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Foreword 

This doctoral thesis deals with two topics related to the shear resistance of reinforced concrete 
beams and the fatigue of concrete structures. 

The first topic concerns the shear resistance of beams with shear reinforcement and loads applied 
close to the supports. While solutions based on the stress field method (which in turn is based 
on limit analysis) are well known for elements of this type with loads sufficiently far from the 
supports, and have been implemented in standards in the form of easy-to-use formulae for some 
decades now, the situation is different for the case studied with forces close to the supports. For 
this case too, solutions based on limit analysis exist, but have never been systematically validated 
and, above all, the solutions are difficult to use in practice. For this reason, simplified methods 
or methods based on an empirical approach are generally used in practice.  

Marko Pejatović’s work fills this gap. Theoretical work has made it possible to derive easy-to-
use formulae for estimating the shear resistance of squat members. These have been 
implemented in the 2nd generation of the European standard for concrete structures EN 1992-1-
1:2023, as well as in the international standard fib MC2020 published some months ago. 

The second topic concerns the dowel action of reinforcing bars (i.e., their ability to carry a shear 
force) as well as the bending stresses that develop in steel reinforcing bars as a result of the slip 
and the opening of a crack running through them. The research first involved laboratory tests 
which allowed to better understand the phenomenon. This new knowledge has enabled existing 
models to be improved.  

A simple equation has been developed to calculate the flexural stresses in the bars as a function 
of the various parameters. This equation can be used for verifying the risk of fatigue failure of 
existing structures based on non-destructive in-situ measurements (without the need to remove 
the concrete cover and stick strain gauges on the bars). 

For the ultimate limit state, the existing model based on limit analysis has been improved on the 
basis of the knowledge acquired from tests and a comparison of the experimental results 
available. 

As described above, the results of the first topic have been implemented in new codes for 
practice. The results of the second topic can have a significant influence in the assessment of 
existing structures. For these reasons, the outcome of this research, which has been supported 
by the Swiss Federal Road Administration, has a significant practical relevance. 

Lausanne, February 2024, Prof. Aurelio Muttoni 
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Abstract 

Codes of practice can be overly conservative, particularly for the shear resistance of reinforced 
concrete beams with shear reinforcement when large loads act close to supports. This thesis 
addresses the topic by proposing a refined design approach based on the stress field method for 
this type of members, with the aim to provide accurate values for the design or verification of 
both slender and squat members. It then goes on by presenting a model to better understand the 
behaviour of steel and concrete in presence of dowel action in reinforcing bars. 

Consistent models based on suitable stress fields, as for example the Variable-Angle Truss 
models, can be used for the shear design of slender members with shear reinforcement, as 
proposed by Eurocode 2 (EN:1992-1-1:2004) and fib Model Code 2010. However, this type of 
approach usually neglects the contribution of direct struts for loads applied close to the supports, 
and thus underestimates the resistance in these cases. To account for this phenomenon, the shear 
resistance of slender members in design codes has typically been adjusted by empirical 
corrections. This thesis shows the advantages of designing these cases based on tailored stress 
fields, which allow a smooth transition between slender and squat members and yield more 
accurate predictions than empirical corrections. On that basis, simple design formulae are 
developed to serve as a basis for a revision for the next generation of design codes 
(Model Code 2020 and 2nd generation of Eurocode 2). 

Reinforcing bars are commonly designed to carry axial forces, neglecting their ability to resist 
transverse forces by dowel action, which can occur at crack interfaces, connections between 
various concrete elements or between two concrete parts cast at different times. On the negative 
side, dowel action can affect the fatigue resistance of reinforcing bars subjected to cyclic loading, 
inducing stress concentrations near interfaces with relative displacements transverse to the bar. 

This thesis contributes to a better understanding of dowel action by two test series. The first 
series focuses on the dowel response due to monotonic or low stress-level cyclic actions, with 
optical fibre and digital image correlation measurements. The results show the influence of the 
bar diameter, the imposed crack kinematics and the angle between the bar and the crack. The 
second test series investigates the behaviour of concrete underneath the bar due to a point load. 
The results show a strong dependency on position of the load along the bar.  

