, tighter bound (Fasshauer, 2011), for which
we will also take a look at the proof to draw some insights for the proofs in the noisy case:

Lemma 2. Given a dataset D, the interpolating model s̄ admits the error bound

|s̄(x)− f(x)| ≤ PX(x)
√
Γ2 − ‖s̄‖2H (2.21)

for any x ∈ Ω, where f is the unknown ground-truth and ‖s̄‖2H = f>XK
−1
XXfX .

Proof. Let x ∈ Ω be a fixed query point, which is not in D. Denote by s̄+ the function of
the form (2.13) interpolating all known points fX in D and the unknown value fx := f(x).

13
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We then have

‖s̄+‖2H =

[
fX
fx

]> [
KXX KXx

KxX Kxx

]−1 [
fX
fx

]

=

[
fX
fx

]> [
K−1
XX 0

0 0

][
fX
fx

]
+ P−2

X (x)

[
fX
fx

]> [
K−1
XXKXx

−1

][
K−1
XXKXx

−1

]> [
fX
fx

]
= ‖s̄‖2H + P−2

X (x)(s̄(x)− fx)2

≤Γ2

where the second equality follows from the matrix inversion lemma (see Appendix 2.8.3),
and the inequality follows from Remark 2. Finally, the last two lines imply |s̄(x)−f(x)| ≤
PX(x)

√
Γ2 − ‖s̄‖2H.

If, on the other hand, the query point x belongs to the dataset D, the bound evaluates to
zero, and thus it holds tightly.

Both the bound itself and the proof provide us with some additional knowledge. First,
we observe that if the bound on the ground truth norm is tight, i.e. ‖f‖H = Γ, and the
interpolant norm reaches that bound, the interpolant and the ground truth function take
the same value in all x ∈ Ω. Second, we observe from the proof how the interpolant norm
changes when adding a new datapoint to D. The two deciding factors are the value of
the power function at the new sample location, and the difference of the true value and
the value of the previous interpolant at that location. This gives an intuition on where to
sample new datapoints for decreasing the error bound overall: Points that lead to a high
value in the power function, i.e. points with a large distance to the available samples in
D, and points with a large difference in previous prediction and actual value, i.e. points
that give new information, are preferred.

Through Lemma 2, evaluations of f for every x ∈ Ω can be bounded according to
fmin(x) ≤ f(x) ≤ fmax(x) with fmin(x) = s̄(x) − PX(x)

√
Γ2 − ‖s̄‖2H and fmax(x) =

s̄(x) + PX(x)
√
Γ2 − ‖s̄‖2H. Lemma 3 below establishes that the interval containing the

ground truth is non-growing after the addition of a new datapoint.

Lemma 3. Let x be any fixed query point in the domain Ω. Let Z be an augmented set
of distinct data-sites, i.e., Z = X ∪ {z}, z ∈ Ω, z 6∈ X. Then we have

[fmin
Z (x), fmax

Z (x)] ⊆ [fmin
X (x), fmax

X (x)] (2.23)

Proof. See Appendix 2.8.1.
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Intuitively, this favorable property states that augmenting the dataset D with any new
pair (x, y) ∈ Ω× R (while still satisfying Assumption 2) either preserves or sharpens the
inequality (2.21). Moreover, this holds everywhere in the domain.

2.4.2 The noisy case

We turn our attention to the case δ̄ > 0. Through the added noise, interpolating the noisy
samples directly might lead to a function with a higher norm than the actual ground truth
norm. We will quantify this potential norm change in comparison with the noise-free
interpolant as a first step:

Lemma 4. Let Assumptions 2 and 3 hold. Let moreover s̄(x) = f>XK
−1
XXKXx be the model

interpolating the noise-free values fX , and s̃(x) = y>K−1
XXKXx the model interpolating

the noisy values y. Then

∇ ≤ ‖s̃‖2H − ‖s̄‖2H ≤ ∆ (2.24)

where ∆ denotes the maximum and ∇ the minimum of (−δ>K−1
XX δ + 2 y>K−1 δ) subject

to ‖δ‖∞ ≤ δ̄.

Proof. It follows from expanding ‖s̃‖2H as ‖s̄‖2H plus a perturbation term, and recalling
the definitions of ∆ and ∇.

Using this lemma, we can separate the pointwise error by an approximation into a
noise-free error term of the form (2.21) and an additional term taking the noise effect into
account, all of which will be derived for a generic kernel function with finite expansion,
as in (2.13).

Theorem 2. Let s(x) = α>KXx, for a given α ∈ RN . Then, for any x ∈ Ω, the
ground-truth is bounded by s(x)− S(x) ≤ f(x) ≤ s(x) + S(x) with

S(x) = PX(x)
√
Γ2 + ∆̃+ δ̄

∥∥K−1
XXKXx

∥∥
1

+ |s̃(x)− s(x)| (2.25)

and s̃(x) = y>K−1
XXKXx. Here, the constant ∆̃ is the minimum of the unconstrained

convex problem

min
ν∈Rd

{
1

4
ν>KXXν + ν>y + δ̄ ‖ν‖1

}
.
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Proof. For any given s(x) = α>KXx, we have

|f(x)− s(x)|
= |f(x)− s̃(x) + s̃(x)− s(x)| (2.26)

≤ |f(x)− (fX + δX)K−1
XXKXx|+ |s̃(x)− s(x)| (2.27)

≤ |f(x)− s̄(x)|+ δ̄
∥∥K−1

XXKXx

∥∥
1

+ |s̃(x)− s(x)| (2.28)

≤PX(x)
√
Γ2 − ‖s̄‖2H + δ̄

∥∥K−1
XXKXx

∥∥
1

+ |s̃(x)− s(x)| (2.29)

≤PX(x)
√
Γ2 +∆− ‖s̃‖2H + δ̄

∥∥K−1
XXKXx

∥∥
1

+ |s̃(x)− s(x)| (2.30)

with fX being the vector of true function values at the sample locations in X and δX
the vector of additive measurement noise for the samples y. (2.27) follows from the
triangle inequality and the additive noise property of y. Using the triangle inequality
again, we arrive at (2.28), where s̄ denotes the noise-free interpolant of fX . The noise-
free interpolation error bound gives the estimation in the first term of (2.29), while
(2.30) follows from (2.24), with ∆ = max‖δ‖∞≤δ̄(−δ

>K−1
XXδ + 2y>K−1

XXδ). A standard
dualization procedure as the one presented in Appendix 2.8.4 leads to the dual problem

min
ν∈Rd

1

4
ν>KXXν + ν>y + δ̄ ‖ν‖1 + y>K−1

XXy (2.31)

for ∆. Notice that the last term in (2.31) is constant and the same as the squared
interpolant norm ‖s̃‖2H. Therefore, these terms cancel in (2.30) and we are left with

|f(x)− s(x)| ≤ P (x)
√
Γ2 + ∆̃+ δ̄

∥∥K−1
XXKXx

∥∥
1

+ |s̃(x)− s(x)| (2.32)

where ∆̃ represents (2.31) without the constant term.

In the proof, we use the dual formulation of the problem to determine ∆ from (2.24).
Therefore, we have three distinct parts, one corresponding to the noise-free interpolation,
one for the effect of the noise, and one for the difference of the noisy interpolating model
and the one considered here. Since the first two parts are independent of the considered
model, we see that the tightest bound is achieved for s̃. This indicates the suboptimality
of those bounds, while still being very useful in practice, as will be shown in the numerical
experiments. As a result of this, an equivalent result to Lemma 3 can not be derived for
the closed form bounds in (2.25): The addition of a datapoint in one region of the domain
might degrade the tightness of the bounds in another region (see Figure 2.1). However,
since we are dealing with deterministic bounds, taking the intersection of intervals defined
by successive bounds leads to a feasible and shrinking bound.

A fundamental reason for this suboptimality is the fact that the bounds are centered
around a fixed model, while it is not clear what the optimal model is, or whether the
bounds need to be symmetric around that model. Therefore, the model-free bounds
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x

f
(x
)

(a) Ground truth function,
KRR model, and error bounds
for 7 noisy samples

x

(b) Ground truth function,
KRR model, and error bounds
for 8 noisy samples

x

(c) Ground truth function,
KRR model, and error bounds
for 9 noisy samples

Figure 2.1 – Behavior of the closed form bounds (red shaded area) when adding new
noisy samples (gray dots) of the ground truth function (black dotted line) to the KRR
model (red solid line).

presented in the next section provide an alternative that circumvents the mentioned issue.

2.5 Optimal error bounds through convex programming

We consider a more general setting in this section, compared to the one in the previous
parts. In particular, we consider having a dataset D = {(xi, yi)}Ni=1 is given to us, being
composed of inputs xi ∈ Ω and outputs yi ∈ Rni , yi = [yi,1, . . . , yi,ni ]

> that contain ni
scalar samples collected at the same input location xi. The dataset carries information
about the underlying ground-truth map f ∈ H according to

yi,j = f(xi) + δi,j , (2.33)

where δi,j represents a bounded additive measurement noise in line with Assumption 3,
i.e. |δi,j | ≤ δ̄, ∀i, j.

The question we are posing in this section is: What are the minimum and maximum
values that any function that fulfills our assumptions can take at a given sample location?
We can formulate the answer to that question in the form of two infinite-dimensional
variational problems, with a query point x ∈ Ω as a parameter:

G(x) = sup
g ∈H
{g(x) : ‖g‖H ≤ Γ, ‖ΛgX − y‖∞ ≤ δ̄}, (2.34)

F(x) = inf
g ∈H
{g(x) : ‖g‖H ≤ Γ, ‖ΛgX − y‖∞ ≤ δ̄}, (2.35)

where Λ is a matrix of zeros and ones to repeat a function value whenever multiple
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Chapter 2. Robust uncertainty quantification in a non-parametric setting

samples with the same input location exist. It is defined in Appendix 2.8.2.

Due to Assumption 1 on the ground truth norm, the function values of this ground truth
are bounded, and therefore, the supremum and infimum in (2.34) and (2.35) are attained.
The boundedness of the function values can be seen by

|f(x)| = |〈f, k(x, ·)〉H| ≤ ‖f‖H‖k(x, ·)‖H = ‖f‖H
√
k(x, x) <∞ (2.36)

through applying the Cauchy-Schwarz inequality.

Given a query location x, G(x) yields the tightest upper bound for f(x) over all members
g ∈ H of our hypothesis space that are consistent with our dataset, as well as our
knowledge on the ground-truth complexity ‖f‖H ≤ Γ. The equivalent applies to F(x) as
the tightest lower bound, thus we directly get that

F(x) ≤ f(x) ≤ G(x) ∀x ∈ Ω. (2.37)

Due to the property of being the tightest bounds consistent with our assumptions, we
refer to them as the optimal bounds.

Since solving an infinite-dimensional problem to bound function values is not realistic in
practice, we consider two finite-dimensional ones and show their equivalence to (2.34).
We focus on the upper bound for now, but the following results hold equivalently for the
lower bounding problem.

Consider the convex parametric quadratically-constrained linear program

C(x) = max
c∈RN ,cx∈R

cx (2.38a)

s.t.

[
c

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
c

cx

]
≤ Γ2 (2.38b)

‖Λc− y‖∞ ≤ δ̄ (2.38c)

for any x ∈ Ω\X, and extend its value function to points x = xi ∈ X with the solution
of

C(xi) = max
c∈RN

ci (2.39a)

s.t. c>K−1
XXc ≤ Γ2 (2.39b)

‖Λc− y‖∞ ≤ δ̄ (2.39c)

where ci is the i-th component of c.

This can be thought of as finding a map that interpolates the points {(xi, ci)}Ni=1 and
maximizes its value cx at the input location x. The two cases are distinguished due to the
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matrix in (2.38b) becoming singular for any x ∈ X, and since it allows for one decision
variable to be eliminated. Finally, the connection between (2.34) and (2.38) is stated
next.

Theorem 3 (Finite-dimensional equivalence). The objective in (2.34) attains its supre-
mum in H and G(x) = C(x) for any x ∈ Ω.

Proof. The proof uses arguments along the lines of the classical representer theorem
proofs.

Let X := X ∪ {x} and define the finite-dimensional subspace H‖ = {g ∈ H : g ∈
span(k(xi, ·), xi ∈ X)}. Furthermore, let H⊥ = {g ∈ H : 〈g, h‖〉H = 0, ∀h‖ ∈ H‖} be
the orthogonal complement of H‖. Then, we have H = H‖ ⊕ H⊥ and for all g ∈ H,
∃g‖ ∈ H‖, g⊥ ∈ H⊥ : g = g‖ + g⊥. By employing the latter decomposition and using the
reproducing property, we can reformulate (2.34) in terms of H‖ and H⊥ as

sup
g‖ ∈H‖
g⊥ ∈H⊥

〈g
‖ + g⊥, k(x, ·)〉H :

‖g‖ + g⊥‖2H ≤ Γ2,
∥∥∥Λ(g‖ + g⊥)X − y

∥∥∥
∞
≤ δ̄


(i)
= sup
g‖ ∈H‖
g⊥ ∈H⊥

{
g‖(x) : ‖g‖‖2H + ‖g⊥‖2H ≤ Γ2,

∥∥∥Λg‖X − y
∥∥∥
∞
≤ δ̄
}

(ii)
= sup
g‖ ∈H‖

{
g‖(x) : ‖g‖‖2H ≤ Γ2,

∥∥∥Λg‖X − y
∥∥∥
∞
≤ δ̄
}

(2.40)

In (i), the g⊥ component vanished from the cost and from the last constraint due to
orthogonality w.r.t. k(xi, ·) ∈ H‖ for any xi ∈ X; moreover, the Pythagorean relation
‖g‖2H = ‖g‖‖2H + ‖g⊥‖2H was also used. To arrive at the second equality (ii), one only has
to note that the objective is insensitive to g⊥ and that any g⊥ 6= 0H would tighten the
first constraint.

The attainment of the supremum is addressed next. Consider (2.40) and denote the
members of H‖ simply as g. ‖g‖2H ≤ Γ2 is a closed and bounded constraint as it is
the sublevel set of a norm. We transform ‖ΛgX − y‖∞ ≤ δ̄ into |g(xi) − yi,j | ≤ δ̄,
i = 1, . . . , N, j = 1, . . . , ni. Sets of the form {a ∈ R : |a| ≤ b} are clearly closed in R,
hence

{g(xi) ∈ R : |g(xi)− yi,j | ≤ δ̄, ∀i, j}

is also closed. For any xi, the evaluation functional Lxi(g) = g(xi) is a linear operator
and thus pre-images of closed sets are also closed. Consequently,

{g ∈ H‖ : |g(xi)− yi,j | ≤ δ̄, ∀i, j}
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is closed in H‖. The intersection of a finite number of closed sets is necessarily closed, thus
all constraints present in (2.40) define a closed feasible set. Since H‖ is finite-dimensional,
any closed and bounded subset of it is compact (Heine–Borel); therefore, the continuous
objective Lx(g) = g(x) in (2.40) attains a maximum by the Weierstrass extreme value
theorem.

Finally, we establish the connection between (2.34) and (2.38). From the above arguments,
an optimizer for (2.34) must lie in H‖. The members g ∈ H‖ have the form g(z) = α>KXz,
being defined by the α weights. Due to the positive-definiteness of k, there exists a

bijective map between outputs at the X locations gX =
[
g(x1) . . . g(xN ) g(x)

]>
and

the weights α, namely α = K−1
XXgX. KXX denotes the kernel matrix associated with the

set X = X ∪ {x}. Consequently, optimizing over g ∈ H‖ is equivalent to optimizing over[
g(x1) . . . g(xN ) g(x)

]>
=:
[
c> cx

]>
. The bounded norm condition can be recast

as

‖g‖2H = 〈g, g〉H = α>KXXα =
[
c> cx

]
K−1

XX

[
c> cx

]>
.

The remaining constraint and the objective are straightforward. Noting that this refor-
mulation is valid for any x ∈ Ω concludes the proof.

In an analogous way, a finite-dimensional equivalence can be shown for (2.35) and

B(x) = min
c∈RN ,cx∈R

cx (2.41a)

subj. to

[
c

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
c

cx

]
≤ Γ2 (2.41b)

‖Λc− y‖∞ ≤ δ̄ (2.41c)

for any x ∈ Ω\X, and extended to

B(xi) = min
c∈RN

{ci | c>K−1
XXc ≤ Γ2, ‖Λc− y‖∞ ≤ δ̄}

for x = xi ∈ X.

Therefore, we have

B(x) ≤ f(x) ≤ C(x) ∀x ∈ Ω. (2.42)

2.5.1 Connections to the closed-form bounds

Naturally, the question arises as to how the optimal bounds relate to the closed-form
ones presented in Theorem 2. As we will see, a relaxation of the constraints to the

20



2.5. Optimal error bounds through convex programming

problem (2.38) (and equivalently (2.41)) reveals the closed-form bounds. To make this
connection, we assume that only one sample is present at each input location, i.e., yi = yi
for i = 1, . . . , N , so that y = y, and focus on problem (2.38) only to avoid redundancy.

As a first step, we consider a change of variables in (2.38), by considering δ = c− y. This
gives

C(x) = max
δ∈RN ,cx∈R

cx (2.43a)

s.t.

[
δ + y

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
δ + y

cx

]
≤ Γ2 (2.43b)

‖δ‖∞ ≤ δ̄ (2.43c)

Using the matrix inversion identity from Appendix 2.8.2, reformulation (2.67), and solving
for cx in constraint (2.43b), we get

cx ≤ P (x)
√
Γ2 − y>K−1

XXy − δ>K−1
XXδ + 2y>K−1

XXδ+y
>K−1

XXKXx+δ>K−1
XXKXx (2.44)

Note that the terms involving y and not δ are related to the noisy interpolant s̃ introduced
in Lemma 4, namely s̃(x) = y>K−1

XXKXx and ‖s̃‖2H = y>K−1
XXy. Since the goal is to

maximize cx under constraint (2.44), we can directly consider maximizing the right-hand
side of (2.44). Therefore, we get

max
‖δ‖∞≤δ̄

s̃(x) + P (x)
√
Γ2 − ‖s̃‖H − δ>K−1

XXδ − 2y>K−1
XXδ + δ>K−1

XXKXx (2.45)

Relaxing the problem by allowing δ to take different values in the square root term and
outside the square root, we observe the separability of the new objective

s̃(x) + P (x)
√
Γ2 − ‖s̃‖H − δ>1 K−1

XXδ1 − 2y>K−1
XXδ1 + δ>2 K

−1
XXKXx (2.46)

with ‖δ1‖∞ ≤ δ̄, ‖δ2‖∞ ≤ δ̄. To arrive at the closed-form bound (2.25), we make the
following observations: First, ∆̃, as in Theorem 2, is the solution of the dual problem to

max
‖δ1‖∞≤δ̄

{
−δ>1 K−1

XXδ1 + 2y>K−1
XXδ1 − ‖s̃‖2H

}
.

Second, we have

max
‖δ2‖∞≤δ̄

δ>2 K
−1
XXKXx = δ̄

∥∥K−1
XXKXx

∥∥
1
.
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To fully recover the closed-form bound (2.25) for a general model s(x), we make use of
the triangle inequality |f(x)− s(x)| ≤ |f(x)− s̃(x)|+ |s̃(x)− s(x)|.

From (2.45), the noise variable δ is seen to increase the maximum in two distinct ways:
through the inner product δ>K−1

XXKXx, and via a norm augmentation corresponding to
∆̃. One source of conservativeness in Theorem 2 is taking into account the worst-possible
inner-product and norm increase jointly. Despite this fact, they yield competitive results
for moderate noise levels, as shown numerically in Section 2.6. We moreover note that in
the noise-free scenario, (2.45) and (2.46) are the same, and Theorem 2 simplifies to the
classical bounds in the interpolation case in Lemma 2.

Remark 4. The closed-form bounds presented in Theorem 2 feature a nominal model at
their center, which can be desirable in practical situations that require a nominal prediction
and not only the bounds. In the optimal bounds scenario, the δ̄-SVR model s?(x) can be
used as a nominal model. This choice is guaranteed to lie completely within C(x) and
B(x), although not necessarily in the middle, since the map s? belongs to H and is a
feasible solution for (2.34).

2.5.2 Properties of the optimal bounds

In the following, we explore the properties and behavior of the optimal bounds (2.42),
e.g. their minimum width and the influence of added data.

First, given our knowledge of the noise bound δ̄, it is natural to ask what the limits of the
uncertainty quantification technique considered herein are. For example, is the width of
the envelope C(x)− B(x) restricted to a certain minimum value that cannot be reduced
even with the addition of new data? From (2.38c), it is clear that at any input location
xi ∈ X, C(xi) and B(xi) cannot be more than 2δ̄ apart. In addition to that, the presence
of the complexity constraint (2.38b) can decrease the width of this envelope, potentially
leading to samples lying outside bounds. An illustration of this is given in Figure 2.2
(left).

Proposition 1 (Width smaller than the noise bound). If ∃yi such that yi,j ≥ C(xi) or
yi,j ≤ B(xi) for some j, then C(xi)− B(xi) ≤ δ̄.

Proof. Let yi,j ≥ C(xi), the result for yi,j ≤ B(xi) follows equivalently. We have

yi,j ≥ C(xi) ≥ B(xi) ≥ yi,j − δ̄
⇒C(xi)−B(xi) ≤ yi,j − (yi,j − δ̄) = δ̄

As a special case, we consider sampling (xi, yi) with yi =
[
yi,1 yi,2

]>
, yi,1 = f(xi) + δ̄
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2.5. Optimal error bounds through convex programming

x x

Figure 2.2 – (Left) Samples lying outside the uncertainty envelope, implying that the
width at these locations is smaller than the noise bound. (Right) Redundant information
is used to shrink the uncertainty envelope. In this scenario, we recover the ground-truth
value at the sample location.

and yi,2 = f(xi)− δ̄. Like this, f(xi) = (yi,1 + yi,2)/2 is the only possible value attainable
by the ground truth and the uncertainty envelope for this sample location reduces to a
singleton as shown in Figure 2.2 (right). Regardless, adding data to an existing dataset,
be it in the form of a new output at an already sampled location or a completely new
input-output pair, can only reduce the uncertainty (see Figure 2.3).

Proposition 2 (Decreasing uncertainty). Let C1(x) denote the solution of (2.38) with a
dataset D1 = {(xi, yi)}Ni=1, and C2(x) the solution with D2 = D1 ∪{(xN+1, yN+1)}. Then
C2(x) ≤ C1(x) for any x ∈ Ω.

Proof. Denote by P1 the problem solved with D1 and decision variables
[
c cx

]
. Similarly,

P2 is associated with the dataset D2 and the decision variables
[
c cx cz

]
, where cz are

due to the additional input in D2. Since D2 contains all members of D1, the ∞-norm
constraint of P2 can be recast as that of P1 and an additional constraint for cz and the

new outputs. Let X := X ∪ {x}, c̄ :=
[
c>cx

]>
and z := xN+1 be shorthand variables to
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x

f
(x
)

(a) Ground truth function and
optimal error bounds for 7
noisy samples

x

(b) Ground truth function and
optimal error bounds for 8
noisy samples

x

(c) Ground truth function and
optimal error bounds for 9
noisy samples

Figure 2.3 – Behavior of the optimal bounds (green shaded area) when adding new noisy
samples (gray dots) of the ground truth function (black dotted line).

ease notation. The complexity constraint of P2 is then[
c̄

cz

]> [
KXX KXz
KzX k(z, z)

]−1 [
c̄

cz

]
≤ Γ2 (2.47a)

(i)⇔ c̄>K−1
XXc̄+ P−2

X (z)

∥∥∥∥∥
[
K−1

XXKXz
−1

][
c̄

cz

]∥∥∥∥∥
2

2

≤ Γ2 (2.47b)

(ii)⇔
[
c

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
c

cx

]
(2.47c)

+ P−2
X (z)

(
c̄>K−1

XXKXz − cz
)2
≤ Γ2,

using the matrix identity from Appendix 2.8.3 in (i) and P 2
X(z) = k(z, z)−KzXK

−1
XXKXz.

In (ii), the definitions of c̄ and X were used. Thanks to PX(z) ≥ 0, ∀z and the quadratic
term multiplying it, we conclude that for any choice of the decision variable cz, (2.47c) is
a tightened version of the complexity constraint of P1, which is (2.38b). As a result, the
maximum of P2 is lower or equal than that of P1.

Let us take a closer look at the tightened constraint (2.47c). The term c̄>K−1
XXKXz =: s(z)

represents an interpolating model passing through the output values c̄, that is, c and cx.
If the difference s(z)− cz can be made small, then the tightening will also be reduced,
whereas it will be significant if the difference is large. This is in line with the observation
on the norm increase of an interpolating model when adding a new sample, as seen in the
discussion of Lemma 2. The result is of course dictated by the ∞-norm constraint, since
cz cannot be more than δ̄ away from all the outputs y available at z. Therefore, a new
datum will cause significant shrinkage of the envelope at a point z ∈ Ω when the new
output causes s(z)− cz to be large, which intuitively can be seen as a measure of gained
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2.5. Optimal error bounds through convex programming

information through the new sample. Finally, this process is weighted by the inverse of
the power function P−2

X (z), which does not depend on any output, but only on the input
locations.

Remark 5. Recovering the ground truth as shown in Figure 2.2 (right) requires the noise
realizations to match δ̄ and −δ̄; it is thus necessary to have tight noise bounds for it to
happen. On the other hand, Proposition 2 guarantees the decreasing uncertainty property
regardless of how accurate δ̄ is. Although not explicitly stated, a completely analogous
result holds for the lower part of the envelope B(x).

2.5.3 A dual formulation

One of the fundamental sources of computational complexity in kernel learning lies in the
inverse term K−1

XX . Scaling these techniques to large datasets in a principled manner is
still a topic of active research (Burt et al., 2020; Y. Zhang et al., 2013). Notice that K−1

XX

is explicitly present in (2.38), thus limiting its applicability to small and medium-sized
problems due to the cubic time complexity associated with the inverse operation. In this
section we discuss alternative formulations that can be solved more efficiently.

Following a standard dualization procedure, which can be found in Appendix 2.8.4, a
Lagrangian dual for (2.38) can be the convex problem

min
ν∈RÑ , λ>0

1

4λ
ν>ΛKXXΛ

>ν+

(
y − 1

2λ
ΛKXx

)>
ν+ δ̄‖ν‖1 +

1

4λ
k(x, x) +λΓ2 (2.48)

for any query point x ∈ Ω\X. In our notation the dimension Ñ =
∑N

i=1 ni is the total
number of outputs, that is, the size of y. As detailed in Appendix 2.8.4, under the
assumption of the complexity constraint not being active, the dual of (2.39) is also given
by (2.48), meaning that it could be used ∀x ∈ Ω.

Contrary to the primal formulation, (2.48) only involves the kernel matrix itself and not
its inverse, avoiding thus the aforementioned adversity. Furthermore, the query point x
enters (2.48) through the terms KXx and k(x, x). The former measures the similarity
between the query point x and each of the inputs in X; the latter is simply a constant
term for translation-invariant kernels and always evaluates to 1 in the specific case of the
squared-exponential kernel.

The optimization problem above is convex since it is a quadratic-over-linear function
with ΛKXXΛ

> � 0 and λ restricted to the positive reals. The objective can moreover
be decomposed into a differentiable part and a single non-differentiable term ‖ν‖1, with
ν unconstrained. This class of problems has long been studied and mature numerical
algorithms exist to solve them, notably different flavors of splitting methods such as the
Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011, Section 6).
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Chapter 2. Robust uncertainty quantification in a non-parametric setting

Alternatively, a standard linear reformulation could be employed to substitute ‖ν‖1 by∑
i ηi, with additional constraints −ν ≤ η, ν ≤ η. The result is a completely differentiable

objective but with extra decision variables and linear constraints. Next, a mild condition
is given, ensuring a zero duality gap between the primal and dual problems.

Proposition 3 (Strong duality). If δ̄ > δi,j , ∀i, j and Γ > ‖f‖H, then no duality gap
exists, i.e., the solutions to (2.38) and (2.48) are the same.

Proof. Consider the primal problem (2.38) and select c = fX and cx = f(x). Let
X := X ∪ {x} and KXX denote the kernel matrix associated with X. Thanks to the

optimal recovery property (Wendland, 2004, Theorem 13.2),
[
c> cx

]
KXX

[
c> cx

]>
≤ ‖f‖2H, which in turn is strictly smaller than Γ2 by assumption. Also,

‖Λc− y‖∞ = ‖ΛfX − y‖∞
=

∥∥∥∥[δ1,1 . . . δ2,1 . . .
]>∥∥∥∥

∞
< δ̄.

Therefore, the ground-truth values constitute a feasible solution that lies in the interior
of the primal problem feasible set. As a result, Slater’s condition is met and, since the
primal is convex, there is no duality gap.

An alternating optimization procedure

Solving the dual problem to any accuracy leads to an overbound on C(x) thanks to duality.
In other words, any feasible suboptimal solution of (2.48) establishes a conservative
uncertainty estimate. This motivates the study of light methods that could trade off
computational time and accuracy. In what follows, we describe a block coordinate
minimization scheme to tackle the problem, which is later shown to yield reasonable
results after only a small number of iterations.

Whenever λ is fixed to a particular positive value λ∗ > 0, the problem (2.48) simplifies to
an unconstrained quadratic program (QP) in ν of the form min

ν∈RÑ C̃x(λ∗, ν). On the
other hand, if ν is fixed to ν∗ ∈ RÑ , the dual objective takes the form

min
λ∈R>0

C̃x(λ, ν∗) = min
λ∈R>0

c1

λ
+ c2λ+ c3 (2.49)

with the constants

c1 =
1

4

[
Λ>ν∗

−1

]>
KXX

[
Λ>ν∗

−1

]
,

c2 =Γ2 , c3 = y>ν∗ + δ̄ ‖ν∗‖1

(2.50)
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2.5. Optimal error bounds through convex programming

and KXX � 0. We have

∂C̃x(λ, ν∗)
∂λ

=
−c1

λ2
+ c2,

which gives the candidate solution λ∗ =
√
c1/c2 for (2.49). We have c2 > 0 and c1 ≥ 0

for any x ∈ Ω, and c1 > 0 for any x ∈ Ω \X. Therefore, λ∗ is a feasible solution to (2.49)
and thus (λ∗, ν∗) a feasible solution to the dual problem. Furthermore, λ∗ is indeed a

minimizer of (2.49) for x ∈ Ω \X since its curvature is positive, i.e., ∂
2
C̃x(λ∗,ν∗)
∂λ2

> 0. In
closed-form, λ∗ takes the following form.

λ∗ =

√
ν∗>ΛKXXΛ

>ν∗ − 2(ΛKXx)>ν∗ + k(x, x)

2Γ
(2.51)

Note that λ∗ = 0 is only possible if

[
Λ>ν∗

−1

]
is in the nullspace of matrix KXX, which

is only possible if x ∈ X. In this case, after fixing λ∗ = 0, the problem to solve for ν
reduces to

min
ν

y>ν + δ̄ ‖ν‖1 s.t.

[
Λ>ν
−1

]
∈ Null(KXX) .

We formulate the alternating optimization algorithm for a maximum number of iterations
L and a termination threshold ε in the following way.

Algorithm 1: Alternating minimization
Result: Upper bound C̃(x) of the ground-truth at point x
Input: x, λ0, L, ε
λ∗0 = λ0

k = 0
do

ν∗ = arg min
ν∈RÑ C̃x(λ∗k, ν)

λ∗k+1 =

√
ν∗>ΛKXXΛ

>
ν∗−2(ΛKXx)>ν∗+k(x,x)

2Γ
k = k + 1

while k < L and |λ∗k − λ∗k−1| > ε;
C̃(x) = C̃x(λ∗k, ν

∗)

Remark 6 (Numerical properties). Recall the convex dual objective function (2.48).
Since the non-differentiable term ‖ν‖1 is separable and the remainder of the objective
is differentiable, a tuple (ν∗, λ∗) that simultaneously minimizes both sub-problems also
necessarily minimizes the whole objective (2.48). For non-asymptotic sublinear convergence
rates of alternating minimization algorithms applied to convex programs, the reader is
referred to the work (Beck, 2015).
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Chapter 2. Robust uncertainty quantification in a non-parametric setting

2.6 Numerical results

In this section, we demonstrate the performance of the different bounds in varying
examples and conditions, starting out with the closed-form ones, before also reviewing
the optimal ones.

2.6.1 1D comparison of closed-form bounds

In the first example, we compare the closed-form bounds from Theorem 2, centered around
a KRR and SVR model, to the GP bound with bounded noise, proposed in (Hashimoto
et al., 2022). These bounds take the form

|s�(x)− f(x)| ≤ σ(x)

√
Γ2 − y>(KXX + δ̄2I)−1y +N (2.52)

where σ2(x) = k(x, x)−KxX(KXX + δ̄2I)−1KXx and s�(x) = KxX(KXX + δ̄2I)−1y is
their approximation model.

We consider a function f : R→ R composed of partial kernel evaluations. Specifically, we
consider the squared exponential kernel (2.3)

k(x1, x2) = exp

(
−‖x1 − x2‖2

2`2

)
(2.53)

with a lengthscale ` = 2.5 and the resulting f(x) = −k(x, 0)+4 k(x, 2)+3 k(x, 3)+6 k(x, 5).
The resulting RKHS norm of f is ‖f‖H ≈ 21.181 and we employ an overapproximation of
that to get Γ = 23.299 ≈ 1.1‖f‖H. Samples are drawn from f with a uniformly bounded
noise and δ̄ = 0.2, considering the domain Ω = {x ∈ R | − 4 ≤ x ≤ 10}. Two cases are
examined: having a dataset with samples at random locations and having a dataset with
evenly spaced samples. For both cases, we have N = 20 samples, and the results are
displayed in Figure 2.4c for the random sample locations and in Figure 2.5 for the evenly
spaced sample locations.

The nominal prediction models all yield very similar results, but a clear difference in
bound behavior is observable: For random sample locations, both KRR and SVR bounds
present a tight fit in areas with many samples, but a degradation in lower sampled regions,
especially at the extremes of the considered domain, is observable (see Figure 2.4a and
Figure 2.4b). This is mostly due to the noise-bound term in (2.25). The GP bounds
exhibit a more uniform behavior, but are less tight almost everywhere (see Figure 2.4c).
In this particular example, this was due to two reasons. Firstly, recall (2.10), and notice
that the power function PX(x) will always evaluate to a number smaller than σ(x) in
(2.52) due to (KXX + δ̄2I) � KXX . Secondly, (2.52) has a direct dependence on the
number of samples N , which is not present in the other bounds.
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(a) KRR model (solid line) as an approximation
of the ground truth function (dotted line) with
error approximation (shaded area)
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(b) SVR model (solid line) as an approximation
of the ground truth function (dotted line) with
error approximation (shaded area)
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(c) GP model (solid line) as an approximation
of the ground truth function (dotted line) with
error approximation (shaded area)
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(d) The three different approximation models
(solid lines) of the ground truth function (dotted
line) with error approximations (shaded areas)

Figure 2.4 – Comparison of KRR (red), SVR (green), and GP (yellow) with corresponding
error approximations for the ground truth function (black dotted line) and noisy samples
(grey dots) at random input locations.
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Considering the case with equally spaced sample locations, the difference between the
proposed bounds and the GP bounds is even more pronounced. Due to the included
samples at the extremes of the domain, no degradation is observable in Figures 2.5a and
2.5b. Therefore, the GP bounds encompass the other bounds across the whole domain,
emphasizing the benefit of regular-spaced samples for our proposed bounds.

2.6.2 Closed-form bounds in two dimensions

Next, consider the dynamics of the Tinkerbell chaotic system first coordinate

f(x) = x2
1 − x2

2 + 0.8x1 − 0.6x2 (2.54)

on the domain Ω = {x ∈ R2 | [−5 − 5]> ≤ x ≤ [5 5]>}. With a slight abuse of notation,
x1 and x2 denote the first and second components of x. Two training datasets of N = 625

points were collected: one forming a perfect grid across the domain, and one drawn
randomly from a uniform distribution. Bounded measurement noise with δ̄ = 0.5 was
considered in both cases. The squared-exponential kernel was chosen, and the lengthscale
` = 1.62 was determined by maximizing the log-likelihood objective for a sensible variance
value. Γ was estimated by collecting noiseless evaluations fX of the ground truth and
determining the norm of the associated interpolant; a final value of Γ = 175 was adopted
after the use of a safety factor, as explained in Appendix 2.8.5. A KRR model with
λ = 1× 10−3and SVR model were used to reconstruct f . The ground truth values and
the error bounds of the approximation models are shown in Figures 2.6 and 2.7.

The bounds in both Figures 2.6a and 2.7a show a tight and uniform behavior with evenly
spaced samples, whereas they behaved badly under the scattered ones, showing high
peaks, especially at the border of the domain in Figures 2.6b and 2.7b. Notice nevertheless
that the center part of the error bounds remain relatively tight. Finally, the random
dataset was augmented with 32 points collected from the domain boundary, and the
results are presented in Figures 2.6c and 2.7c. Incorporating these extra points was
enough to significantly dampen the bounds increase, not only at the borders but also in
internal regions. The average bound size, i.e. the distance from the nominal predictions
to the upper and lower bounds, is shown in Table 2.1. Note that the SVR bounds are
tighter on average for the displayed cases, which is due to the choice of the regularization
parameter λ in the KRR. Decreasing the regularization will lead to shrinking bounds, as
mentioned in the discussion of Theorem 2.

Model Grid Random Random + boundary

KRR 2.37 5.29 3.40
SVR 2.11 4.88 3.07

Table 2.1 – Average distance of the nominal predictions to the error bounds under different
sampling strategies.

30



2.6. Numerical results

0 5 10
−10

0

10

20

x

f
(x
)

(a) KRR model (solid line) as an approximation
of the ground truth function (dotted line) with
error approximation (shaded area)
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(b) SVR model (solid line) as an approximation
of the ground truth function (dotted line) with
error approximation (shaded area)
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(c) GP model (solid line) as an approximation
of the ground truth function (dotted line) with
error approximation (shaded area)
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(d) The three different approximation models
(solid lines) of the ground truth function (dotted
line) with error approximations (shaded areas)

Figure 2.5 – Comparison of KRR (red), SVR (green), and GP (yellow) with corresponding
error approximations for the ground truth function (black dotted line) and noisy samples
(grey dots) at equidistant input locations.
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formly at random
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(c) 625 random samples, plus
32 samples from the domain
boundary

Figure 2.6 – Ground truth function (gray shaded area) with closed-form error bounds
(red shaded area) around the KRR model under different sampling strategies
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(b) 625 samples drawn uni-
formly at random
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Figure 2.7 – Ground truth function (gray shaded area) with closed-form error bounds
(green shaded area) around the SVR model under different sampling strategies
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2.6.3 A comparison with the optimal bounds

As a third example, consider the function below, which represents the first component
update map of a Hénon chaotic attractor with an additional sinusoidal forcing term

f(z1, z2) = 1− az2
1 + z2 + b sin(c z2). (2.55)

Here, the parameters are a = 0.8, b = 8 and c = 0.8, and its domain is the box
Ω =

[
−10 10

]
×
[
−10 10

]
. A squared-exponential kernel with lengthscale l = 5 was

chosen for our experiments, which was empirically estimated by gridding the search space
and performing posterior validation. Γ was obtained through the procedure described in
Appendix 2.8.5 with a final value of Γ = 1200. N = 100 samples were collected using two
strategies: inputs lying in an equidistant grid, and inputs being drawn randomly from a
uniform distribution. Noise was sampled uniformly throughout the tests with δ̄ = 1 and
δ̄ = 5 to examine the sensitivity of the bounds to noise.

Optimal bounds in 2D

The obtained optimal upper bound C(z) is displayed in Figure 2.8 along with the ground
truth function f . Consider the scenarios where δ̄ = 1 (Figures 2.8a and 2.8c). Whereas
the C(z) surface is overall tight for the grid-based dataset, with an average distance of
3.01 to the latent function, randomized data yielded a less regular bound with an average
distance of 8.02. These numbers were increased respectively to 9.57 and 18.97 when the
noise levels were risen to δ̄ = 5 (Figures 2.8b and 2.8d). The plots illustrate the same
behavior as observed in the previous examples for the closed-form bounds, where relying
on completely randomized input locations degrades the tightness of the bounds, especially
the borders of C(z). An equidistant grid of points is highly favorable since it not only fills
the domain well but also ensures a minimum separation distance so that no two inputs
are too close to cause numerical problems when handling the kernel matrix KXX .

Comparing a cross-section

To compare the closed form bounds for a KRR model to the optimal ones and the ones
obtained by Algorithm 1, f(z1, z2) was sliced at z1 = −5.9 and the entire envelope
B(z) ≤ z ≤ C(z) was computed. The two previous datasets with δ̄ = 1 were used and
the obtained results are displayed in Figure 2.9, always showing the optimal bounds
in comparison with another bound type. The bounds obtained by Algorithm 1 were
computed for 6 and 10 alternating steps, showing the difference of the obtained results.
As can be seen from the plots, the optimal approach yielded tighter uncertainty intervals
than the alternatives, although the bounds computed with Algorithm 1 and 10 alternating
steps are almost indistinguishable. The average distance of upper and lower bounds is
shown in Table 2.2. Additional results for δ̄ = 5 are shown in Appendix 2.8.6.

33



Chapter 2. Robust uncertainty quantification in a non-parametric setting

z1

−10
−5

0
5

10

z2

−10

−5

0

5

10

f
(z

1
, z

2
)

−100

−80

−60

−40

−20

0

20

40

(a) Grid samples with δ̄ = 1
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(b) Grid samples with δ̄ = 5
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(c) Random samples with δ̄ = 1

z1

−10
−5

0
5

10

z2

−10

−5

0

5

10

f
(z

1
, z

2
)

−100

−80

−60

−40

−20

0

20

40

(d) Random samples with δ̄ = 5

Figure 2.8 – Ground truth function and optimal upper bound under grid or random
sampling with changing noise bound.
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(red) under grid sampling
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(b) Optimal bounds (green) vs KRR bounds
(red) under random sampling
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(c) Optimal bounds (green) vs approximate op-
timal bounds with 6 alternating steps (yellow)
under grid sampling
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(d) Optimal bounds (green) vs approximate op-
timal bounds with 6 alternating steps (yellow)
under random sampling
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(e) Optimal bounds (green) vs approximate op-
timal bounds with 10 alternating steps (yellow)
under grid sampling
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(f) Optimal bounds (green) vs approximate op-
timal bounds with 10 alternating steps (yellow)
under random sampling

Figure 2.9 – Comparison of the optimal bounds to the KRR bounds, and approximate
optimal bounds with 6 or 10 alternating steps on a cross-section of f , for grid sampling
or random sampling, with δ̄ = 1.
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Sampling strategy Optimal bounds KRR bounds 6 step approx. 10 step approx.

Grid sampling 5.36 9.55 25.34 5.78
Random sampling 8.45 26.84 17.85 8.70

Table 2.2 – Average distance of the upper and lower bounds under different sampling
strategies for δ̄ = 1.

Sensitivity to overapproximations

Next, we consider the Gaussian process bounds proposed in (Berkenkamp et al., 2017,
Lemma 3) (see also the closely related works (Chowdhury & Gopalan, 2017; Koller et al.,
2018)) and analyze how they compare to the optimal and KRR based ones. Overloading
notation for the sake of clarity, these bounds have the form

|µ(z)− f(z)| ≤ β σ(z) (2.56a)

with β = Γ+ 4λ
√
γ + 1 + ln(1/δ), (2.56b)

where µ(z) is the GP mean, σ(z) is its standard deviation, λ is the strength of the
sub-Gaussian noise, γ is the maximum information capacity for a fixed number of samples,
and 1− δ is the confidence of the inequality.