As for the stress prediction in reinforcing bars due to dowel action, this thesis presents a new 
formulation for the bearing stiffness of concrete under the bar to be introduced in Winkler’s 
model as a function of the transverse displacement. The formulation is calibrated based on 
mechanical considerations and optical fibre measurements. The proposed bearing stiffness leads 
to good predictions of both the dowel force-transverse displacement response and the peak stress 
in the reinforcing bar for both monotonic and cyclic tests.  

Keywords: shear, direct strut, design codes, stress fields, shear reinforcement, dowel action, 
cracks, stress variation, digital image correlation, optical fibres, concrete bearing stiffness. 
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Résumé 

Les normes de construction peuvent être excessivement conservatrices, surtout pour la résistance 
à l'effort tranchant des éléments en béton armé avec armature à l'effort tranchant lorsque des 
charges importantes agissent près des appuis. Cette thèse propose une approche basée sur des 
champs de contraintes pour la conception pour ce type d'éléments. L'objectif est de fournir des 
valeurs précises pour le dimensionnement et la vérification des éléments aussi bien élancés que 
trapus. Elle présente également un modèle pour comprendre le comportement de l'acier et du 
béton en présence d’effet goujon dans les barres d'armature. 

Certains modèles basés sur des champs de contraintes, comme les treillis à angles variables, 
peuvent être utilisés pour le calcul de l'effort tranchant des éléments élancés avec armature à 
l'effort tranchant, comme proposé par l'Eurocode 2 et le fib Model Code 2010. Cependant, ces 
approches négligent la contribution de l’appui direct pour les charges agissant près des appuis, 
conduisant à une sous-estimation de la résistance. Pour tenir compte de l’appui direct, les normes 
ont souvent été ajustées par des corrections empiriques pour la vérification de la résistance à 
l'effort tranchant d’éléments élancés. Cette thèse montre les avantages d'une conception basée 
sur des champs de contraintes adaptés, permettant une transition entre éléments élancés et trapus, 
avec des prédictions plus précises. Sur cette base, des formules de dimensionnement simples 
sont développées, pour être introduites dans les prochaines générations de normes 
(Model Code 2020 et 2ème génération de l'Eurocode 2). 

Les barres d'armature sont généralement dimensionnées pour reprendre des efforts 
longitudinaux, en négligeant leur capacité à reprendre des efforts transversaux par effet goujon. 
Cet effet peut se produire à proximité des fissures, à l’interface entre divers éléments de béton, 
etc. L'effet goujon peut influencer négativement la résistance à la fatigue des barres d'armature 
soumises à des charges cycliques, en provoquant des concentrations de contraintes près des 
interfaces avec des déplacements relatifs transversaux par rapport à la barre. 

Cette thèse contribue à une meilleure compréhension de l'effet goujon par deux séries d’essais. 
La première se concentre sur la réponse des goujons sous des actions monotones ou cycliques à 
faible niveau de contrainte, avec des mesures par fibre optique et corrélation d'images 
numériques. Les résultats montrent l'influence du diamètre de la barre, de la cinématique de la 
fissure et de l'angle entre la barre et la fissure. La deuxième série d'essais examine le 
comportement du béton sous la barre soumis à une charge ponctuelle. Les résultats montrent une 
forte dépendance de la position de la charge le long de la barre. 

Pour la prédiction des contraintes dans les barres d'armature dues à l'effet goujon, cette thèse 
présente une nouvelle formulation de la rigidité du béton sous la barre, qui peut être introduite 
dans un modèle de Winkler, en fonction du déplacement transversal. La formulation est calibrée 
sur la base de considérations mécaniques et de mesures par fibre optique. La rigidité proposée 
conduit à des prédictions précises de la réponse en force de l’effort tranchant-déplacement 
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transversal et de la contrainte maximale dans la barre d'armature pour les essais monotones et 
cycliques. 