In order to compare the GP uncertainty bounds (2.56) to their deterministic counterparts,
the following approach was adopted. First, a lower bound for the maximum information
gain γ was used since the problem of exactly computing such a quantity is in general
NP-hard (Srinivas et al., 2012). Note how this decision favors the GP bounds by shrinking
them. The chosen lower bound was the information gain of our inputs X, which in our
zero-mean Gaussian noise setting with variance λ2 is 1

2 ln(det(I + λ−2KXX)) (Srinivas
et al., 2012). As for the noise realizations, we proceeded as follows. Starting from our hard
noise limit δ̄, we considered a zero-mean Gaussian distribution with variance such that
its samples would lie in the [−δ̄, δ̄] band with confidence 0.99, i.e., a standard deviation
of λ = δ̄

2.58 . The noise was then drawn from the normal distribution and clipped to the
interval [−δ̄, δ̄] to fulfill Assumption 3. Finally, the probabilistic inequality (2.56) was
evaluated for a final confidence of 99%.

The data, N = 100 samples, corrupted by the same noise realizations were used throughout
the tests for all methods. Two parameters were then varied to understand how sensitive
each method is to them: the RKHS norm estimate Γ and the noise bound δ̄, which were
multiplied by a factor of 1, 1.5, and 2. The results for δ̄ = 1 are summarized in Table 2.3
and the results for δ̄ = 5 are shown in Appendix 2.8.7. The outcomes in all 18 different
scenarios were unanimous in ranking the optimal bounds as the tightest method, followed
by the KRR ones, and finally the GP approach. Indeed, the GP bounds always yielded
average widths at least one order of magnitude greater than the optimal deterministic
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2.6. Numerical results

ones. We attribute this difference, especially to the direct product of Γ and σ(z) in (2.56),
which causes them to be particularly sensitive to norm over-approximations. This effect
is dampened in (2.25) due to the interaction with ∆̃ (see the derivation in the proof of
Theorem 2).

Γ 1200 1800 2400
δ̄ 1 1.5 2 1 1.5 2 1 1.5 2

G
ri
d OPT 6.21 8.35 10.34 7.45 9.75 11.90 8.50 10.94 13.20

KRR 11.07 15.60 20.13 11.70 16.23 20.76 12.36 16.89 21.42
GP 604.51 706.13 786.51 904.61 1055.89 1175.32 1204.71 1405.65 1564.12

R
an

d OPT 14.62 19.02 22.89 18.05 23.08 27.51 20.85 26.39 31.26
KRR 64.78 93.99 123.20 65.91 95.12 124.33 67.07 96.28 125.49
GP 643.20 743.44 822.24 962.51 1111.67 1228.70 1281.82 1479.90 1635.17

Table 2.3 – Average distance between the upper and lower bounds for the optimal (OPT)
and KRR deterministic cases, and the GP. Moderate noise level (true δ̄ = 1), using
factors of 1, 1.5, and 2 to augment δ̄ and Γ.

2.6.4 Robust optimization

Next, we use the ground truth function of the previous example (2.55) as an unknown
constraint for a static problem (data-driven optimization with unknown constraints is
typical in the field of real-time optimization (Chachuat et al., 2009)). Consider the
following formulation

min
z∈R2

(z1 − 1)2 + (z2 − 5)2 (2.57a)

subj. to f(z) ≤ −10, (2.57b)

where the function f(z) that maps the decision variables to the constraint is not explicitly
known but can be measured. Samples were used to establish an upper bound C(z) for
f(z), hence providing an inner approximation for the real feasible set. We considered
the cases of having 64, 81, and 100 evaluations of f(z) affected by noise with δ̄ = 1

and, once more, the data were collected by means of a uniform random distribution and
an equidistant grid. In the approximate optimization problems, the original constraint
(2.57b) was replaced by C(z) ≤ −10. Optimizers z? were computed by gridding the
domain, and the results along with the estimated feasible sets (shaded areas) are shown
in Figure 2.10. Notice how in some instances the set of feasible decisions is not connected.
Thanks to Proposition 2, the addition of new data points can only relax the approximate
formulation, hence reducing the found minimum. Indeed, the average obtained costs over
10 runs for the approximate problems were 13.21, 11.36, and 10.96, respectively with 64,
81, and 100 samples taken randomly. Depending on the sampled dataset, the costs ranged
from 7.53 to 29.64, 7.45 to 22.65, and 6.55 to 30.80 for the datasets of different sizes, and
only one example for each dataset size is shown in Figure 2.10. When employing a grid,
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Figure 2.10 – Solutions and feasible sets (shaded areas) for problem (2.57) with 64, 81
and 100 samples of f?(z). Top row: samples drawn uniformly. Bottom row: samples on
an equidistant grid. The true feasible set and optimal solution are shown on the right.

the figures were 10.67, 8.48, and 7.67. The solution of the real problem, i.e., the one with
the ground truth constraint, is 5.69.

2.7 Conclusion

In this chapter, we presented different types of error bounds for the function approximation
problem in RKHSs. Starting from the general formalism of kernels, their properties and
corresponding function spaces, we reviewed different methods to approximate a ground
truth function from a set of noisy samples. The type of noise considered here was bounded
noise under the assumption of having an upper bound on the maximum noise realization.
Informed by the process of interpolating noise-free samples, the methods of KRR and
SVR were reviewed. The commonality in obtaining all the different approximation models
was in the minimization of a complexity measure in the form of the RKHS norm.

Assuming the availability of an upper bound on this complexity measure for the ground
truth function allowed for the derivation of deterministic closed-form error bounds. These
bounds assume a worst-case specification around a given approximation model, and
while being useful and favorable in comparison with other alternatives, the conducted
experiments showed a potentially high level of conservativeness, especially under random
sampling schemes. To reduce the conservativeness, we introduced two infinite-dimensional
variational problems for a model-free, pointwise uncertainty estimation, and showed the
equivalence to finite-dimensional problems. Furthermore, we showed that these improved
bounds enjoy favorable properties like strictly decreasing uncertainty on the whole domain
after adding new data samples. Through a dualization procedure, we derived a bounding
problem where the optimal solution corresponds to the optimal bounds and any feasible
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solution constitutes an overbound compared to the optimal ones. This insight was used
to inform an alternating optimization procedure to obtain approximations of the optimal
bounds with increasing accuracy for an increasing number of alternating steps. The
behavior, properties, and tightness of the different bounds were evaluated in multiple
numerical examples, and compared to popular alternatives from the community, showing
a better performance in all the comparisons. Lastly, the usage of the optimal bounds for
approximating constraints in an optimization problem was demonstrated.

Various extensions to the proposed bounds are envisioned, and while being of theoretical
interest, mostly address practical issues. The first set of extensions deals with the
assumptions needed to apply the approach: The availability of upper bounds to the
RKHS norm and noise level are needed to achieve deterministic guarantees as in Theorem 2
and (2.37). However a principled way of estimating the former is still missing in the
literature, while the latter has been studied more extensively. Also a joint estimation of
both quantities on the basis of available data is of interest for the practical application.
Furthermore, the developed error bounds assume knowledge of the true underlying kernel
of the ground truth function. How the misspecification of the kernel function influences
the error bounds is a topic of future research.

The second set of extensions deals with the incorporation of the bounds in optimization
or MPC schemes. One predictive control scheme relying on the closed-form bounds was
presented in (Maddalena et al., 2021), however the approach relies on multi-step models,
which becomes increasingly prohibitive with longer prediction horizons. To propagate
uncertainty, incorporating input uncertainty into the kernel models is a necessary step.
The dual bounds present a promising formulation to incorporate error estimation into
constraints directly, and assume the dual variables as additional optimization variables
directly. Solution approaches and properties of the resulting problem require additional
investigation. Lastly, the computational needs that come with large datasets can become
a bottleneck in the applicability of the approach. Achieving tight bounds with decreased
computational complexity, e.g., through subsampling techniques, is a promising direction
of future explorations.
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2.8 Appendix

2.8.1 Proof of Lemma 3

In the following, we only prove fmax
X (x) ≥ fmax

Z (x), the inequality for fmin follows from
the same arguments, which proves the interval containment. To get the interval at a
point x ∈ Ω, we consider the sets X, X̄ = X ∪ {x}, Z = X ∪ {z} and W = Z ∪ {x}.
Additionally, we denote the interpolant of fX by sX and follow this convention for the
other sets. We observe the following norm identities, derived as in the proof of Lemma 2

‖sW ‖2H = ‖sX̄‖2H + P−2
X̄

(z)(sX̄(z)− fz)2 (2.58)

= ‖sX‖2H + P−2
X (x)(sX(x)− fx)2 + P−2

X̄
(z)(sX̄(z)− fz)2 (2.59)

= ‖sZ‖2H + P−2
Z (x)(sZ(x)− fx)2 (2.60)

≤ Γ2 (2.61)

This allows us to write fmax
Z (x) in two different ways

fmax
Z (x) = sZ(x) + PZ(x)

√
Γ2 − ‖sZ‖2H (2.62)

= sX(x) + PX(x)
√
Γ2 − ‖sX‖2H − P 2

X̄
(sX̄(z)− fz)2 (2.63)

From (2.63), we observe

fmax
Z (x) ≤ sX(x) + PX(x)

√
Γ2 − ‖sX‖2H = fmax

X (x) (2.64)

using the positivity of the power function.

2.8.2 Data-selection matrix

Recall that n1, n2, . . . , nN are the number of outputs available at the input locations
x1, x2, . . . , xN . Λ has size (

∑
i ni)×N and is defined as

Λ :=


1n1 0n1 0n1 · · · 0n1

0n2 1n2 0n2 · · · 0n2

...
...

...
. . .

...
0nN 0nN 0nN · · · 1nN

 (2.65)

where 1ni and 0ni are respectively column vectors of ones and zeros of size ni. If only a
single output is available at every input, Λ is an identity matrix.
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2.8.3 A block matrix identity

Let A ∈ Rd×d be invertible, B ∈ Rd and c ∈ R. The following identity holds[
A B

B> c

]−1

=

[
A−1 + 1

dA
−1BB>A−1 −1

dA
−1B

−1
dB
>A−1 1

d

]
(2.66)

where d = c−B>A−1B.

This reformulation yields the following for y ∈ Rd, u ∈ R:[
y

u

]> [
A B

B> c

]−1 [
y

u

]
= y>A−1y +

1

d
(y>A−1B − u)2 (2.67)

2.8.4 Dualization

Consider the case x 6∈ X. Let z :=
[
c> cx

]>
, a :=

[
0> 1

]>
, A :=

[
I 0

]
. The

Lagrangian of (2.38) is

L(z, λ, β, γ) =a>z − λ(z>K−1
XXz − Γ2) (2.68)

− β>(ΛAz − y − δ̄1)− γ>(y − ΛAz − δ̄1)

where KXX denotes the kernel matrix evaluated at X ∪ {x}. Suppose λ > 0. Computing
∇zL(z?) = 0 leads to

z? = − 1

2λ
KXX

(
A>Λ>(β − γ)− a

)
.

Defining the auxiliary variable ν = β − γ, and substituting z? into (2.68) gives the dual
objective

g(λ, ν) =
1

4λ
ν>ΛAKXXA

>Λ>ν +

(
y − 1

2λ
ΛAKXXa

)>
ν

+ δ̄‖ν‖1 +
1

4λ
a>KXXa+ λΓ2 (2.69)

=
1

4λ
ν>ΛKXXΛ

>ν +

(
y − 1

2λ
ΛKXx

)>
ν

+ δ̄‖ν‖1 +
1

4λ
k(x, x) + λΓ2 (2.70)

where in the second equality the matrix KXX was expanded and the resulting terms were
reorganized. Since β, γ ∈ Rd̃≥0 and ν = β − γ, ν is unconstrained.

Now if λ = 0, the Lagrangian (2.68) simplifies to L(z, ν) = (a−A>Λ>ν)>z+ν>y+ δ̄‖ν‖1,
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which is linear in z. Its supremum w.r.t. z is only finite if a = A>Λ>ν. Recalling the
definitions of a, A and Λ, one can see that @ν that could satisfy the latter condition.
Therefore, λ = 0 =⇒ supz L(z, λ, ν) = +∞, meaning that the dual problem is infeasible.
As a conclusion, the Lagrangian dual of (2.38) is precisely (2.48).

Next, consider the case x ∈ X, x = xi. The objective of (2.39) can be written as a>c
with ai = 1 and an = 0, n 6= i. When deriving its Lagrangian, one obtains again (2.68)
with the simplifications: z ← c, KXX ← KXX and A ← I. We proceed by analyzing
the two scenarios for λ as before. If λ > 0, the previous derivations apply, leading
to the same quadratic-over-linear objective (2.70). However, if λ = 0, the Lagrangian
becomes L(z, ν) = (a− Λ>ν)>z + ν>y + δ̄‖ν‖1, whose supremum w.r.t. z is only finite if
a = Λ>ν. In contrast with the previous paragraph, this condition now can be satisfied. It
is equivalent to νi,1 + · · ·+ νi,ni = 1, where the variables are all the multipliers associated
with the i-th input location xi. The resulting expression can be minimized analytically,
yielding the minimum minj yi,j + δ̄, i.e., the smallest output available at xi augmented
by the noise bound. Finally, we conclude that the dual objective for (2.39) is

g(λ, ν) =

{
(2.70), if λ > 0

minj yi,j + δ̄, if λ = 0
(2.71)

As a last observation, a dual problem can also be derived for (2.41), calculating the lower
part of the envelope. The formulation is analogous to (2.48), assuming the form

max
ν∈Rd̃,λ>0

− 1

4λ
ν>ΛKXXΛ

>ν −
(
y +

1

2λ
ΛKXx

)>
ν

− δ̄‖ν‖1 −
1

4λ
k(x, x)− λΓ2

(2.72)

Note that these are distinct objectives, not merely opposites. Therefore, two problems
have to be solved to fully quantify the ground-truth uncertainty.

2.8.5 Norm estimation

To estimate the RKHS norm of an unknown map f ∈ H, assume a set of samples

D = {(xi, f(xi))}Ni=1. Using the shorthand fX =
[
f(x1) . . . f(xN )

]>
, we have that

Γ̂ :=
√
f>XK

−1
XXfX ≤ ‖f‖H (2.73)

holds for any number of samples N ∈ N due to the optimal recovery property (Wendland,
2004). Moreover, the decomposition used in the proof of Lemma 2 shows that the quantity
Γ̂ can only increase with the addition of new data. Since ‖f‖H is the least upper bound
for it, then this quantity can be used as an efficient lower estimate for the RKHS norm. In
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Figure 2.11 – Evolution of the RKHS norm of an interpolant fit with noise-free data and
an increasing number of samples added in batches of 64.

a practical situation, expert knowledge should be elicited to augment Γ̂ through a safety
factor and hopefully transform it into an upper bound Γ ≥ ‖f‖H. Note however that no
hard guarantees are offered, a situation similar to estimating Lipschitz constants purely
from scattered observations. Finally, in case the outputs are corrupted by measurement
noise, it is possible to quantify its worst-case effect on the estimation process as in
Lemma 4. The approach is exemplified by estimating the norm of the function in the
example in Section 2.6.2.

To estimate the RKHS norm of the ground truth function in (2.54), we employ the
following approach: 6400 noise-free samples from a regular grid of the domain Ω =

{x ∈ R2 | [−5 − 5]> ≤ x ≤ [5 5]>} are collected and an interpolation model with the
specified kernel is used to fit the data. The RKHS norm of the resulting interpolant
is then augmented by a factor of 1.1 to get the estimate of Γ = 175. To visualize how
adding new data influences the norm of the interpolant, we fit an interpolant with 64
randomly subsampled points from the original dataset and determine its RKHS norm.
Then, batches of 64 randomly subsampled points of the remaining dataset are added one
by one to observe the norm increase. Figure 2.11 shows the procedure leading to a final
interpolant norm of about 159.
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(red) under random sampling
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(c) Optimal bounds (green) vs approximate op-
timal bounds with 6 alternating steps (yellow)
under grid sampling
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(d) Optimal bounds (green) vs approximate op-
timal bounds with 6 alternating steps (yellow)
under random sampling
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(e) Optimal bounds (green) vs approximate op-
timal bounds with 10 alternating steps (yellow)
under grid sampling
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timal bounds with 10 alternating steps (yellow)
under random sampling

Figure 2.12 – Comparison of the optimal bounds to the KRR bounds, and approximate
optimal bounds with 6 or 10 alternating steps on a cross-section of f , for grid sampling
or random sampling, with δ̄ = 5.
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2.8.6 Example 3 plots

Sampling strategy Optimal bounds KRR bounds 6 step approx. optimal 10 step approx. optimal

Grid sampling 18.48 43.58 18.83 18.54
Random sampling 27.47 128.13 27.93 27.54

Table 2.4 – Average distance of the upper and lower bounds under different sampling
strategies for δ̄ = 5.

2.8.7 Example 3 GP comparison

Γ 1200 1800 2400
δ̄ 5 7.5 10 5 7.5 10 5 7.5 10

G
ri
d opt 20.29 28.57 36.39 22.54 31.31 39.58 24.41 33.56 42.17

krr 49.15 71.79 94.44 49.81 72.46 95.11 50.48 73.13 95.78
gp 1090.16 1247.34 1366.96 1624.19 1854.47 2028.24 2158.21 2461.60 2689.52

R
an

d opt 39.95 53.43 65.41 47.00 62.15 75.57 52.76 69.32 83.89
krr 312.44 458.51 604.57 313.61 459.68 605.74 314.79 460.85 606.91
gp 1117.01 1268.40 1383.43 1664.18 1885.79 2052.67 2211.36 2503.18 2721.91

Table 2.5 – Average distance between the upper and lower bounds for the optimal (opt)
and KRR (krr) deterministic cases, and the Gaussian process alternative (gp). High noise
level (true δ̄ = 5), using factors of 1, 1.5, and 2 to augment δ̄ and Γ.

45





Chapter 3

A controller benchmarking tool for
buildings

3.1 Introduction

While nowadays automated building control still mostly relies on methods like Proportional
Integral Derivative (PID) control or Rule-based Controllers (RBCs) (O’Neill et al., 2017),
advanced control strategies promise a significant reduction in energy consumption (Mařík
et al., 2011). Two recent reviews on the impact and saving potentials of building
automation and control systems reported savings of up to 95% for the energy consumption
of Heating Ventilation and Air Conditioning (HVAC) systems, with most of the studies
reporting savings between 10% and 30% (Van Thillo et al., 2022; Vandenbogaerde et al.,
2023). The large range of the results is due to different factors: the used control method,
the considered building model, either in simulation or a real-world example, the climate
and weather conditions, the baseline for comparison, etc.

Among the most popular approaches in the literature are MPC (Drgoňa et al., 2020;
Maddalena et al., 2020) and RL (Nagy et al., 2023; Wang & Hong, 2020). The concept
of MPC is to use a prediction model in an optimization problem, to determine the best
control action considering future influences, and to repeat this in a receding horizon
fashion to counteract disturbances or forecast errors. In RL, an agent explores the given
state and action space and receives rewards based on the quality of the chosen action.
Over time, it learns to select the best available action according to the current state of
the system. Within these categories, many different flavors can be found. On the MPC
side, examples are: Stochastic MPC (Oldewurtel, Sturzenegger, Esfahani, et al., 2013),
robust MPC (Y. Gao et al., 2023), adaptive MPC (Sha et al., 2023), learning-based
MPC (Terzi et al., 2020), and combinations of those (Yang et al., 2019). For RL, we
have Q-learning (Kim & Lim, 2018), soft actor-critic (Coraci et al., 2021), proximal
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policy optimization (Azuatalam et al., 2020), and many more (Nagy et al., 2023). Also,
intermediate approaches that use RL on the basis of data or a model (Svetozarevic et al.,
2022) or approximate MPC (Yang et al., 2021) that learn MPC controllers with NNs
exist.

With this plethora of methods at hand, a fair comparison of their performance becomes
extremely involved. Multiple software libraries have been developed to fill that gap and
provide a set of simulation models for benchmarking controller performance. These works
have different focuses, from direct building control to DR, from classic control methods
to RL, and from reduced order modeling to high-fidelity simulations. Made for direct
building control, BOPTEST (Blum et al., 2021) uses Modelica (Mattsson & Elmqvist,
1997) models and interfaces them with a RESTful API, currently providing 7 different
test cases. To easily integrate RL agents, a Gym (Brockman et al., 2016) API for the
BOPTEST models is provided through BOPTEST-Gym (Arroyo et al., 2021). Building
on BOPTEST, ACTB (Marzullo et al., 2022) interfaces Spawn of EnergyPlus (Wetter
et al., 2020) models either via a RESTful API or a Gym API. With this, it combines the
modeling capabilities of EnergyPlus (Crawley et al., 2000) and Modelica. With the aim
of emulating the interface to real buildings, building on top of VOLTTRON (Katipamula
et al., 2016), V-BCT (Huang et al., 2023) provides building models of office buildings,
based on EnergyPlus via the Functional Mockup Interface (FMI) standard (Blochwitz
et al., 2012). BAC-Bench (Khayatian et al., 2023) also uses FMI for the simulation of an
EnergyPlus-modeled apartment. The synchronization with other simulation models or
physical systems is also made possible.

Many libraries focus on providing a benchmark for RL by providing a Gym or Gym-like
API. COBS (T. Zhang & Ardakanian, 2020) works with EnergyPlus models, while not
directly incorporating them in the library. One of the main features is the adaptability of
occupancy schedules. Sinergym (Jiménez-Raboso et al., 2021) includes a multitude of
simulation scenarios based on 6 Energyplus models via BCVTB (Wetter et al., 2008),
which also allows for simulating Modelica models in the future, and offers Docker containers
for the execution of the simulations. A similar route is taken by Gym-Eplus (Z. Zhang
& Lam, 2018), using EnergyPlus with BCVTB. However, only one example model is
included, and the library does not seem to be under current development. The RL-
testbed for EnergyPlus (Moriyama et al., 2018) includes an EnergyPlus model of a data
center, which can be simulated in a Docker container or via direct installation. How
to use RL algorithms from the Ray RLlib on EnergyPlus models is demonstrated in
RLlib-Energyplus (Galataud, 2023). BEAR (C. Zhang et al., 2023) uses physics-based
or data-driven modeling of buildings, with the possibility to extract parameters from
EnergyPlus models. 16 models are included for usage in simulation and both MPC and
RL controllers have been demonstrated. Beobench (Findeis et al., 2022) uses a different
approach, by providing a unified interface and Docker containers for different simulation
libraries, namely BOPTEST, Sinergym, and Energym, presented in this chapter.
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Another set of libraries targets DR applications instead of the single building control
problem. CityLearn (Vázquez-Canteli et al., 2019) provides a Gym API for multi-
agent RL and other control applications, by using pre-simulated EnergyPlus models.
AlphaBuilding ResCommuity (Wang et al., 2021) also offers a Gym-like API for the
control and coordination of Thermostatically Controlled Loads (TCLs). Resistance
Capacitance (RC) models are used with parameters identified from the operation data of
households. Incorporating models from both EnergyPlus and Modelica via Functional
Mockup Units (FMUs), FlexDRL (Touzani et al., 2021) uses the OpenAI Gym API, too.

In this chapter, we present the building model library Energym, one of the earliest
building control libraries using a Gym-like API and at the time of release one of the
most extensive libraries for building controller benchmarking. It can be used for single
building control or multi-building coordination, as demonstrated in Chapter 4. The 14
currently incorporated models are based on EnergyPlus and Modelica via FMUs, making
it flexible for the addition of further models. During the simulations, pre-implemented
KPIs are tracked, relating to the objectives of thermal comfort, energy consumption,
and emissions. Different weather files allow controller testing under varying conditions,
and the implemented evaluation mode permits comparability over different runs. The
provided models were obtained in collaboration with Institut de Recerca en Energia de
Catalunya (IREC), Universidad de Navarra (UNAV), Athens University, and CSEM S.A.

3.2 Building models

Energym includes 14 simulation models to date, six Modelica models, and eight EnergyPlus
models of EnergyPlus version 9.5. An overview of the installed technical equipment,
the controllability, the simulation software, and the location is given in Table 3.1. A
description of each model’s inputs and outputs is provided in Appendix 3.6.1. The
models differ in size, number of rooms, usage profile, technical equipment, controllability,
and climate zone. The six building envelopes that are the base for the 14 models are
listed below. Four of them are available in multiple versions, differing in the control
(e.g., controlling thermostat setpoints vs. controlling the equipment directly) or the
installed equipment. Most of the buildings have been fully or partly calibrated from real
measurement data, the work on that was mostly performed by collaborators in the scope
of a European project and is therefore not included in this thesis. Details on this can be
found in the accompanying publication. The buildings have the following characteristics.

Apartments

The Apartments building is a residential building with four stories, each being one
apartment split into two thermal zones. It is located in Spain and has a central geothermal
HP providing heat to all apartments. The building envelope is fictive, based on typical
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Environment Th HP Bat AHU EV PV Soft. Loc.
ApartmentsThermal-v0 Ë Ë Ë é Ë − E+ ESP
ApartmentsGrid-v0 Ë − Ë é Ë − E+ ESP
Apartments2Thermal-v0 Ë Ë Ë é Ë − E+ ESP
Apartments2Grid-v0 Ë − Ë é Ë − E+ ESP
OfficesThermostat-v0 Ë é é é é − E+ GRC
MixedUseFanFCU-v0 Ë é é Ë é é E+ GRC
SeminarcenterThermostat-v0 Ë − é − é − E+ DNK
SeminarcenterFull-v0 Ë Ë é Ë é − E+ DNK
SimpleHouseRad-v0 é Ë é é é − Mod CHE
SimpleHouseRSla-v0 é Ë é é é − Mod CHE
SwissHouseRSlaA2W-v0 é Ë é é é − Mod CHE
SwissHouseRSlaW2W-v0 é Ë é é é − Mod CHE
SwissHouseRSlaTank-v0 é Ë é é é − Mod CHE
SwissHouseRSlaTankDhw-v0 é Ë é é é − Mod CHE

Table 3.1 – Equipment of the different models in Energym. Th: Thermostat, HP: Heat
Pump, Bat: Battery, AHU: Air Handling Unit, EV: Electric Vehicle, PV: Photovoltaic.
Ë: present and controllable, −: present but not controllable, é: absent.

Spanish construction materials used in the period from 1991 to 2007, but the HP was
calibrated with a real HP located in the IREC laboratory. The envelope is the same for
both Apartments and Apartments2 buildings; see Figure 3.2. The active surface area of
the PV panels is 58m2 with an inclination of 40◦ and south-oriented. The PV EnergyPlus
component has a rated electric power output of 10.75 kW and the inverter efficiency is
0.95. In addition, occupancy, appliances and lighting consumptions follow stochastic
profiles that differentiate each dwelling behavior, resulting in different energy demands.
The DHW profiles are based on the European standard (EN16147, 2011).

The difference between Apartments and Apartments2 lies in their thermal systems.
Apartments has a central geothermal HP, directly connected to hot water tanks (1 per
Apartment) used only for Domestic Hot Water (DHW) consumption, and to a heating
loop providing heat to the entire building. Apartments2 does not have this central heating
system, but possesses four storage tanks (supplying heating and DHW to each apartment),
each being alimented by a dedicated air-to-water HP.

Both buildings possess a stationary battery with a capacity of 10 kWh, maximum power
for charging and discharging of 4 kW. In apartments, there is one Electric Vehicle (EV)
with a capacity of 20 kWh and a maximum power for charging of 3.7 kW. For Apartments2,
two EVs with the same characteristics are present. Usage schedules are stochastic and
forecasts are provided via the forecast API.

The evaluation weather file used for Apartments and Apartments2 is given by the identifier
ESP_CT_Barcelona_ElPratAP1 and should not be used in the training process. Control
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inputs and the most relevant outputs for the Apartments and Apartments2 models are
listed in Table 3.4.

Offices

This building is located in Greece and includes 25 conditioned rooms with a total area of
643.73m2 (see Figure 3.3). Of those 25 rooms, 14 are controllable with thermostats (2
storage rooms, 2 lobbies, 4 seminar rooms, 1 meeting room, and 5 offices). Water-to-air
fan coil units are used to condition the spaces, where either water heating is provided by
an oil boiler or water cooling by an electrical air-to-water chiller. Both the envelope and
the technical systems were calibrated with the corresponding test site data.

The evaluation weather file for the Offices building is given by the identifier GRC_TC_Lamia1.
The inputs and some outputs are described in Table 3.5.

MixedUse

The MixedUse building is a 566.38m2 building located in Greece with 13 thermal zones,
of which eight are controllable with thermostats (see Figure 3.4). The HVAC system
installed consists of two Air Handling Units (AHUs), one dedicated exclusively to thermal
zones 5, 6, and 7, and a second one serving the remaining thermal zones.

The first system, dedicated to TZ-5, 6, and 7, is composed of an air loop, an AHU that
includes water coils, and two supply water loops: one with a HP Water Heater and the
other with a chiller for cooling.

The second system, serving the entire facility, consists of an air loop with an AHU that
has direct expansion coils. In addition, the zones that are affected by this system have
variable refrigerant flow terminal units as part of the air-conditioning system. Both the
envelope and the technical systems were calibrated with the corresponding test site data.

The evaluation weather file for the MixedUse building is given by the identifier GRC_TC_Lamia1.
The control inputs and KPI related outputs are displayed in Table 3.6.

Seminarcenter

The Seminarcenter building is a one-story building located in Denmark and includes 22
conditioned rooms on 1278.94m2 (see Figure 3.5). Five of the 22 rooms are divided into
two thermal zones, and 18 rooms are controllable with thermostats.

Water convectors provide heating of the rooms with hot water from a buffer tank. For
the buffer tank and the DHW, air-to-water HPs are used to supply the heating demand,
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and an additional gas boiler is available in case the HPs can not provide enough heating.

The evaluation weather file for the Seminarcenter buildings is given by the identifier
DNK_MJ_Horsens2. The control inputs to both simulation models and some outputs are
described in Table 3.7. Both the envelope and the technical systems were calibrated with
the corresponding test site measurements.

SimpleHouse

This building is a standard single-room house with HP and sun heating effects through
glazing. Two versions exist, one with a standard radiator (SimpleHouseRad) and the other
one with floor heating (SimpleHouseSlab). The first-order envelope model is designed
based on thermal peak power and minimal outdoor temperature.

The evaluation weather file is given by the identifier CH_ZH_Maur. The control inputs to
both simulation models and some outputs are described in Table 3.8.

SwissHouse

This building is a large-scale version of the SimpleHouse building with underfloor heating.
It has been designed with parameters (thermal peak power, outdoor temperature) from a
real house. Two versions of the model come with a HP, specifically an air-to-water HP
(SwissHouseRSlaA2W-v0) and a water-to-water HP (SwissHouseRSlaW2W-v0). Another
two versions have added tanks that supply the underfloor heating and are connected to
a HP. Those are SwissHouseRSlaTank-v0 and SwissHouseRSlaTankDhw-v0, which has
another added tank for DHW. The inputs of the models with and without tank differ, as
given in Table 3.9. The evaluation weather file is given by the identifier CH_ZH_Maur, the
same as for the SimpleHouse models.

3.3 Functionality and usage

Energym is designed to work with different controller types including RBCs, MPC
controllers, and RL-based controllers. Hence, the building environments and their interface
are provided, but the controller structure is not prescribed and is left free to the user.
Moreover, model performance evaluation is not based on fixed rewards (like in Gym) but
implemented via KPIs that can be computed by the user after an evaluation run. The
main features of the library are outlined below I.

IA full documentation of the library, describing usage and installation, is available at https://bsl546.
github.io/energym-pages/.
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3.3. Functionality and usage

Standardized evaluation

For each model outlined in Table 3.1, a physical objective to be reached is predefined.
This objective might be, e.g., the minimization of the CO2 emissions related to the
building operation. The controllers also have to satisfy thermal constraints to guarantee
occupant comfort. These two quantities - objective and constraints - are tracked with
the implemented KPIs; see Section 3.3.2, Table 3.2. For each building, the evaluation
phase with the predefined KPIs is run over a definite period of time and under predefined
weather conditions.

Wrappers

Simulation wrappers are implemented to cope with different controller needs. In particular,
wrappers are provided to scale inputs and/or outputs between values in a min-max fashion.
The scaling can be beneficial for optimization-based controllers like MPC, due to the used
model and solver structure. For RL controllers, an RL wrapper is provided to change
the outputs of the step method and provide exactly the same outputs as in the Gym
library, i.e. outputs, reward, done, info. One slight change with respect to Gym,
however, is that the reward design is left free to the user and must be specified at wrapper
initialization. This design choice was made for users to be free in the reward design phase,
the main objective of any controller being to minimize the predefined KPIs. Similarly,
for controller speed-up (in particular for MPC), a downsampling wrapper is provided to
optimize computation time, making it possible to solve the problem less frequently than
what the standard step method would impose.

Forecasting capabilities

For designing controllers such as MPC, it is important to have descriptions of external dis-
turbances. For this, we provide weather forecasts (including irradiance and temperatures),
optionally given by the exact values in the used weather files or by stochastic variations
of those. Furthermore, we provide forecasts that are highly relevant for certain models:
EV usage schedules for the Apartments and Apartments2 buildings, and electricity mix
forecasts for the Seminarcenter. Random seeds to generate the forecasts are fixed in
evaluation mode to ensure reproducibility of the results.

3.3.1 Usage

After importing Energym, a model can be created by calling the make method and
specifying the name of the model and other optional parameters, i.e. the starting day
of the simulation, the number of simulated days, the used weather file, and the used
KPIs, all of which use default values if not specified upon initialization. The interaction
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with the model, i.e. passing control inputs and receiving outputs, is done with the step
method. Control inputs are Python dictionaries, with the setpoint name as key and
input as value (possibly a list with multiple entries for multiple consecutive inputs),
e.g., {"Z01_T_Thermostat_sp":[21]} (or {"Z01_T_Thermostat_sp":[21, 22, 21]}).
Outputs are also defined as dictionaries using the predefined output names as keys. The
main inputs and outputs for each model are given in Appendix 3.6.1. A full list is available
in the online documentation. The Wrapper class is implemented to provide input-output
wrapper functionalities. Weather and stochastic disturbances forecasts are available with
the get_forecast method.

For the tracking of the KPIs, a KPI object is initialized for each model, and it automatically
records the necessary data. Calling the method get_kpi returns the evaluation for a
specified time interval (by default all the completed steps) as a dictionary. More details
on handling the KPIs and the default ones are discussed in Section 3.3.2.

A simple usage example is given in Section 3.4.1.

3.3.2 Performance evaluation

A pre-compiled FMU is provided for each building model and can be used with different
weather files. This is done for both Linux and Windows-based platforms, making Energym
usable in diverse environments. Like this, users can train their controllers (i.e. RL agents
or models for MPC) with different weather files, while the weather file for final evaluation is
fixed. These fixed weather conditions for a predefined period of time ensure comparability
of the control performances via the implemented KPIs. The characteristics of these fixed
evaluation scenarios are displayed in Table 3.2. The defined KPIs fall into the categories
of thermal comfort (related to temperature constraints) and objective KPIs (related to
the objective to minimize).

KPI definition

For the thermal comfort, a range of acceptable temperatures is defined. The tracked
KPIs are the average deviation from the target temperatures for each controlled thermal
zone and the total number of range violations. Let the desired temperature range be
defined by the interval I = [a, b]. Then the average deviation d(T, I) for temperature
measurements T = {ti : i = 1, . . . ,H} is defined as

d(T, I) :=
1

H

H∑
i=1

‖ti‖I (3.1)
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Model Simulation
period

Temperature
constraints (◦C)

Objective
KPI

ApartmentsThermal-v0 Jan.-April 19-24 Grid exchange
ApartmentsGrid-v0 Entire year 19-24 Grid exchange
Apartments2Thermal-v0 Jan.-April 19-24 Grid exchange
Apartments2Grid-v0 Entire year 19-24 Grid exchange
OfficesThermostat-v0 Entire year 19-24 Power demand
MixedUseFanFCU-v0 Entire year 19-24 Power demand
SeminarcenterThermostat-v0 Jan.-May 21-24 CO2 emissions
SeminarcenterFull-v0 Jan.-May 21-24 CO2 emissions
SimpleHouseRad-v0 Jan.-April 19-24 Power demand
SimpleHouseRSla-v0 Jan.-April 19-24 Power demand
SwissHouseRSlaA2W-v0 Jan.-April 19-24 Power demand
SwissHouseRSlaW2W-v0 Jan.-April 19-24 Power demand
SwissHouseRSlaTank-v0 Jan.-April 19-24 Power demand
SwissHouseRSlaTankDhw-v0 Jan.-April 19-24 Power demand

Table 3.2 – Fixed evaluation scenarios for the simulation models.

where ‖t‖I =


a− t, if t < a

0, if t ∈ I
t− b, if t > b

.

The number of total violations v(T, I) is defined as

v(T, I) :=

H∑
i=1

δ(ti, I) (3.2)

where δ(t, I) =

{
0, if t ∈ I
1, if t 6∈ I

.

The average energy exchanged with the grid is tracked for the models based on the
Apartments and Apartments2 buildings. Let Eprod = {eprod,i : i = 1, . . . ,H} be the set
of H consecutive measurements of produced energy and Econ = {econ,i : i = 1, . . . ,H} of
consumed energy. Then the average energy exchange e(Eprod, Econ) is defined as

e(Eprod, Econ) :=
1

H

H∑
i=1

|eprod,i − econ,i|. (3.3)

55



Chapter 3. A controller benchmarking tool for buildings

In the evaluation scenario, the goal is to minimize this quantity and therefore maximize
the self-consumption of produced energy.

The objective for the Offices, MixedUse, SimpleHouse and SwissHouse buildings is to
minimize their power consumption. Let the mean power demand for H simulation steps
be given by D = {di : i = 1, . . . ,H}. The minimization objective is again given by
averaging over the measurements, so the average power demand p(D) is defined as

p(D) :=
1

H

H∑
i=1

di. (3.4)

The environments based on the Seminarcenter building track the CO2 emissions for the
installed gas boiler and the varying electricity mix. A minimization of this emission is
the focus of their evaluation scenario. Let the emission values be given by C = {ci :

i = 1, . . . ,H}. The computed KPI for those measurements is the average emission g(C)

defined as

g(C) :=
1

H

H∑
i=1

ci. (3.5)

Instead of using predefined KPIs, it is also possible to define custom KPIs. An example
of this is given in Section 3.4.2.

3.4 Examples

We provide examples for the usage of the different Energym features, starting with the
basic usage, the definition of KPIs, to an MPC implementation.

3.4.1 Basic usage example

A simple example of the usage of the library is given below. It demonstrates the interaction
with the simulation model for 100 timesteps, assuming a function get_input() has been
implemented, that computes the control input for the current measured state of the model
and a forecast for the next 10 timesteps. The chosen parameters are arbitrary and just
fulfill demonstrative purposes.
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1 import energym

2

3 env = energym.make("Apartments2Grid−v0")
4 out = env.get_output()

5 for i in range(100):

6 forecast = env.get_forecast(forecast_length=10)

7 inp = get_input(out, forecast)

8 out = env.step(inp)

9 kpis = env.get_kpi()

10 env.close()

3.4.2 KPI example

Default KPIs are defined for each model, but the user can also define custom KPIs to be
tracked. This is done by specifying a Python dictionary containing the information of the
variables of interest and KPI computation method. An example dictionary for the KPIs
looks as follows.

1 kpi_dict = {"kpi1": {"name": "Fa_Pw_All", "type": "avg"},

2 "kpi2": {

3 "name": "Z01_T",

4 "type": "tot_viol",

5 "target": [19,24],

6 }

7 }

For more information on the KPI implementation, we refer to the documentation.

3.4.3 MPC example

As an illustration of the usage of Energym, we implement a simple MPC approach on the
SimpleHouseRad-v0 model. Due to the low thermal mass and short simulation timestep
of 5 minutes, a planning horizon of 2 hours, i.e. H = 24 steps, is chosen in the MPC.

System identification

We model the building using an AutoRegressive model with eXogenous input (ARX)
with an input order of 1 and an output order of 3. In addition to the control variable
u, we also consider the ambient temperature T and solar irradiance I as uncontrolled
disturbances.

57



Chapter 3. A controller benchmarking tool for buildings

Denoting the room temperature at time t by yt, we get a model of the following form.

yt+1 = a1yt + a2yt−1 + a3yt−2 + b1ut + b2Tt + b3It, t ≥ 0 (3.6)

This functional dependence can be simplified to the state space representation

xt+1 = Axt +Bũt, t ≥ 2 (3.7)

with states xt =

 yt
yt−1

yt−2

, inputs ũt =

utTt
It

, and matrices A =

a1 a2 a3

1 0 0

0 1 0

, B =

b1 b2 b3
0 0 0

0 0 0

.

One week of input-output data is sampled from the simulation model, containing phases
of constant input u as well as input ramps. The Python package SIPPY (Armenise et al.,
2018) is used to identify A and B from the data.

In the MPC evaluation, we additionally consider a simple integrator that removes possible
constant offsets due to changing weather conditions.

MPC implementation

We implement an MPC with quadratic cost according to the following formulation,
assuming given forecasts of Tt, . . . , Tt+H−1, It, . . . , It+H−1:

min
ut|t, . . . , ut+H−1|t

1

H

t+H−1∑
k=t

ũ>k|tũk|t

s.t. xk+1|t = Axk|t +Bũk|t k = t, . . . , t+H − 1

xk|t ∈ X k = t, . . . , t+H

ũk|t ∈ U k = t, . . . , t+H

(3.8)

where the subscript k|t denotes the prediction for timestep k, starting from timestep t,
xt|t is the starting state, the feasible set for the states X is implemented through box
constraints with the acceptable temperature range [19, 24]◦C, and the feasible set for the
inputs U indicates the range [0, 1] for u. The state constraints are implemented as soft
constraints to guarantee recursive feasibility in the experiments. The Python package
CVXPY (Diamond & Boyd, 2016) is used for modeling the optimization problem (3.8).
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Figure 3.1 – Indoor temperature of the SimpleHouseRad-v0 model, achieved by the MPC
over 4 months.

Results

We evaluate the performance of the MPC on the 4 evaluation months of the model
(according to Table 3.2). The achieved indoor temperature and the temperature bounds
are displayed in Figure 3.1. The strategy of the MPC is straightforward: to minimize
power, it tries to keep the temperature close to the lower bound at all times. Especially
later in the evaluation, higher external temperatures and high irradiance values lead to
higher indoor temperatures and even a violation of the upper bound. This is due to the
low thermal mass of the building, which can result in a quick increase of the temperature,
despite the HP being turned off.

Over the whole evaluation period, the MPC achieves an average power demand of 1.327

kW. Due to the operation close to the lower temperature bound, many small violations
are accumulated, which result in violations in about 64% of the timesteps. This clearly
indicates the need to deal with different forms of uncertainty, here mostly in the form
of modeling uncertainty, the simplest way of which would be a tightening of the lower
temperature bound in the MPC problem.
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3.5 Conclusion

The library Energym presented in this chapter aims at providing building models and
standardized evaluation scenarios and metrics to develop, test, and benchmark controllers.
The wide range of building models makes it an easy-to-use tool for reproducing controllers
in different environments and testing their suitability and performance. As one of the
first ready-to-use building simulation tools, Energym combines the benefits of EnergyPlus
and Modelica models and allows for single-building control as well as multi-building
coordination. Comparability is guaranteed through the implemented evaluation mode
that fixes all variable conditions to a reference scenario. The presented KPIs include
thermal comfort as well as metrics related to grid exchange, power demand, and CO2

emissions. With the provision of different simulation wrappers and forecasting options for
external conditions, the library is especially suited for testing advanced control methods.

The general usage of Energym was demonstrated together with the evaluation of the
KPIs, and a basic MPC implementation. In the MPC, an ARX model is identified from
training data and used for the predictions in the corresponding optimization problem.
The results showed an operation of the model at a low power level, but also the need for
more sophisticated schemes to limit the comfort-bound violations.

Different extensions of Energym and related work are envisioned. First, adding more
representative models to the library is of interest. In this line of work, combining the
strengths of EnergyPlus, the detailed envelope modeling, and Modelica, the realistic
simulation of equipment, is of particular significance. Using, e.g., Spawn of EnerpyPlus
(Wetter et al., 2020) or co-simulation of the two tools makes this possible. Second, the
implementation of baseline control strategies, be it RBC, MPC, or RL, for all the models
could provide benchmarks to test new controllers against. A coordination example of
multiple Energym buildings is provided in the next chapter in the domain of consumption
flexibility management.
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3.6 Appendix

3.6.1 Building descriptions

In this part, we give a reference for the inputs and the outputs of the simulation models
that are related to the KPIs (other outputs not entering the KPI calculation, like flow rate
and flow temperature, are not listed). The common output variables for all EnergyPlus-
based models are given in Table 3.3. The bounds given in the tables are not used to
cut-off values (unless the specific cut-off wrapper is used), but are used by default by
the input/output scaling wrappers to scale the signals to values close to/within the [0,1]
interval.

Variable Name Description Bounds Units

Ext_T Current outdoor temperature [-25,40] ◦C
Ext_RH Current outdoor relative humidity [0,100] %RH
Ext_Irr Current direct normal irradiance [0,1000] W.m−2

Table 3.3 – Common outputs for the EnergyPlus based models.
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Apartments

Variable Name Description Bounds Units Model

Inputs

P1_T_Thermostat_sp
· · ·
P4_T_Thermostat_sp

Temperature setpoint
per appartment

[16,26] ◦C 1/2/3/4

Bd_T_HP_sp
Heat pump supply
temperature setpoint

[35,55] ◦C 1/2

P1_T_Tank_sp
· · ·
P4_T_Tank_sp

Bottom water tank
temperature setpoint

[30,70] ◦C 1/2

Bd_Pw_Bat_sp
Battery charging/discharging
setpoint

[-1,1] - 1/2/3/4

Bd_Ch_EVBat_sp EV battery charging setpoint [0,1] - 1/2
Bd_Ch_EV1Bat_sp EV battery charging setpoint [0,1] - 3/4
Bd_Ch_EV2Bat_sp EV battery charging setpoint [0,1] - 3/4
HVAC_onoff_HP_sp Heat pump on/off setpoint {0,1} - 1
P1_onoff_HP_sp
· · ·
P4_onoff_HP_sp

Heat pump on/off setpoint {0,1} - 3

Outputs

Fa_E_self
Energy exchanged with
grid for timestep

[-2000,2000] Wh 1/2/3/4

Z01_T
· · ·
Z08_T

Current zone temperature [10,40] ◦C 1/2/3/4

Table 3.4 – Inputs and outputs for the models ApartmentsThermal-v0 (1),
ApartmentsGrid-v0 (2), Apartments2Thermal-v0 (3) and Apartments2Grid-v0 (4).

Figure 3.2 – Envelope visualization for the Apartments and Apartments2 buildings.
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Offices

Variable Name Description Bounds Units

Inputs

Z01_T_Thermostat_sp
· · ·
Z07_T_Thermostat_sp
Z15_T_Thermostat_sp
· · ·
Z20_T_Thermostat_sp
Z25_T_Thermostat_sp

Zone temperature setpoint [16,26] ◦C

Bd_Cooling_onoff_sp Chiller on/off {0,1} -
Bd_Heating_onoff_sp Boiler on/off {0,1} -

Outputs

Fa_Pw_All
Current power demand of
whole facility

[0,10000] W

Fa_Pw_PV Current produced power [0,2000] W
Z01_T
· · ·
Z07_T
Z15_T
· · ·
Z20_T
Z25_T

Current zone temperature [10,40] ◦C

Table 3.5 – Inputs and outputs for the model OfficesThermostat-v0.

Figure 3.3 – Envelope of the Offices building.
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MixedUse

Variable Name Description Bounds Units

Inputs

Z02_T_Thermostat_sp
· · ·
Z05_T_Thermostat_sp
Z08_T_Thermostat_sp
· · ·
Z11_T_Thermostat_sp

Zone temperature setpoint [16,26] ◦C

Bd_T_AHU1_sp
Bd_T_AHU2_sp

AHU temperature setpoint [10,30] ◦C

Bd_Fl_AHU1_sp
Bd_Fl_AHU2_sp

AHU flow rate setpoint [0,1] -

Outputs

Fa_Pw_All
Current power demand of
whole facility

[0,50000] W

Z02_T
· · ·
Z05_T
Z08_T
· · ·
Z11_T

Current zone temperature [10,40] ◦C

Table 3.6 – Inputs and outputs for the model MixedUseFanFCU-v0.

Figure 3.4 – Envelope of the MixedUse building.
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Seminarcenter

Variable Name Description Bounds Units Model

Inputs

Z01_T_Thermostat_sp
· · ·
Z06_T_Thermostat_sp
Z08_T_Thermostat_sp
· · ·
Z11_T_Thermostat_sp
Z13_T_Thermostat_sp
· · ·
Z15_T_Thermostat_sp
Z18_T_Thermostat_sp
· · ·
Z22_T_Thermostat_sp

Zone temperature setpoint [16,26] ◦C 1/2

Bd_onoff_HP1_sp
· · ·
Bd_onoff_HP4_sp

Heat pump on/off setpoint {0,1} - 2

Bd_T_HP1_sp
· · ·
Bd_T_HP4_sp

Heat pump temperature
setpoint

[30,65] ◦C 2

Bd_T_AHU_coil_sp
AHU water coil temperature
setpoint

[15,40] ◦C 2

Bd_T_buffer_sp
Buffer tank temperature
setpoint

[15,70] ◦C 2

Bd_T_mixer_sp
HPs water loop supply
temperature setpoint

[20,60] ◦C 2

Bd_T_HVAC_sp
AHU air supply temperature
setpoint

[10,26] ◦C 2

Outputs

Bd_CO2
Timestep equivalent CO2

emission mass
[0,10] kg 1/2

Fa_Pw_All
Current power demand of
whole facility

[0,100000] W 1/2

Z01_T
· · ·
Z06_T
Z08_T
· · ·
Z11_T
Z13_T
· · ·
Z15_T
Z18_T
· · ·
Z22_T

Current zone temperature [10,40] ◦C 1/2

Table 3.7 – Inputs and outputs for the models SeminarcenterThermostat-v0 (1) and
SeminarcenterFull-v0 (2).
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Figure 3.5 – Envelope of the Seminarcenter building.

SimpleHouse

Variable Name Description Bounds Units

Inputs

u Heat pump normalized power [0,1] -

Outputs

TOut.T Outside Temperature [253.15,343.15] K
temRoo.T Room Temperature [263.15,343.15] K
heaPum.P Heat pump power [0, 30] kW
temRet.T Heat pump return temperature [273.15,353.15] K
temSup.T Heat pump supply temperature [273.15,353.15] K

Table 3.8 – Inputs and outputs for the models SimpleHouseRad-v0 and SimpleHouseRSla-
v0.
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SwissHouse

Variable Name Description Bounds Units Model

Inputs

u Heat pump normalized power [0,1] - 1/2
uHP Heat pump normalized power [0,1] - 3/4
uRSla Hot water emitter flow fraction [0,1] - 3/4
uValveDHW Hot water valve opening fraction [0,1] - 4
uFlowDHW Hot water flow demand fraction [0,1] - 4

Outputs

TOut.T Outside Temperature [253.15,343.15] K 1/2/3/4
temRoo.T Room Temperature [263.15,343.15] K 1/2/3/4
heaPum.P Heat pump power [0, 30] kW 1/2/3/4
temRet.T Heat pump return temperature [273.15,353.15] K 1/2/3/4
temSup.T Heat pump supply temperature [273.15,353.15] K 1/2/3/4

Table 3.9 – Inputs and outputs for the models SwissHouseRSlaA2W-v0 (1),
SwissHouseRSlaW2W-v0 (2), SwissHouseRSlaTank-v0 (3), and SwissHouseRSlaTankDhw-
v0 (4)

.
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Chapter 4

Uncertainty-aware flexibility
estimation, scheduling, and dispatch
in buildings

4.1 Introduction

In light of increasingly renewable and distributed electricity generation, as well as increased
electrification, e.g. through using EVs and electric heating systems like HPs, DR is a key
technology in ensuring reliable grid operation and balancing while avoiding costly grid
reinforcements (IEA, 2022).

Within the set of assets to provide flexibility services to the grid, buildings have been
identified as promising candidates (e.g. (Vrettos et al., 2014) and (Lymperopoulos et al.,
2015)). This is due to their inherent capabilities of changing or shifting their load and
being responsible for a large share of the global final energy consumption and CO2

emissions (about 34% and 37 % respectively in 2021 (Global Alliance for Buildings and
Construction, 2022)).

To efficiently use the flexibility potential of buildings, an accurate estimation of the
available flexibility of individual buildings or groups of buildings and a coordination
mechanism for a pool of buildings are needed. Different ways to quantify flexibility are
presented in (Reynders et al., 2018).

The available flexibility of a single building is estimated by a model-based approach
in (Gasser et al., 2021). The authors use a flexibility envelope concept to describe
flexibility as the availability times of discrete power levels, previously introduced in
(D’hulst et al., 2015). An ML approach to learning and approximating the flexibility
envelopes is demonstrated in (Hekmat et al., 2021). However, samples generated from

69



Chapter 4. Uncertainty-aware flexibility estimation, scheduling, and
dispatch in buildings

a model-based procedure are still needed in that work. In (Maasoumy et al., 2014), a
flexibility envelope-like approach to quantifying the flexibility of fans is presented for
individual commercial buildings. Additionally, a contract framework for flexibility usage
in a receding horizon fashion is proposed. The New York day-ahead DR program is
considered in (Qureshi et al., 2014) with the goal of maximizing the profit of individual
commercial buildings. This approach applies MPC for the estimation and usage of the
available flexibility.

To avoid potentially costly, difficult, and cumbersome modeling of the assets, data-driven
approaches like (Hekmat et al., 2021) or (Brusokas et al., 2021), which uses ML methods
to predict temperature trajectories for assets with HPs, have been proposed. Another
popular approach, combining the availability of data with physical intuition, is the use
of virtual battery models. In (Hughes et al., 2016), virtual battery modeling of flexible
loads is combined with a direct control strategy. Still, a detailed model of the loads is
used to identify the battery parameters. (F. L. Müller et al., 2017) determines switching
times of the heating system in buildings from data to learn the parameters of a virtual
battery model. Using this battery model to represent the feasible consumption profiles as
a set, the approach is demonstrated in a large-scale study in (F. Müller & Jansen, 2019).
With the goal of characterizing feasible input trajectories for constrained linear systems,
a battery model parameterization of a trackable reference set is determined in (Gorecki
et al., 2015). Virtual battery models have also been proposed to model the flexibility
of aggregations of TCLs. In (Hao et al., 2013, 2015; Sanandaji et al., 2014), stochastic
battery parameters and ramp-rate constraints are considered in the flexibility estimation,
and a priority stack of the available assets is used to control the switching of operation
modes. This control mechanism is also used in (Zhao & Zhang, 2016; Zhao et al., 2017),
while flexibility of individual TCLs is described by polytopes and aggregated through the
Minkowski sum. This aggregation is approximated and bounded by battery models.

When dealing with systems that provide e.g. heating or cooling to buildings, considering
uncertainty is vital to guarantee the comfort of the occupants (Oldewurtel et al., 2012).
Sources for this uncertainty are e.g. inaccurate weather forecasts, and internal gains, but
also varying levels of reliability of the systems when providing flexibility. Quantification
of the impact of different sources of uncertainty, e.g. plant-model mismatch or forecasting
errors, is presented in (Mathieu, Vayá, et al., 2013), where the authors use a battery
modeling approach to estimate the flexibility of load aggregations. These sources of
uncertainty are also addressed in (Amadeh et al., 2022), where a stochastic MPC approach
is proposed to quantify available flexibility under uncertainty. The uncertain response
of buildings to control signals is modeled with GPs in (Nghiem & Jones, 2017). The
predictions of these GPs are used in an MPC framework to determine control signals for
optimal demand tracking.

The previously mentioned approaches mostly focus on either flexibility estimation for
single or multiple assets, or estimation and control for single assets. Coordination of a
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pool of assets has been addressed in a number of works. Hierarchical control approaches
have been proposed in e.g. (Borsche et al., 2014), (Vrettos et al., 2016), and (Qureshi
& Jones, 2018), where the former uses a scenario-based approach and the latter two
employ robust control methods. The principle of these hierarchical controllers is to have a
high-level mechanism to plan available reserves in advance, e.g. in a day-ahead fashion, an
intermediate level MPC scheme to optimize operation while keeping the planned reserves,
and a low-level controller to track the reference determined by the MPC. However, these
solutions require accessibility to low-level control, which can be prohibitive for some
users. A priority-stack-based controller for switching TCLs, similar to the ones used in
the previously mentioned works on battery modeling for aggregated TCLs, is used in
(Mathieu, Koch, et al., 2013), considering different levels of available information in the
control. Multiple optimization-based approaches to determine the activation of flexible
assets and generation units are proposed for the unit commitment problem. An example
of this is given in (Bertsimas et al., 2013), where a robust approach to dealing with
uncertainty in large-scale mixed-integer programs is presented.

In this chapter, we present an estimation and coordination framework that addresses
the previously mentioned issues in the following way. A data-driven virtual battery
modeling approach is put forward to estimate flexibility of single assets. This approach
eliminates the need for extensive modeling while being able to handle uncertainty from
different sources. Furthermore, we present a MILP formulation that schedules a pool of
assets according to their predicted flexibility and an aggregated consumption request.
The actual dispatch of the incoming requests to the active assets is done by a heuristic
algorithm. With this framework, the assets are controlled by their local controller most
of the time and only occasionally receive consumption requests for a limited time. In
large-scale simulations with up to 500 buildings from Energym, we show a clear advantage
of maintaining comfort in the scenario of self-consumption maximization in comparison
to a baseline approach. In the scenario of peak reduction, our approach delivers better
results, while also being able to maintain the comfort bounds more consistently.

4.2 Risk-aware virtual battery modeling for flexibility esti-
mation of buildings

In this section, we describe a method to estimate the available consumption flexibility
of different assets in a data-driven way. For this, we learn the sample sets of uncertain
battery parameters and handle this uncertainty via risk measures. Flexibility itself is
characterized by different forms of flexibility envelopes, which we will introduce next.
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4.2.1 Flexibility characterizations

To quantify the consumption flexibility of flexible assets, we first need to properly define
it. We will use three different types of flexibility envelopes for this, the first two are
the absolute and relative versions of the ones also used in (D’hulst et al., 2015) and
(Gasser et al., 2021), characterized by methodology B in (Reynders et al., 2018). The
third one has similar underlying principles, but instead considers a fixed time duration
and characterizes the minimum and maximum available power in that period.

We consider assets with the following description of their state dynamics:

xt+1 = h(xt, pt, et, ωt) (4.1)

where xt ∈ Rnx denotes a collection of states and measured variables at time t, pt ∈ R
the power input, et ∈ Rne a collection of external conditions, and ωt ∈ Rnω unmeasured
disturbances. h : Rnx × R× Rne × Rnω → Rnx denotes the function describing the state
transition.

These assets are subject to constraints, e.g. bounding the temperature in thermal assets
or the State of Charge (SoC) in batteries, where we consider box constraints of the form

¯
x ≤ xt ≤ x̄ (4.2)

with the lower and upper bounds denoted by
¯
x, x̄ ∈ Rnx and the inequalities applied

entry-wise. Additionally, we consider input constraints

¯
p ≤ pt ≤ p̄. (4.3)

Furthermore, we consider controlled systems, so assets with a local controller installed.
The controller tries to keep the state or a part of the state of the asset either at a
certain setpoint or within a certain range and we assume that this controller behavior is
reproducible, meaning that the same initial states and external states lead to the same
controller responses. We denote the nominal state trajectory of length H resulting from
this controller operation by xb

0:H−1 = [xb
0 , . . . , x

b
H−1] ∈ Rnx×H . The power inputs leading

to this state trajectory are given by pb
0:H−1 = [pb

0 , . . . , p
b
H−1] ∈ RH in turn and are called

nominal power inputs or baseline power inputs.

With this, we can define flexibility envelopes as follows:

Definition 5 (Flexibility envelope). Let xt+1 = h(xt, pt, et, ωt) be the state dynamics of
an asset, as in (4.1). Given the nominal state trajectory xb

0:H−1, the trajectory of external
conditions e0:H−1 = [e0, . . . , eH−1], the trajectory of unmeasured disturbances ω0:H−1 =

[ω0, . . . ,ωH−1], and a vector of np discrete power levels p = [p0, . . . , pnp−1] ∈ [
¯
p, p̄]np with
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¯
p ≤ p0 < · · · < pnp ≤ p̄, we define the flexibility envelope E ∈ Rnp×H by

Ei,t = max T (4.4)

s.t. xl+1 = h(xl, pi, el, ωl), l = t, . . . , t+ T − 1

xt = xb
t

¯
x ≤ xl ≤ x̄, l = t, . . . , t+ T

This flexibility envelope specifies for how long certain power levels can be maintained
without violating constraints while starting from the nominal state at each timestep. This
can also be defined in a relative manner with respect to the nominal power inputs pb

0:H−1.
For this, we first introduce the notion of a relative consumption request.

Definition 6 (Relative Consumption Request). Given a baseline power pbt ∈ R, we
define a relative consumption request rt ∈ R such that the desired total power at time t is
pt = pbt + rt.

Definition 7 (Relative flexibility envelope). Let xt+1 = h(xt, pt, et, ωt) be the state
dynamics of an asset, as in (4.1). Given the nominal state trajectory xb

0:H−1, the trajectory
of external conditions e0:H−1, the trajectory of unmeasured disturbances ω0:H−1, the
nominal power inputs pb

0:H−1, and a vector of np discrete power levels r = [r0, . . . , rnp−1] ∈
[
¯
p, p̄]np with

¯
p ≤ r0 < · · · < rnp ≤ p̄, we define the relative flexibility envelope F ∈ Rnp×H

by

F i,t = max T (4.5)

s.t. xl+1 = h(xl, p
b
l + ri, el, ωl), l = t, . . . , t+ T − 1

xt = xb
t

¯
x ≤ xl ≤ x̄, l = t, . . . , t+ T

¯
p ≤ pbl + ri ≤ p̄, l = t, . . . , t+ T − 1

As a last flexibility characterization, we consider a maximum activation time of k ∈ N
timesteps. The flexibility is then given by the minimum and maximum available relative
changes with respect to baseline consumption.

Definition 8 (Fixed-time flexibility envelope). Let xt+1 = h(xt, pt, et, ωt) be the state
dynamics of an asset, as in (4.1). Given the nominal state trajectory xb

0:H−1, the trajectory
of external conditions e0:H−1, the trajectory of unmeasured disturbances ω0:H−1, the
nominal power inputs pb

0:H−1, and a request duration k ∈ N, we define the relative
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fixed-time flexibility envelope Rk
0:H−1 = [

¯
Rk

0:H−1, R̄
k
0:H−1] through

¯
Rk
t = min r

s.t. xl+1 = h(xl, p
b
l + r, el, ωl), l = t, . . . , t+ k − 1

xt = xb
t (4.6)

¯
x ≤ xl ≤ x̄, l = t, . . . , t+ k

¯
p ≤ pbl + r ≤ p̄, l = t, . . . , t+ k − 1

R̄k
t = max r

s.t. xl+1 = h(xl, p
b
l + r, el, ωl), l = t, . . . , t+ k − 1

xt = xb
t (4.7)

¯
x ≤ xl ≤ x̄, l = t, . . . , t+ k

¯
p ≤ pbl + r ≤ p̄, l = t, . . . , t+ k − 1

This way of describing flexibility is similar to the power shifting capability described
in (Reynders & Saelens, 2015), but uses a fixed time duration. Thus, it also relates to
methodology F in (Reynders et al., 2018).

Remark 7. The definitions 5, 7, and 8 assume perfect knowledge of the considered assets
and all external conditions and disturbances. Therefore, these definitions give the exact
quantification of flexibility but are not directly usable. A method to estimate these flexibility
envelopes with virtual battery modeling and uncertainty quantification is presented next.

4.2.2 Virtual battery modeling for buildings

In this section, we consider assets that behave like a generalized battery, meaning that
their state can be described by a scalar, similar to the SoC of batteries. This holds in
particular for thermal assets like buildings, and we denote the state at time t by st ∈ [0, 1],
in contrast with the more general state description xt. The state can be understood as a
measure of the stored energy in the system and the state bounds are an abstraction of
the thermal bounds and operational constraints, meaning that st = 0 indicates that no
energy can be extracted from the asset without violating constraints, and st = 1 indicates
that no energy can be inserted. We begin by making an assumption about the local
controller of the considered asset.

Assumption 4. For each st ∈ [0, 1], the controller is able to satisfy the comfort/opera-
tional constraints for all t′ > t. When receiving flexibility requests, the controller follows
them as closely as possible. Furthermore, we assume to either receive state measurements
from the controller or measurements from which we can construct a state-like variable.

This abstract state might have different characterizations, one example, which will also
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be used in the numerical experiments, is the following:

st := ¯
∆t

¯
∆t + ∆̄t

(4.8)

where
¯
∆t is the maximum runtime of the equipment at minimum power, and ∆̄t is the

maximum runtime of the equipment at maximum power, without violating constraints.
These quantities can be obtained in different ways, e.g., assuming the controller has access
to either a detailed or simplified temperature model of the building (the latter of which is
used in the simulations). For a building with a HP,

¯
∆t and ∆̄t can be approximated by

¯
∆t =

Tt − Tmin

Ploss,t
, ∆̄t =

Tmax − Tt
Pmax − Ploss,t

where Tt is the temperature at time t, the upper and lower temperature limits are given
by Tmax and Tmin respectively, the thermal power capacity of the heat pump is denoted
by Pmax, and the average losses at time t are given by Ploss,t. This description is e.g.
used in (Gasser et al., 2021, Eqn. 8). Note that by communicating the state instead of
quantities like the temperature and corresponding temperature bounds, possibly sensitive
information does not need to be shared. On the other hand, we also have the option to
compute a state ourselves, when receiving data of the mentioned type. Furthermore, note
that the state does not need to be computed as in (4.8) as long as it fulfills Assumption 4.
Therefore, it is possible to derive an approximate state from, e.g., measurements of the
historical energy consumption along with measurements of the external conditions, or
possibly other types of measurements for varying types of assets.

With this, we assume a general state difference equation, in accordance with (4.1). To
simplify the following derivations, we assume additive uncertainty and obtain a general
description with the following form:

st+1 − st = h (st, et, pt) + ωt, (4.9)

Considering Assumption 4, we have a nominal state trajectory sb
0:H−1, similar to xb

0:H−1,
given by

sbt+1 − sbt = h(sbt , et, p
b
t ) + ωt, (4.10)

with the baseline power injected given by pb
t .

Remark 8. Different methods exist to predict the baseline consumption of various assets,
an overview of data-driven methods to predict energy consumption in buildings can be
found in (Sun et al., 2020). In this thesis, we will use kernel methods, especially KRR
for this baseline prediction in the experiments. We will therefore assume to have accurate
baseline predictions in the theoretical developments where necessary. An extension to
considering uncertainty quantification with the approaches developed in Chapter 2 is
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envisioned for future work.

Considering the difference of (4.9) and (4.10), we get

st+1 − st = sbt+1 − sbt + h(st, et, pt)− h(sbt , et, p
b
t ). (4.11)

To specify the state evolution under the assumed controller behavior of keeping the state
at its nominal level and while responding to relative consumption requests given by
Definition 6, we can distinguish two phases in the system operation:

1. The request phase where pt = pb
t + rt.

2. The recovery phase where st is driven towards sbt , with the injected power denoted
by pcon,t.

Note that the recovery phase is a distinct feature of assets that return to an equilibrium,
e.g., thermal assets with a fixed temperature setpoint. Moreover, in the request phase,
we can distinguish between receiving positive or negative relative consumption requests,
due to equipment or controller characteristics. Assuming a linear approximation of h, for
simplicity, around the nominal operation point, we get that

h(st, et, pt)− h(sbt , et, p
b
t ) ≈


a+rt if rt > 0

a−rt if rt < 0

bf (st − sbt ) if rt = 0

. (4.12)

Due to the stochasticity of st, notice that a+, a− and bf are in general stochastic.

We make a few further assumptions on the nominal state evolution and the coefficients
a+, a−, and bf that will ease the rest of the analysis.

Assumption 5. In (4.12), we assume that

(a) The request-free nominal state evolution sbt can be well approximated by a function
f : Rm → R of the τ past weather variables, denoted hereafter by et−τ+1:t :=

[et−τ+1, . . . , et] ∈ Rm, ei ∈ Rne , i = t− τ + 1, . . . , t, m = τne,

(b) bf ∈ R is a constant,

(c) a+ and a− are real-valued random variables on a finite probability space.

Assumption 5a) states that the request-free state evolution can be well-captured by a
deterministic function that only depends on past and current weather variables. ne
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denotes the number of measured variables, and τ denotes the number of considered time
steps. Despite being strong, this modeling assumption for thermal systems (in particular
building assets) often leads to good results in practice because errors do not accumulate.
This is due to the system being a controlled one, where similar external conditions lead to
similar controller actions and therefore a predictable indoor temperature range. Since we
are always considering τ past weather variables, we use the notational shorthand of e:t for
et−τ+1:t. Note that this assumption could be replaced by modeling the nominal state with
a GP instead to take uncertainty into account, at the price of complicating further the
analysis. Assumption 5b) is justified by the fact that the coefficient bf has little influence
on the flexibility quantification discussed here, as is highlighted in the following parameter
identification explanation. Finally, Assumption 5c) is useful to extract the distributions
of a+ and a− directly from data. The random variable assumption also captures possibly
random state behavior and will be helpful in the uncertainty quantification explained in
Section 4.2.3. We finally end up with the following state equation:

Definition 9 (Battery Model). Let rt ∈ R denote a relative consumption request at time
t with respect to a baseline, and let r+

t = max(rt, 0), r−t = min(rt, 0) be the positive and
negative part of the request. With the external influences given by e:t ∈ Rm and a function
f : Rm → R to approximate the nominal state sb in request-free operation, we model the
state evolution as

ŝt+1 = ŝt + a+r+
t + a−r−t + bf (f(e:t)− ŝt)χrt + f(e:t+1)− f(e:t) (4.13)

with χr =

{
1, if r = 0

0, if r 6= 0
. The state change depends on a parameter bf ∈ R, while a+

and a− are assumed to be real-valued random variables on a finite probability space.

Note that the approximated state ŝt given by the battery model is no longer bounded
between 0 and 1. Furthermore, ŝt taking a value smaller than 0 or larger than 1 corresponds
to a situation where the true state reaches its boundaries and the building controller
is not able to fulfill the request. We will use this observation to quantify feasible and
infeasible request trajectories and finally determine flexibility envelopes through this.

Parameter identification

The learning of the battery model is a two-step approach. First, f(e:t) is learned from data
obtained during the nominal operation of the building’s controller. Then the parameter
bf and the sample spaces of a+ and a− can be identified from request periods, followed
by recovery periods.

For the learning approach, we use the following formulation that describes the dependence
of the predicted state ŝk on the starting state s0 and the applied requests r0:k−1.
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Lemma 5. For a given state s0 and a request trajectory r ∈ Rk, the state ŝk is given by

ŝk = (1−bf )q
k
0 s0 +

k−1∑
l=0

(1−bf )q
k
l+1(f(e:l)bfχrl +a

+r+
l +a−r−l +f(e:l+1)−f(e:l)), (4.14)

with qkl =
∑k−1

i=l χri .

Proof. See Appendix 4.6.1.

For identifying the sample spaces of a+ and a−, we consider request sequences r, either
strictly positive or strictly negative respectively (i.e. ri > 0 or ri < 0, i = 0, . . . , k − 1).
r is assumed to be followed by a request-free period, and we denote the corresponding
state trajectory by s0:k. We either have that the requests are fulfillable, i.e. 0 < si <

1, i = 0, . . . , k which we denote by setting an index l = k+ 1, or not fulfillable at a certain
point l, with l = arg min q s.t. sq = 0 or sq = 1. Assuming a state evolution as given by
(4.14), we have

sl−1 = s0 +
l−2∑
i=0

a+/−ri + f(e:l−1)− f(e:0). (4.15)

Therefore, a sample takes the form a+/− = (sl−1 − f(e:l−1)− (s0 − f(e:0)))/
∑l−2

i=0 ri.

This way of identifying the samples assumes constant a+, a− during a given request
period that is often of at most a few hours. However, it takes into account potential value
changes of a+, a− between two distinct request periods.

Remark 9. The sample identification for a+ and a− as presented here assumes either
measurements of the state or measurements of other quantities that allow the construction
of a state, in line with Assumption 4. Like this, the sample identification works with
any dataset with historical data of consumption requests. Note that by running dedicated
identification experiments, state measurements could be made obsolete by sending requests
that drive the assets to their lower and upper state bound alternatingly, and observing
state saturation through the non-fulfillment of the sent request.

To identify bf , we consider sequences s0:k that occur after a request period, so that
r−1 6= 0, r0:k−1 = 0 and rk 6= 0. Furthermore, we only use data from the recovery periods
that fulfill |st − f(e:t)| > δ for some threshold δ ∈ R+, for identifying bf , to capture the
controller based recovery period and not small perturbations due to model mismatch.

As in the previous cases, we either have that |si− f(e:i)| > δ, i = 0, . . . , k (thus l = k+ 1)
or determine l as l = arg min q s.t. |sq − f(e:q)| ≤ δ. Using the evolution of the battery
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model from (4.14) for request-free periods, we can formulate the following least-squares
problem, for each recovery period j = 1, . . . , n.

bj = arg min
b

(
(1− b)l−1(s0 − f(e:0)) + f(e:l−1)− sl−1

)2
(4.16)

bf is then chosen as maxj bj , but other choices like the average over the bj ’s are also
possible. Dealing with a fixed bf is deliberate because treating bf as stochastic and
following through with the approach outlined in Section 4.2.3 introduces combinatorial
issues and nonlinearities in the uncertainty set computation while having a minimal
impact on the flexibility envelope computation, due to its influence in the recovery periods
only.

In the following, we denote the finite sample spaces of a+ and a− as P+,P− with
|P+| = n1, |P−| = n2. Furthermore, we assume an ordering, such that P+ = {a+

1 , . . . , a
+
n1

:

a+
i ≤ a+

j if i < j},P− = {a−1 , . . . , a−n2
: a−i ≤ a−j if i < j}, which will be helpful in

Section 4.2.4. Since these data are the only information we have about a+ and a−, it is
natural to use them for constructing the sample spaces and therefore having finite sample
spaces.

4.2.3 Uncertainty quantification

In this section, we consider the feasibility of request trajectories through the containment in
a set with probabilistic constraints. Through the use of risk measures, a tightened version
of this set is derived that is defined by deterministic constraints over a robust uncertainty
set. This new set formulation is then used to derive data-driven and uncertainty-aware
versions of the introduced flexibility envelopes.

In flexibility scenarios, the battery model (4.13) is used to determine the feasibility of
request trajectories for building assets. As already stated, ŝt taking a value smaller
than 0 or larger than 1 corresponds to a situation where the true state saturates at
its boundaries and the building controller is not able to fulfill the relative consumption
request without violating constraints. This gives rise to the definition of the set of feasible
request trajectories.

Definition 10. Let k ∈ N be the specified trajectory length, ẽ0:k,τ = [e:0, . . . , e:k] the
trajectory of external conditions, s0 the starting state of the asset, and α ∈ (0, 1) the
desired probability level. Then we define the set of feasible request trajectories of length k
as

Rαk (s0) =
{
r0:k−1 ∈ Rk : P

{
0 ≤ [ŝ0, · · · , ŝk]> ≤ 1

}
≥ 1− α, ŝ0 = s0

}
, (4.17)
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where the state dynamics are given by the battery model (4.13)

ŝt+1 = ŝt + a+r+
t + a−r−t + bf (f(e:t)− ŝt)χrt + f(e:t+1)− f(e:t), t = 0, . . . , k − 1

and the probability is taken element-wise.

The goal is to test the containment of request trajectories, that make up the different
flexibility envelopes, in that set. To facilitate this, we propose a robust version of (4.17)
with tightened constraints through the use of risk measures, thus avoiding the probabilistic
state constraints.

A number of reformulations are needed for the risk measure approach. We will present
them in the following, starting by rewriting (4.14) in the two following ways:

ŝk = ck + [a+
k ,a

−
k ]

(
r+
k

r−k

)
(4.18)

= ck + Rk

(
a+

a−

)
, (4.19)

with r+
k = [r+

0 , · · · , r+
k−1]>, r−k = [r−0 , · · · , r−k−1]> ∈ Rk, where

ck = (1− bf )q
k
0 s0 +

k−1∑
l=0

(1− bf )q
k
l+1(f(e:l)bfχrl + f(e:l+1)− f(e:l)) (4.20)

groups all the non-request parts and

a+
k = [(1− bf )q

k
1 , . . . , (1− bf )q

k
k ]a+ ∈ Rk (4.21)

a−k = [(1− bf )q
k
1 , . . . , (1− bf )q

k
k ]a− ∈ Rk (4.22)

Rk =

[
k−1∑
l=0

(1− bf )q
k
l+1r+

l ,
k−1∑
l=0

(1− bf )q
k
l+1r−l

]
∈ R2 (4.23)

group the request parts either depending on a+, a−, or the request trajectory, and we
recall that qkl =

∑k−1
i=l χri . We can then alternatively write the set of feasible requests as

Rαk (s0) =
k⋂
l=0

{
r ∈ Rk : P

{
bl ≤ Al

(
r+
l

r−l

)}
≥ 1− α

}
, (4.24)

with bl = [−cl, cl − 1]> ∈ R2 and Al =

(
a+
l a−l

−a+
l −a−l

)
∈ R2×2l, by using (4.18).

The steps of the different reformulations are outlined in more detail in Appendix 4.6.2.
In the following, we will consider a single set from the intersection in (4.24) and denote
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[a+
l ,a

−
l ] as al. From Assumption 5c), we have that the unknown al is a R2l-valued

random variable on a finite probability space (Ω,F ,P) with |Ω| = N,F = 2Ω. We can
construct the support by combining all possible a+, a− from the identified sets P+,P−.
The sample set for al is denoted by Al = {al,1, . . . ,al,N} with |Al| = n1n2 =: N . The
data matrix is denoted as Dl = [a>l,1, . . . ,a

>
l,N ] ∈ R2l×N .

On the one hand, having al as a random variable on a finite probability space is restrictive,
since the true sample space Ω might be larger or even continuous. On the other hand, since
data is the only knowledge we have about al, this assumption is aligned with the data-
driven approach, and useful in practice (see (Bertsimas & Brown, 2009, Assumption 3.1)).

Robustness through risk measures

Utilizing the new formulation of the set of feasible trajectories (4.24), we will now exploit
a specific risk measure, the Conditional Value at Risk (CVaR), as a way to specify how
the uncertainty is dealt with. Concretely, we will consider user preferences to trade off
conservativeness and the size of the feasible set, relying on results from (Bertsimas &
Brown, 2009). The presented derivations are not unique for CVaR but also hold for
general coherent risk measures. However, using CVaR, together with two straightforward
assumptions, gives us a directly usable, tightened version of the set of feasible requests,
which is why we focus our discussions on this specific risk measure.

Here, we will only present the main concepts necessary for our specific approach. For
some additional insight, the reader is referred to e.g. (Delbaen, 2002) or (Uryasev, 2000).

Definition 11 (Conditional Value at Risk). Let (Ω,F ,P) be a finite probability space
with Ω = {ω1, . . . , ωN} and let X be a linear space of random variables on Ω. We define
the CVaR for X ∈ X with probability level α as

CVaRα(X) = max
q∈Q

N∑
i=1

−qiX(ωi), (4.25)

with Q its family of generating measures, given by {q ∈ ∆N : qi ≤ P(ωi)
α }.

An intuition about the meaning of CVaR can be drawn from its continuous probability
space definition for atomless distributions (this intuition is inexact in the finite case,
but nevertheless helpful). If we consider a constraint a>x ≥ b for a random variable
a ∈ Rl, then CVaRα(a>x− b) gives the expected constraint violation in the α-% worst
cases. This motivates the use of the risk-aversion constraint CVaRα(a>x− b) ≤ 0. Note
that this constraint implies both constraint satisfaction in expectation and constraint
satisfaction with probability ≥ 1− α.

We will apply risk aversion constraints to the individual probabilistic constraints in (4.24)
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and utilize the reformulation with robust uncertainty sets presented in (Bertsimas &
Brown, 2009, Thm. 3.1). This is possible since CVaR is a coherent risk measure (i.e.
it fulfills the properties of monotonicity, translation invariance, convexity, and positive
homogeneity). Using risk aversion constraints instead of probabilistic constraints leads
to a smaller feasible set for the same uncertainty level α since the former represent a
tightened version of the latter.

Theorem 4. We have{
r ∈ Rk : CVaRα

(
Al

(
r+
l

r−l

)
− bl

)
≤ 0

}
(4.26)

=

{
r ∈ Rk : [a,−a]>

(
r+
l

r−l

)
≥ bl ∀a ∈ U lα

}
, (4.27)

with a slight abuse of notation for the constraint-wise CVaR application, where U lα =

conv({Dlq : q ∈ Q}), and we recall that Dl is the data matrix, and Q the family of
generating measures for CVaRα.

Proof. We can write the left-hand side as{
r ∈ Rk : CVaRα

(
al

(
r+
l

r−l

)
+ cl

)
≤ 0

}
(4.28)

∩
{
r ∈ Rk : CVaRα

(
−al

(
r+
l

r−l

)
− cl + 1

)
≤ 0

}
. (4.29)

Using the robust uncertainty set reformulation from (Bertsimas & Brown, 2009) Theorem
3.1. for both sets in the intersection, we get{

r ∈ Rk : a>
(
r+
l

r−l

)
≥ −cl ∀a ∈ U lα

}
(4.30)

∩
{
r ∈ Rk : −a>

(
r+
l

r−l

)
≥ cl − 1 ∀a ∈ U lα

}
. (4.31)

Since the same uncertainty sets are used, we can combine them in the form of (4.27).

Theorem 4 is not limited to CVaR, but holds for general coherent risk measures. It
provides a closed-form description of the set of request trajectories that fulfill the risk
aversion constraint, by taking those that are robustly feasible for the uncertainty set U lα.
For the feasibility of a given r ∈ Rk, this implies checking constraint satisfaction for all
a ∈ U lα and l = 1, . . . , k + 1.

From Definition 11, we can directly observe the uncertainty set construction as in
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Theorem 4 for CVaRα, namely U lα = conv({Dlq : q ∈ ∆N , qi ≤ P(al,i)
α }), with the data

matrix Dl. The following theorem states a more practical form of this uncertainty set
under certain assumptions.

Theorem 5. Let the probabilities on the finite probability space be uniform (i.e. P(al,i) =
1
N ), and α chosen as j

N for some j ∈ {1, . . . , N}. Then U lα is the convex hull of all
j-point averages in Al, i.e.

U lα = conv

({
1

j

∑
i∈J

al,i : J ⊂ {1, . . . , N}, |J | = j

})
. (4.32)

Proof. The first direction, i.e. “⊇”, follows directly from the definition of the family of
generating measures.

For “⊆”, pick an arbitrary a ∈ U lα and observe that we can write it as a = Dlq for some
q ∈ {q ∈ ∆N : qi ≤ 1

j ∀i}. Furthermore, we have conv(Q) = {q ∈ ∆N : qi ≤ 1
j ∀i} for

Q := {q ∈ RN : qi = 1
j ∀i ∈ J, qi = 0∀i 6∈ J, J ⊂ {1, . . . , N}, |J | = j}. Since each element

ā = Dlq̄ with q̄ ∈ conv(Q) is in the right-hand-side, we conclude that a is an element of
the right-hand-side.

These uncertainty sets given by the j-point averages are the sets we will focus on in the
following, for two reasons: Firstly, we do not consider a weighting of the samples, which
makes the choice of uniform probabilities natural. Secondly, for N large enough, the
choice of α as j

N offers a fine discretization, while also providing a straightforward way of
computing the uncertainty set. The advantage of computability, therefore, outweighs the
limitation of choice through discretization.

We can then formulate the tightened set of feasible request trajectories, based on the
CVaR uncertainty sets as

Cαk (s0) =
k⋂
l=0

{
r ∈ Rk : [a,−a]>

(
r+
l

r−l

)
≥ bl ∀a ∈ U lα

}
. (4.33)

4.2.4 Flexibility estimation

To predict the available flexibility in the form of flexibility envelopes according to
definitions 5, 7, and 8, we test the containment of request trajectories that make up the
entries of the envelopes in Cαk (s0). For predicting future flexibility, we assume the asset to
be in its predicted nominal state, given by [f(e:0), . . . , f(e:k−1)], based on a forecast of
the external conditions ẽ0:k−1,τ . Thus, we get the following uncertainty-aware flexibility
envelope predictions:
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Corollary 1 (Uncertainty-aware flexibility envelope). Let α ∈ (0, 1] be an uncertainty
parameter that can be freely chosen. Given the trajectory of external conditions ẽ0:H−1,τ

or a forecast thereof and a vector of np discrete power levels p = [p0, . . . , pnp−1] ∈ [
¯
p, p̄]np

with
¯
p ≤ p0 < · · · < pnp ≤ p̄, the uncertainty-aware flexibility envelope Ẽα ∈ Rnp×H is

given by

Ẽα
i,t = max T (4.34)

s.t. r0:T−1 ∈ CαT (f(e:t))

rl = pi − pbt+l, l = 0, . . . , T − 1

using the baseline consumption predictions pbt .

Similarly, we can derive uncertainty-aware relative flexibility envelopes, by considering
requests of constant relative power.

Corollary 2 (Uncertainty-aware relative flexibility envelope). Let α ∈ (0, 1] be an
uncertainty parameter that can be freely chosen. Given the trajectory of external conditions
ẽ0:H−1,τ or a forecast thereof and a vector of np discrete power levels r = [r0, . . . , rnp−1] ∈
[
¯
p, p̄]np with

¯
p ≤ r0 < · · · < rnp ≤ p̄, the uncertainty-aware relative flexibility envelope

F̃ α ∈ Rnp×H is given by

F̃ α
i,t = max T (4.35)

s.t. 1T ri ∈ CαT (f(e:t))

¯
p ≤ pbl + ri ≤ p̄, l = t, . . . , t+ T − 1

using the baseline consumption predictions pbt and where 1T denotes a vector of ones of
length T .

In the experimental prediction of available flexibility, we will limit the maximum time
T to 24h for each entry of the flexibility envelopes. In line with Corollaries 1 and 2,
we can also determine the uncertainty-aware version for predicting fixed-time flexibility
envelopes:

Corollary 3 (Uncertainty-aware fixed-time flexibility envelope). Let α ∈ (0, 1] be an
uncertainty parameter that can be freely chosen and k ∈ N the maximum number of
active timesteps for the asset. Given the trajectory of external conditions ẽ0:H−1,τ or a
forecast thereof, the uncertainty-aware fixed-time flexibility envelope is given by R̃α,k

0:H−1 =

[
¯
Rα,k

0:H−1, R̄
α,k
0:H−1] where

¯
Rα,k
t = min r

s.t. 1kr ∈ Cαk (f(e:t)) (4.36)

¯
p ≤ pbl + r ≤ p̄, l = t, . . . , t+ k − 1
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R̄α,k
t = max r

s.t. 1kr ∈ Cαk (f(e:t)) (4.37)

¯
p ≤ pbl + r ≤ p̄, l = t, . . . , t+ k − 1

using the baseline consumption predictions pbt and where 1k denotes a vector of ones of
length k.

Note that for the computation of all the different types of uncertainty-aware flexibility
envelopes, the set Cαk does not need to be computed explicitly, instead the constraints are
checked for specific request trajectories. A way of doing this more efficiently is presented
next.

Envelope computation

In the experiments, we will focus on flexibility envelopes specified by relative requests.
To make the computation of these types of flexibility envelopes more efficient, we will
use some observations based on the features of relative consumption requests that allow
us to avoid specifying the whole robust uncertainty sets in (4.33). Furthermore, we will
focus on choices of α as j

N for some j = 1, . . . , N due to the uncertainty set formulation
in Theorem 5.

Due to the linearity of the a+/−
l from (4.18) in a+/−, we can consider the j-point averages

of the (a+, a−) pairs in P+ ×P−, instead of their induced al samples, and test feasibility
for (4.19) because of its equivalence to (4.18). We denote this set of j-point averages by
Pj = {1

j

∑j
i=1 ai : ai ∈ P+ × P−,al 6= ak for l 6= k}.

However, since the relative requests are constant for each entry of the two types of
flexibility envelopes considered here, either only a+ or a− has to be considered regarding
the feasibility problem, depending on the sign of the request. Therefore, we can restrict
ourselves to testing feasibility for the worst-case parameters in Pj . Since the sets P+ and
P− are increasingly ordered, these parameters are given by (a+

max,j , a
−
max,j) with

a+
max,j =

1

j

n2

b j
n2
c∑

i=0

a+
n1−i + (j mod n2)a+

n1−b j
n2
c−1

 , (4.38)

a−max,j =
1

j

n1

b j
n1
c∑

i=0

a−n2−i + (j mod n1)a−
n2−b j

n1
c−1

 . (4.39)

a+
max,j represents the largest attainable value in the first element of a tuple, which is
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constructed as a j-point average of elements in P+ ×P−. Similarly, a−max,j represents the
largest value in the second element. Additional information on the derivation of the two
is provided in Appendix 4.6.3.

The uncertainty-aware fixed-time flexibility envelopes can then be computed in the
following way:

Corollary 4. Let α = j
N for a j ∈ {1, . . . , N}. Then

¯
Rα,k
t = max

{
max
l=1,...,k

−f(e:t+l)

a−max,jl
, max
l=0,...,k−1¯

p− pbt+l

}
(4.40)

R̄α,k
t = min

{
min

l=1,...,k

1− f(e:t+l)

a+
max,jl

, min
l=0,...,k−1

p̄− pbt+l

}
(4.41)

Proof. We will only focus on the reformulation of
¯
Rα,k
t , the result for R̄α,k

t follows with
the same arguments.

Due to the equivalence of (4.18) and (4.19), we can expand the constraints in Cαk (s0)

using the unrolled state equation. Since the baseline consumption does not lead to a
constraint violation, according to Assumption 4,

¯
Rα,k
t ≤ 0 and we only need to consider

the request terms associated to a−. Therefore, we have

¯
Rα,k
t = min r

s.t. 0 ≤

1
...
k

 a−r +

f(e:t+1)
...

f(e:t+k)

 ≤ 1 ∀(a+, a−) ∈ Pj (4.42)

¯
p ≤ pb

l+t + r ≤ p̄, l = 0, . . . , k − 1.

Due to the same argument, we only need to consider the lower bounds in (4.42). This
leads to  −f(e:t+1)/a−

...
−f(e:t+k)/(ka

−)

 ≤ 1r ∀(a+, a−) ∈ Pj (4.43)

¯
p− pb

l+t ≤ r, l = 0, . . . , k − 1.

The left-hand side of (4.43) is maximized for a−max,j . We can then determine the value of
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r, and therefore
¯
Rα,k
t , as the maximum over all constraints, so

¯
Rα,k
t = max

{
max
l=1,...,k

−f(e:t+l)

a−max,jl
, max
l=0,...,k−1¯

p− pb
t+l

}

which proves the claim.

Using Corollary 4, the uncertainty-aware fixed-time flexibility envelope is computed with
complexity O(kH), by taking the maximum over k numbers twice in (4.40) and (4.41)
over H timesteps.

Experimental evaluation

Before using flexibility envelopes in the coordination of a pool of assets, we first demon-
strate the prediction of relative flexibility envelopes for single assets. The SimpleHouseRad-
v0 model from the simulation model library Energym presented in Chapter 3 is used as
a flexible asset. The building model is controlled by a PI controller that measures and
reports the state introduced in (4.8) based on a simplified model of the building. This
PI controller is also used to track the request trajectories as closely as possible without
violating the temperature bounds of 19 and 24 °C, while otherwise following a setpoint
temperature of 21 °C.

Data collection for constructing the battery model is performed during the first 6 weeks
of a year, using measurements of the external temperature and irradiance to construct
the feature variable et, from the city of Basel, Switzerland. In the first three weeks, no
requests are sent to the building, such that state data under nominal controller operation
is collected for learning the nonlinear model f(e:t), using a KRR model with squared
exponential kernel. During the second three weeks, random constant requests are sent
to the building for random durations between 1 hour and 4 hours, alternating with
request-free periods of 4 to 15 hours. Since the control input is the heat pump power
fraction, we consider relative input requests instead of relative power requests. This data
collection resulted in a total of 22 samples for a+ and 20 samples for a−, giving N = 440

as the size of the discrete sample space. Note that this enables α to be quantized with a
precision of approximately 0.2%, corresponding to quantization levels of around 0.002.

We compute the relative flexibility envelopes of 10 days, starting from the 22nd of January,
for a weather file from Lausanne, Switzerland. This second weather file allows us to cover
the same time period in the evaluation as in training while making sure to not have
exactly the same weather conditions. Different values of the uncertainty parameter α are
used, and we compare the results with the true available flexibility. These true relative
flexibility envelopes represent the perfect but unattainable flexibility predictions and are
computed by running the relative requests on the simulation model itself and observing
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Figure 4.1 – Relative flexibility envelopes for day 5 of the test data. First: True flexibility
envelope. Second to fourth: Flexibility envelope predictions for different α values.
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Figure 4.2 – Predicted vs. truly available timesteps in the relative flexibility envelopes for
different values of α on day 5 of the test data.

violations of the temperature bounds.

An example of this evaluation is given in Fig. 4.1 for day 5 of the chosen 10 days in
the test data. For how long a given relative input request (y-axis) can be held without
violating constraints if started at a specific time (x-axis), is given by the shading in the
plots. A decrease in conservativeness is observable for an increase in α.

The pointwise predicted availability (in number of timesteps) vs. the true availability of
the requests, is shown in Fig. 4.2. Points that lie on the diagonal or slightly above are
desirable, while points that are below the diagonal represent predictions that are more
optimistic than the actual availability (and are therefore infeasible). For this specific day,
we observe about 0.2% infeasible predictions for α = 1

440 ≈ 0.002, while for α = 0.5 and
α = 1.0 the infeasible predictions make up about 5.1% and 10.7% respectively.

We get the following results regarding the percentage of infeasible predictions and mean
absolute prediction error, displayed in Fig. 4.3. The percentage of infeasible predictions,
over the course of the 10 days, is at about 0.16% for α = 1

440 , and it rises up to about
6.09% for α = 1.0. On the other hand, the mean absolute prediction error decreases from
about 28 timesteps for α = 1

440 , to about 15 for α = 1.0, indicating a tradeoff between
conservativeness and prediction error.
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Figure 4.3 – Percentage of infeasible prediction vs mean absolute prediction error of the
relative flexibility envelopes for different values of α over 10 days.
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Figure 4.4 – Power increase (green dotted line) and decrease (red dotted line) potential
for a duration of 3h with respect to a baseline consumption (blue line), computed with
α = 1.

We furthermore show the prediction of the other two types of flexibility envelopes, starting
with the fixed-time flexibility envelopes. For this, we use the same battery model as
described above, and compute the maximum increase and decrease potential with respect
to a predicted baseline power. The prediction is done for a horizon of 24 hours with
α = 1, and we consider increases and decreases in power that can be held for up to 3
hours or k = 36 timesteps. An example of the resulting fixed-time flexibility envelope is
shown in Figure 4.4.

Lastly, we demonstrate the computation of flexibility envelopes with absolute requests,
in line with the example displayed in Figure 4.1. The resulting flexibility envelopes for
different α values in comparison to the true flexibility envelope are displayed in Figure 4.5.
Again, we observe increasing conservativeness for decreasing α, hinting at the tradeoff
between conservativeness and infeasible predictions.
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Figure 4.5 – Flexibility envelopes for day 3 of the test data. First: True flexibility envelope.
Second to fourth: Flexibility envelope predictions for different α values.
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Figure 4.6 – The three phases of our proposed approach.

This tradeoff, together with the incentives for providing flexibility and penalties for not
being able to provide the promised flexibility, can inform the selection of an uncertainty
parameter α to be used in a flexibility scheme.

4.3 Coordinated scheduling and dispatch of flexibility in
buildings

With the flexibility characterizations at hand, we will now turn to the problem of
coordinating a pool of assets. For this, we will use the uncertainty-aware fixed-time
flexibility envelope predictions of individual assets in a scheduling problem, formulated as
a MILP, to determine the activation time of the individual assets. With this activation
plan, incoming aggregated consumption requests are distributed between the active assets
by a dispatch algorithm. A visualization of the complete approach is shown in Figure 4.6.

After specifying a general scheduling problem for request following, we introduce two
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variations of it, tailored to the objective of fulfilling requests for self-consumption and
peak power reduction. One feature of these variations is that they either determine a
schedule to track the request if it is fulfillable or propose a new request, that maximizes
the flexibility provided.

4.3.1 The scheduling problem

We consider the problem of tracking an aggregated relative consumption request ragg
0:H−1 =

[ragg
0 , . . . , ragg

H−1], where this request is known in advance. A MILP is formulated to
determine the activation of consumption flexibility for M flexible assets, where we assume
that each asset can be activated only once for a period of k timesteps. The flexibility
envelopes of the different assets are given by R̃α,k

i,0:H−1, i = 1, . . . ,M .

Different objective functions are possible, here we minimize the number of activated assets
to keep flexibility in reserve. The general scheduling problem then looks as follows.

min
ui,t

M∑
i=1

H−1∑
t=0

ui,t (4.44a)

s.t. ui,t ∈ {0, 1} i = 1, . . . ,M, t = 0, . . . ,H − 1 (4.44b)
H−1∑
t=0

ui,t ≤ 1 i = 1, . . . ,M (4.44c)

ragg
t −

M∑
i=1

t∑
l=ts

ui,l
¯
Rα,k
i,l ≥ ε t = 0, . . . ,H − 1 (4.44d)

ragg
t −

M∑
i=1

t∑
l=ts

ui,lR̄
α,k
i,l ≤ −ε t = 0, . . . ,H − 1 (4.44e)

with ts = max{t−k−1, 0}. Constraint (4.44b) specifies the binary nature of the activation
of building i at time t, (4.44c) states that each asset can only be activated once over the
time horizon, and (4.44d) and (4.44e) describe the covering of the aggregated requests by
the flexibility of the activated assets, which stay active for k timesteps.

The result U ∈ {0, 1}M×H with [U ]i,t = ui,t can be interpreted as follows. If ui,t = 1,
then asset i is activated at time t and can provide consumption flexibility within the
range [

¯
Rα,k
i,t , R̄

α,k
i,t ] for k timesteps.

Note that problem (4.44) is infeasible if the aggregated request trajectory ragg
0:H−1 can not

be followed with the available flexibility. Therefore, we introduce a scheduling formulation,
that determines a committed request trajectory that is fulfillable.
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Scheduling with request commitment

To circumvent the case of an infeasible scheduling problem, we reformulate the constraints
of (4.44), using pointwise scaling factors dt ∈ [0, 1], t = 0, . . . ,H − 1. The constraints
look as follows.

ui,t ∈ {0, 1} i = 1, . . . ,M, t = 0, . . . ,H − 1 (4.45)
H−1∑
t=0

ui,t ≤ 1 i = 1, . . . ,M (4.46)

dtr
agg
t −

M∑
i=1

t∑
l=ts

ui,l
¯
Rα,k
i,l ≥ ε t = 0, . . . ,H − 1 (4.47)

dtr
agg
t −

M∑
i=1

t∑
l=ts

ui,lR̄
α,k
i,l ≤ −ε t = 0, . . . ,H − 1 (4.48)

0 ≤ dt ≤ 1 t = 0, . . . ,H − 1 (4.49)

with ts = max{t−k−1, 0}. The new request trajectory rcomm
0:H−1 = [d0r

agg
0 , . . . , dH−1r

agg
H−1]

is then referred to as the committed request trajectory. These constraints can in principle
be combined with many different objective functions, aiming to maximize the provided
flexibility through the committed requests, according to different metrics. In the following,
we discuss the cases of self-consumption on a pool level and peak reduction.

Scheduling for self-consumption and peak reduction

To adapt the scheduling problem to the scenarios of self-consumption and peak reduction,
we first define these two types of requests, which represent the ideal scenario for the
requesting party.

For self-consumption, the goal is to absorb excess power production by increasing the
consumption of the flexible assets. This excess production is, e.g., due to high PV power
production. Due to this increase of consumption, the request trajectory has only non-
negative entries. In this work, we consider self-consumption on a pool level, meaning that
we want to absorb the combined production from assets in the pool by the aggregated
consumption. Therefore, it looks as follows.

Definition 12 (Self-consumption request trajectory). Given an aggregated baseline
consumption trajectory pb,agg

0:H−1 = [pb,agg0 , . . . , pb,aggH−1] ∈ RH and an aggregated production
trajectory gagg

0:H−1 = [gagg
0 , . . . , gagg

H−1] ∈ RH , the self-consumption request trajectory is given
by rself

0:H−1 = [rself0 , . . . , rselfH−1] ∈ RH with

rselft := max{gagg
t − pb,aggt , 0} t = 0, . . . ,H − 1. (4.50)
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This self-consumption request is motivated by definitions like the one given in Luthander
et al., 2015 or H. Li et al., 2021 and references therein, which is also used as a metric in
the evaluation, presented in 4.4.1. Tracking this request exactly would lead to a complete
self-consumption according to that definition. The scheduling problem to maximize the
self-consumption then looks as follows:

max
ui,t, dt

H−1∑
t=0

rselft dt

s.t. (4.45)− (4.49)

(4.51)

For peak reduction, on the other hand, the requests are non-positive, limiting the overall
consumption to a desired level.

Definition 13 (Peak reduction request trajectory). Given an aggregated baseline con-
sumption trajectory pb,agg

0:H−1 = [pb,agg0 , . . . , pb,aggH−1] ∈ RH and a desired peak c ∈ R, the peak
reduction request trajectory rpeak

0:H−1 = [rpeak0 , . . . , rpeakH−1] ∈ RH is defined as

rpeakt := min{c− pb,aggt , 0} t = 0, . . . ,H − 1. (4.52)

This can be interpreted as peak-clipping, already introduced in the 1980’s, e.g., in Gellings,
1985, and also addressed in Hirmiz et al., 2019. In the scheduling, we want to determine a
scaling of the original request that minimizes the new peak. This new peak is denoted by
ρ ∈ R and lower bounded by the desired peak c if there is at least one non-zero request.

min
ui,t, dt, ρ

ρ

s.t. (4.45)− (4.49)

ρ ≥ pb,agg
t + dtr

peak
t t = 0, . . . ,H − 1

(4.53)

4.3.2 Responding to aggregated requests

Once a schedule U has been determined through solving (4.44), (4.51), or (4.53), request
values still need to be computed for each activated asset. For a committed request rcomm

t

at time t, this can be done via solving another optimization problem with the following
constraints:

M∑
i=1

ri,t = rcomm
t (4.54)

t∑
l=ts

ui,l
¯
Rα,k
i,l ≤ ri,t ≤

t∑
l=ts

ui,lR̄
α,k
i,l i = 1, . . . ,M (4.55)
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with ts = max{t − k − 1, 0}. Different objectives are again possible in this case. For
example, to achieve a balanced activation over all assets, it is possible to minimize∑M

i=1 r
2
i,t.

Instead of solving an optimization problem, heuristic methods can be used to achieve a
fast dispatch. For this, we use the shorthand notation

Ai,t =
t∑

l=ts

ui,l ∈ {0, 1} (4.56)

with ts = max{t− k − 1, 0}, to indicate whether asset i is active at time t. Then we can
formulate the heuristic dispatch through

ri,t = Ai,t
Fi∑M

j=1 FjAj,t
rcomm
t (4.57)

where Fi denotes a measure of the available flexibility of asset i. Possible choices of this
are the available activated flexibility, by choosing

Fi =
H−1∑
t=0

ui,tR̄
α,k
i,t (4.58)

or

Fi =
H−1∑
t=0

ui,t
¯
Rα,k
i,t (4.59)

depending on the sign of the request rcomm
t . Another possibility is to use the average

flexibility potential as a proxy, given by

Fi =
1

H

H−1∑
t=0

(R̄α,k
i,t − ¯

Rα,k
i,t ). (4.60)

The latter dispatch method is used for computational efficiency in the experiments.

For systems with a fixed setpoint temperature, the controller of each asset will try to
steer the state of the asset back to its nominal value, after a request period. This can lead
to undesirable rebound behavior, where, e.g., a new peak is reached during the rebound.
To mitigate those effects, we limit the deviation from the baseline consumption during
the rebound phase in the following way:

• If ragg
t 6= 0, then all rebounding assets should consume according to their baseline,

to guarantee request tracking.

• If ragg
t = 0, then the allowed deviation from the baseline consumption is limited for
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the rebounding assets, either by a fixed fraction or by a peak-dependent fraction.

For simplicity, the rebound-damping strategy is formulated for the aggregated requests
ragg
t only, but is applied in the same manner to self-consumption requests rselft and peak
reduction requests rpeak

t . In the experiments, the deviation in the rebound phase is limited
to 20% of the baseline consumption in the self-consumption scenario. For peak reduction,
we continuously keep track of the actual peak during the day. The allowed deviation is
then time-varying, depending on the aggregated baseline consumption and its difference
to the actual peak, given by

devt =
peak− pb,agg

t

pb,agg
t

. (4.61)

Like this, it is ensured that a rebound of all buildings at the same time does not lead to
a new peak in consumption.

4.4 Numerical results

The full chain of flexibility estimation, scheduling, and dispatch is tested in simulation,
using a pool of buildings from Energym. The scheduling problems are formulated with the
linear programming toolkit PuLP (Mitchell et al., 2011) and solved with CBC (Forrest
et al., 2023) or Gurobi (Gurobi Optimization, LLC, 2023).

4.4.1 Experimental setup

Building models and requests

We use the SimpleHouseRad-v0 model from Energym as a flexible asset. We sample the
building parameters of thermal capacity, thermal conductance, and nominal COP of the
HP uniformly at random from pre-specified intervals, furthermore, we scale the maximum
HP power according to the sampled thermal conductance. This is done to ensure slightly
varying characteristics in the overall pool of buildings.

The HP power fraction is controlled by a PID controller with a control timestep of 5
minutes. A temperature setpoint of 21 °C is followed by the PID controller, and we set
the acceptable temperature to the range [19, 24] °C. Flexibility predictions and requests
are on the other hand sent with a 15-minute timestep.

Experiments of the coordination of 100 to 500 buildings for the scenarios of self-
consumption and peak reduction are performed, as well as scalability experiments for
solving the scheduling problem with up to 1000 buildings.

Self-consumption requests are generated as follows. An aggregated production curve is
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computed, using the PVSystem class of the Python library pvlib (Holmgren et al., 2018)
as a single system, with a capacity scaled to the overall pool of buildings. For this, perfect
forecasts of the irradiance and temperature are used, provided by Energym. The request
is then given by the difference of the production and the aggregated baseline consumption
prediction, as stated in Definition 12.

Peak reduction requests are based on real consumption data from the canton of Neuchâtel,
Switzerland, provided by the grid operator Swissgrid (Swissgrid, 2023). This consumption
data is scaled down to match the magnitude of the consumption of the pool of buildings.
The difference of the scaled real consumption data and the aggregated baseline consump-
tion of the buildings gives the non-shiftable baseline consumption. We define a desired
new peak c, in the experiments chosen as 1 to 1.1 times the average consumption for that
particular day, and then compute the request based on Definition 13 with respect to the
scaled real consumption.

Baseline approach

We compare our approach to a simple greedy strategy for responding to requests. For
this, assets are grouped into three sets: available assets, active assets, and inactive assets.
Upon receiving a relative consumption request, it is checked if this request is fulfillable
with the available flexibility of all buildings in the active group. If it is not fulfillable,
buildings from the available group are activated until the request is either fulfillable or
no buildings are left in the available group. This activation is done at random. Buildings
stay active for at most k timesteps, after that they are set as inactive. Violating the
comfort bounds while responding to requests also leads to a building being set as inactive.

To mitigate the rebound of the inactive assets and to guarantee comparability in the
experiments, the approach outlined in Section 4.3.2 is used.

Evaluation metrics

In the experiments, we distinguish between performance metrics and comfort metrics.
As performance metrics for the peak reduction case, we use the absolute peak power
reduction, defined as follows.

Definition 14. Given the aggregated baseline consumption pb,agg
0:H−1 and the aggregated

actual consumption pagg
0:H−1, we define the absolute peak power reduction as

∆Pa = max(pb,agg
0:H−1)−max(pagg

0:H−1). (4.62)

For the case of self-consumption, we consider the metric of self-consumed power fraction,
defined as follows.
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Definition 15. Given the aggregated production gagg
0:H−1, the production sum gsum =∑H−1

t=0 gagg
t , and the aggregated actual consumption pagg

0:H−1. Then the self-consumed power
fraction is given by

∆Sr =
gsum −

∑H−1
t=0 max{gagg

t − paggt , 0}
gsum

. (4.63)

This metric specifies how much of the overall production was directly consumed. These
performance metrics are, e.g., presented in (H. Li et al., 2021).

To measure comfort, we specify the percentage of temperature-bound violations for a
specific acceptable temperature interval. This is defined as follows.

Definition 16. Given a temperature trajectory T 0:H−1 = [T0, . . . , TH−1] and temperature
bounds

¯
T, T̄ , we define the percentage of temperature bound violations as

∆Tr =

∑H−1
t=0 I T̄

¯
T (Tt)

H
100% (4.64)

with Iba(c) =

{
0, if c ∈ [a, b]

1, if c 6∈ [a, b]
.

This metric is similar to the prediction interval coverage percentage, frequently used in
statistical forecasting (González-Sopeña et al., 2021).

For the scalability experiments, we determine the solving times of the scheduling problem
up to a predefined gap and report the average time for multiple runs as a metric for
scalability.

4.4.2 Results

In this section, we collect the results of the different simulation experiments. The
experiments include the application of our approach to the scenarios of self-consumption
and peak reduction, a comparison with the baseline approach explained in Section 4.4.1, a
variation of the allowed activation timesteps k for a fixed number of buildings, a variation
of the number of buildings for a fixed request, and the scalability experiments.

For all building models, we collect data from the first 21 days of the year to fit the virtual
battery models described in Section 4.2.2. The test period covers the 50 following days.
To evaluate the results for peak reduction, the metric in (4.62) is computed for each
day and then averaged over the 50 days. For the self-consumed power fraction and the
percentage of temperature violations, (4.63) and (4.64) are computed over the whole 50
days.
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Self-consumption experiments

The results of running the self-consumption experiments for the 50 test days are displayed
in Figure 4.7. Figure 4.7a shows the first three days of the test period with the baseline
consumption forecast given in green, the actual consumption in red, the baseline plus
relative request in blue, and the baseline plus committed request in orange. Due to the
perfect tracking during the request periods, the orange line is covered by the red one.
The first day shows a large request which is not fulfillable with the estimated available
flexibility and therefore leads to a lower committed request. On days two and three, the
requests are fulfillable and thus tracked exactly. An example of a computed schedule for
a self-consumption request is given in Appendix 4.6.4.

Figure 4.7b shows the self-consumed power fraction and the percentage of temperature-
bound violations for α values of 0.001, 0.5, and 1, and compares them to the baseline
approach and the nominal controller operation without receiving flexibility requests. As
expected, a lower α leads to more conservative predictions of the available flexibility,
and therefore both to a lower self-consumption ∆Sr and a lower percentage of violations
∆Tr, with about 0.548 and 0.06% respectively. With increasing α, both of the metrics
increase as well, up to a ∆Sr of about 0.631 and a ∆Tr of about 1.11% for α = 1. The
baseline approach achieves the highest self-consumption with ∆Sr ≈ 0.686, but also a
high percentage of violations with ∆Tr ≈ 5.17%. In comparison, the nominal controller
operation does not result in any temperature-bound violations and has a self-consumption
of ∆Sr ≈ 0.391.

We also run the experiments for 500 buildings with our approach and α = 1. Since
the requests are scaled to the number of buildings, a comparable result of ∆Sr ≈ 0.629

and ∆Tr ≈ 1.17% is achieved. The results for three of the test days are shown in
Appendix 4.6.5.

Peak reduction experiments

Figure 4.8 presents the results of the peak reduction experiments for the 50 test days.
Again, the results for the first three days with α = 1 are shown on the left-hand side,
Figure 4.8a. In this example, the request of the first day is fulfillable and tracked
accordingly. For days two and three, the available flexibility is not sufficient to decrease
the overall consumption to the desired level (blue line), instead, a smaller decrease is
committed to and followed (orange line, covered by red line). An example of a computed
schedule for a peak reduction request is given in Appendix 4.6.4.

As in the self-consumption case, a smaller α leads to a lower absolute peak power reduction
and a lower percentage of violations (∆Pa ≈ 40.71kW, ∆Tr ≈ 0.005% for α = 0.001),
whereas a higher α leads to better performance, but higher violations (∆Pa ≈ 46.49kW,
∆Tr ≈ 0.691% for α = 1). An intermediate α seems to deliver a good tradeoff between
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(a) Self-consumption request following for the first three days of the test period with α = 1.
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(b) Cumulated metrics for the test period with varying α values and comparison to the baseline
and nominal controller operation.

Figure 4.7 – Results of the self-consumption experiments with 100 buildings and a
maximum activation time of 3h per building.

performance and violations for both self-consumption and peak reduction. The baseline
approach performs less well in the peak reduction case, having both the lowest absolute
peak power reduction of about 29.36kW and the highest percentage of violations of about
1.89%.

In the corresponding experiments with 500 buildings and α = 1, a peak power reduction
of about 229.80kW is achieved with about 0.608% bound violations. See Appendix 4.6.5
for a visualization of these results.

Additionally, we run experiments to quantify how the metrics change when we vary the
number of available timesteps k. Similarly, we run experiments to quantify how the
number of buildings influences the resulting metrics.

For the first part, we run the experiments for 100 buildings and compute flexibility
envelopes for k = 12 (i.e., 1 hour availability), k = 36 (i.e., 3 hours availability), and
k = 60 (i.e., 5 hours availability) with α = 1. The results are shown in Figure 4.9a. A
short availability time leads to no temperature violations in this case, but also a lower
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(a) Peak reduction request following for the first three days of the test period with α = 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

30

35

40

45

Percentage of Violations ∆Tr

A
bs
ol
ut
e
P
P
R
∆
P
a alpha 0.001

alpha 0.5
alpha 1.0
baseline

(b) Averaged metrics for the test period with varying α values and comparison to the baseline.

Figure 4.8 – Results of the peak reduction experiments with 100 buildings and a maximum
activation time of 3h per building.

absolute peak power reduction of about 36.26kW. With increasing activation duration,
both of these metrics increase to about 0.828% of violations and ∆Pa of 49.23kW. This
might be due to either a duration of 1 hour not being enough for the building to saturate
its temperature bounds, or to a longer prediction horizon leading to an accumulation of
errors, and therefore an overestimation of the available flexibility.

For the second part, we generate requests according to the description in Section 4.4.1,
for a pool of 120 buildings. The request following is then attempted with 100 to 200
buildings. The results are shown in Figure 4.9b. As expected, having more buildings
increases the capabilities in peak reduction, which can be observed with an absolute peak
power reduction of 51.83kW for 100 buildings to a ∆Pa of 63.20kW for 200 buildings.
Interestingly, no clear trend is visible in the percentage of violations, being in the range
of 0.543% to 0.706%.
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Figure 4.9 – Impact of varying parameters in the peak reduction experiments with α = 1.

Scalability experiments

To test the scalability of our approach to the number of included assets, we measure the
wall-clock solving time of the scheduling problem with different numbers of flexibility
envelopes. The flexibility envelopes are chosen at random from a set of 25000 envelopes,
generated from the operation of 500 buildings during 50 days. The request trajectory
is generated for a random day of the year, distinguishing between a high request (new
desired peak c as the average consumption of that day), a medium request (1.05 times
the average), and a low request (1.1 times the average) scenario. This is done for 50,
100, 250, 500, 1000, and 2000 envelopes and the solving times are averaged over 20 runs.
The problem is solved up to an absolute gap of 0.01c, using Gurobi as a solver. These
experiments were run on a laptop with Intel i7-8565U processor running at 1.8 GHz and
16 GB of RAM. The results of the experiments are displayed in Figure 4.10.

The solving times scale about linearly in the number of considered envelopes, the peak
being reached at an average of 24 seconds for the high request scenario for 2000 envelopes,
and the minimum at an average of about 0.4 seconds for the medium request scenario for
50 envelopes. When repeating the experiments with a fixed absolute gap of 1, meaning
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Figure 4.10 – Average solving times of the peak reduction scheduling problem for varying
numbers of assets in three request cases.

that the promised peak would be at most 1kW away from the optimally achievable one,
the results lie in a comparable range. Considering that solving this problem would usually
be done once a day for scheduling the activation of assets, these runtimes suggest the
feasibility of our approach for an even larger number of assets. Also, depending on the
exact time requirements, the approach could be used in a receding horizon framework for
a medium to high number of assets.

4.5 Conclusion

In this chapter, we presented a full pipeline for estimating and coordinating the consump-
tion flexibility of flexible assets, in particular buildings. Starting from different definitions
of flexibility in the form of flexibility envelopes, a virtual battery modeling approach was
introduced to model the state transition of these flexible assets. Considering uncertainty
in the response to flexibility requests, feasible request trajectories, and in turn flexibility
envelopes, were characterized in a probabilistic fashion and reformulated in a deterministic
way with the help of risk measures. This allowed us to adjust the conservativeness of
the flexibility predictions by choosing an uncertainty parameter. Additional assumptions
were introduced to facilitate the computation of these flexibility envelopes. Flexibility
predictions were then used in the formulation of a MILP for scheduling a pool of assets.
The formulation was flexible to the use of different objectives and request types, like
maximizing self-consumption or peak reduction. With the schedule in place, we discussed
a heuristic algorithm to do the dispatch of aggregated requests to the individual assets,
as well as a simple strategy to mitigate rebound effects. In simulation, the approach was
effective in balancing the comfort and performance metrics, depending on the chosen
uncertainty parameter. The scalability of solving the scheduling problem with up to 2000
assets was demonstrated with a solving time of about 21 seconds on a conventional laptop,
making it feasible for the deployment on a large number of assets.
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4.5. Conclusion

Many extensions are possible for this line of work. One clear connection to the results
discussed in Chapter 2 is the usage of uncertainty quantification techniques for the
predictions of baseline consumption and state. How this additional uncertainty affects the
flexibility envelope predictions would need to be investigated, first in a theoretical and
second in a practical analysis. The extension of the scheduling and dispatch approach
to a receding horizon formulation seems promising for dealing with imperfect knowledge
of future requests and seems feasible as well due to the reasonable solving times of the
scheduling problem. On the practical side, the examination of the impact of heterogeneous
assets in the considered pool is of interest, since the simulation study presented here deals
with the same type of asset with varying parameters. Making the step from simulation to
deployment on real systems is another goal for the future of this approach.
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4.6 Appendix

4.6.1 Proof of Lemma 5

We use (4.13) to prove (4.14) by induction. For this, we repeatedly use the fact that
qkk = 0 and therefore (1− bf )q

k
k = 1.

Let k = 1. We distinguish the cases r0 = 0 and r0 6= 0. For r0 = 0, we have χr0 = 1 and
therefore q1

0 = 1.

We have

ŝ1 = s0 + bf (f(e:0)− s0) + f(e:1)− f(e:0)

= (1− bf )s0 + bff(e:0) + f(e:1)− f(e:0)

= (1− bf )q
1
0s0 +

0∑
l=0

(1− bf )q
1
l+1(f(e:l)bfχrl + a+r+

l + a−r−l + f(e:l+1)− f(e:l)).

Similarly, for r0 6= 0, we have χr0 = 0 and therefore q1
0 = 0, resulting in

ŝ1 = s0 + a+r+
t + a−r−t + f(e:1)− f(e:0)

= (1− bf )q
1
0s0 +

0∑
l=0

(1− bf )q
1
l+1(f(e:l)bfχrl + a+r+

l + a−r−l + f(e:l+1)− f(e:l)).

In both of those reformulations we used adding terms that evaluate to zero or multiplying
by terms that are one to arrive at the formulation in (4.14).

Assume that (4.14) holds for a fixed k ∈ N. Then we observe the following for k + 1:

In the case that rk = 0, we have χrk = 1 and therefore qk+1
l = qkl + 1 for l = 0, . . . , k.
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From (4.13), we have

ŝk+1 = ŝk + bf (f(e:k)− ŝk) + f(e:k+1)− f(e:k)

= (1− bf )ŝk + bff(e:k) + f(e:k+1)− f(e:k)

= (1− bf )

(
(1− bf )q

k
0 s0 +

k−1∑
l=0

(1− bf )q
k
l+1

(
f(e:l)bfχrl + a+r+

l + a−r−l

+ f(e:l+1)− f(e:l)
))

+ bf (f(e:k)− ŝk) + f(e:k+1)− f(e:k)

= (1− bf )q
k
0+1s0 +

k−1∑
l=0

(1− bf )q
k
l+1+1

(
f(e:l)bfχrl + a+r+

l + a−r−l

+ f(e:l+1)− f(e:l)
)

+ (1− bf )q
k+1
k+1 (bf (f(e:k)− ŝk) + f(e:k+1)− f(e:k))

= (1− bf )q
k+1
0 s0 +

k∑
l=0

(1− bf )q
k+1
l+1 (f(e:l)bfχrl + a+r+

l + a−r−l + f(e:l+1)− f(e:l)).

In the case that rk 6= 0, we have χrk = 0, qk+1
l = qkl for l = 0, . . . , k, and therefore

ŝk+1 = ŝk + a+r+
k + a−r−k + f(e:k+1)− f(e:k)

= (1− bf )q
k
0 s0 +

k−1∑
l=0

(1− bf )q
k
l+1

(
f(e:l)bfχrl + a+r+

l + a−r−l

+ f(e:l+1)− f(e:l)
)

+ a+r+
k + a−r−k + f(e:k+1)− f(e:k)

= (1− bf )q
k
0+1s0 +

k−1∑
l=0

(1− bf )q
k
l+1+1

(
f(e:l)bfχrl + a+r+

l + a−r−l

+ f(e:l+1)− f(e:l)
)

+ (1− bf )q
k+1
k+1
(
a+r+

k + a−r−k + f(e:k+1)− f(e:k)
)

= (1− bf )q
k+1
0 s0 +

k∑
l=0

(1− bf )q
k+1
l+1 (f(e:l)bfχrl + a+r+

l + a−r−l + f(e:l+1)− f(e:l)).

Again, we used adding terms that evaluate to zero or multiplying by terms that are one.
The final equations give (4.14), which proves the claim for general k ∈ N.

4.6.2 Reformulations

We start by recalling the formulation of the state ŝk as in (4.14):

ŝk = (1− bf )q
k
0 s0 +

k−1∑
l=0

(1− bf )q
k
l+1(f(e:l)bfχrl + a+r+

l + a−r−l + f(e:l+1)− f(e:l)),
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with qkl =
∑k−1

i=l χri . We first group all the non-request parts to get

ŝk = (1− bf )q
k
0 s0 +

k−1∑
l=0

(1− bf )q
k
l+1(f(e:l)bfχrl + f(e:l+1)− f(e:l))︸ ︷︷ ︸

ck

+
k−1∑
l=0

(1 − bf )q
k
l+1(a+r+

l + a−r−l ).

The latter part can then be reformulated in the two following ways:

ŝk = ck +
k−1∑
l=0

(1− bf )q
k
l+1a+r+

l +
k−1∑
l=0

(1− bf )q
k
l+1a−r−l

= ck + [(1− bf )q
k
1a+, . . . , (1− bf )q

k
ka+]︸ ︷︷ ︸

a+
k

 r+
0
...

r+
k−1


︸ ︷︷ ︸

r+
k

+ [(1− bf )q
k
1a−, . . . , (1− bf )q

k
ka−]︸ ︷︷ ︸

a−k

 r−0
...

r−k−1


︸ ︷︷ ︸

r−k

= ck + [a+
k ,a

−
k ]

(
r+
k

r−k

)

which is the same as (4.18) and

ŝk = ck +

(
k−1∑
l=0

(1− bf )q
k
l+1r+

l

)
a+ +

(
k−1∑
l=0

(1− bf )q
k
l+1r−l

)
a−

= ck +

[
k−1∑
l=0

(1− bf )q
k
l+1r+

l ,
k−1∑
l=0

(1− bf )q
k
l+1r−l

]
︸ ︷︷ ︸

Rk

(
a+

a−

)

= ck + Rk

(
a+

a−

)

which is the same as (4.19). Using this, we can reformulate the set of feasible request
trajectories (4.17)

Rαk (s0) =
{
r0:k−1 ∈ Rk : P

{
0 ≤ [ŝ0, · · · , ŝk]> ≤ 1

}
≥ 1− α, ŝ0 = s0

}
.
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Since the probability is taken element-wise, we can write the set as an intersection over
sets of the individual elements:

Rαk (s0) =
k⋂
l=0

{
r0:k−1 ∈ Rk : P {0 ≤ ŝl ≤ 1} ≥ 1− α, ŝ0 = s0

}
.

Considering an individual element of the intersection, we can substitute ŝl by{
r0:k−1 ∈ Rk : P

{
0 ≤ cl + [a+

l ,a
−
l ]

(
r+
l

r−l

)
≤ 1

}
≥ 1− α, ŝ0 = s0

}
.

For the inequality in the probability, we have

0 ≤ cl + [a+
l ,a

−
l ]

(
r+
l

r−l

)
≤ 1

⇔ 0 ≤ cl + [a+
l ,a

−
l ]

(
r+
l

r−l

)

− 1 ≤ −cl − [a+
l ,a

−
l ]

(
r+
l

r−l

)

⇔
(

0

−1

)
≤
(
cl
−cl

)(
a+
l a−l

−a+
l −a−l

)(
r+
l

r−l

)

⇔
(
−cl
cl − 1

)
︸ ︷︷ ︸

bl

≤
(

a+
l a−l

−a+
l −a−l

)
︸ ︷︷ ︸

Al

(
r+
l

r−l

)

which results in the updated form of the set of feasible request trajectories

Rαk (s0) =
k⋂
l=0

{
r0:k−1 ∈ Rk : P

{
bl ≤ Al

(
r+
l

r−l

)}
≥ 1− α

}
.

4.6.3 j-point averages

We recall that P+ = {a+
1 , . . . , a

+
n1

: a+
i ≤ a+

j if i < j},P− = {a−1 , . . . , a−n2
: a−i ≤

a−j if i < j}, and Pj = {1
j

∑j
i=1 ai : ai ∈ P+ × P−,al 6= ak for l 6= k}. To get the

parameters in Pj with the maximum first or second component, we look at the sorted list
of tuples in P+ ×P−. We restrict ourselves to the case of sorting by the first component,
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i.e. finding a+
max,j , the result for a−max,j follows analogously. We have

a1 = (a+
n1
, a−n2

),a2 = (a+
n1
, a−n2−1), . . . ,an2 = (a+

n1
, a−1 )︸ ︷︷ ︸

n2 tuples

an2+1 = (a+
n1−1, a

−
n2

),an2+2 = (a+
n1−1, a

−
n2−1), . . . ,a2n2 = (a+

n1−1, a
−
1 )︸ ︷︷ ︸

n2 tuples

...

a(n1−1)n2+1 = (a+
1 , a

−
n2

),a(n1−1)n2+2 = (a+
1 , a

−
n2−1), . . . ,an1n2 = (a+

1 , a
−
1 )︸ ︷︷ ︸

n2 tuples

,

so n2 tuples with the maximum first component, n2 tuples with the second-largest first
component, and so on. To get the j-point average with the largest first component, we
need to take the average of a1, . . . ,aj . Like this, we get that

a+
max,j =

1

j

n2

b j
n2
c∑

i=0

a+
n1−i + (j mod n2)a+

n1−b j
n2
c−1

 .

Equivalently, we get

a−min,j =
1

j

n1

b j
n1
c∑

i=0

a−n2−i + (j mod n1)a−
n2−b j

n1
c−1

 .

4.6.4 Example schedules

Figure 4.11 shows an example of the scheduling result for a self-consumption request. The
overall request is not fulfillable, and the resulting schedule together with the committed
request shows a clear pattern: buildings are either activated right at the start of the
request period or with a delay, such that the highest self-consumption is achieved in the
middle of the request period when all buildings are active at the same time.

In Figure 4.12, an example of the scheduling result for a peak reduction request is
displayed. Again, the overall request is not fulfillable, so a scaled-down version of this
request is determined as the committed request. Building activation is more scattered in
this example, as shown in Figure 4.12b, but centered around the two request peaks at
about 12 h and 18 h.
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(a) Relative self-consumption request (blue solid line) and committed request (red dashed line).
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(b) Building activation times (black bars) for each of the 100 buildings over one day.

Figure 4.11 – Scheduling example for a self-consumption request with 100 buildings and
α = 1.

4.6.5 Request following with 500 buildings

Examples of the scheduling and dispatch with 500 buildings and α = 1 are shown in
Figure 4.13 for the case of self-consumption, and in Figure 4.14 for the case of peak
reduction.
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(b) Building activation times (black bars) for each of the 100 buildings over one day.

Figure 4.12 – Scheduling example for a peak reduction request with 100 buildings and
α = 1.
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Figure 4.13 – Self-consumption request following for three days of the test period with
500 buildings and α = 1.
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Figure 4.14 – Peak reduction request following for three days of the test period with 500
buildings and α = 1.
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