Mots clés : effort tranchant, appui direct, normes, champs de contraintes, armature d'effort 
tranchant, effet goujon, fissures, variation de contrainte, corrélation d'images numériques, fibres 
optiques, rigidité du béton sous la barre. 
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Abstrakt 

Norme za projektovanje mogu biti previše konzervativne, posebno za smičuću čvrstoću 
armirano-betonskih greda sa armaturom na smicanje kada značajne sile djeluju blizu oslonaca. 
Ova doktorska teza predlaže detaljan pristup projektovanju zasnovan na metodi polja napona za 
ovu vrstu elemenata, sa ciljem da obezbedi precizne rezultate za projektovanje i verifikaciju 
kako vitkih tako i zdepastih elemenata. Ova teza dalje prezentuje i model za bolje razumijevanje 
ponašanja čelika i betona usled efekta moždanika u armaturnim šipkama.  

Konzistentni modeli zasnovani na poljima napona, kao što su modeli rešetke sa promjenljivim 
nagibom pritisnutog polja, mogu se koristiti za projektovanje vitkih elemenata sa armaturom na 
smicanje, kao što je predloženo u Evrokodu 2 (ЕN:1992-1-1:2004) i fib-ovom 
Model Kodu 2010. Ovakav pristup međutim zanemaruje doprinos direktnog štapa u slučaju sila 
blizu oslonaca, i na taj način podcjenjuje čvrstoću u ovim slučajevima. Da bi se ovaj fenomen 
uzeo u obzir, čvrstoća na smicanje vitkih elemenata u normama za projektovanje je obično 
prilagođena empirijskim korekcijama. Ova teza pokazuje prednosti projektovanja ovih slučajeva 
koristeći odgovarajuća polja napona, koja omogućavaju tranziciju između vitkih i zdepastih 
elemenata i koja daju preciznije predikcije smičuće čvrstoće od empirijskim korekcija. Na 
osnovu toga, jednostavne jednačine za projektovanje su razvijene i služe kao osnova za reviziju 
sledeće generacije normi za projektovanje (Model Kod 2020 i druga generacija Evrokoda 2).  

Armaturne šipke se obično dimenzionišu na aksijalne sile, zanemarujući njihovu sposobnost da 
nose poprečne sile efektom moždanika koji se može javiti na prslinama, konekcijama između 
različitih betonskih elemenata ili između dva betonska elementa betonirana u različito vrijeme. 
Sa negativne strane, efekat moždanika može negativno uticati na čvrstoću na zamor armaturnih 
šipki podvrgnutim cikličnom opterećenju, izazivajući koncentracije napona u blizini prslina ili 
konekcija sa relativnim pomjeranjem poprečnog na osu šipke. Ova teza doprinosi boljem 
razumijevanju efekta moždanika pomoću dvije serije testova. Prva serija se fokusira na 
ponašanje moždanika usled monotonog i cikličnog opterećenja malog intenziteta. Rezultati 
pokazuju uticaj prečnika šipke, aplicirane kinematike prsline i ugla između šipke i prsline. Druga 
serija testova ispituje ponašanje betona ispod šipke usled koncentrisane sile. Rezultati pokazuju 
snažnu zavisnost od položaja sile duž šipke.  

Što se tiče predikcije napona u armaturnim šipkama usled efekta moždanika, ova teza prezentuje 
novu formulaciju za krutost betona ispod šipke koja se kostisti u Vinklerovom modelu kao 
funkcija poprečnog pomjeranja. Ova formulacija je kalibrisana na osnovu mehaničnih 
razmatranja i mjerenja optičkim vlaknima. Predložena krutost betona daje dobre predikcije kako 
za odgovor moždanika u odnosu na smičuću silu u funkciji od poprečnog pomjeranja, tako i za 
maksimalni napon u šipki i u monotonim i u cikličnim testovima.  

Ključne riječi: smicanje, direktni štap, norme za projektovanje, polje napona, armatura na 
smicanje, efekat moždanika, prsline, varijacija napona, digitalna korelacija fotografija, optička 
vlakna, krutost betona.  
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Riassunto 

Per quanto riguarda la resistenza a taglio di travi in calcestruzzo armato con armatura a taglio, 
le normative attuali possono essere eccessivamente conservative quando grandi carichi agiscono 
in prossimità degli appoggi. Lo scopo di questa tesi è di proporre un approccio progettuale 
raffinato basato sul metodo dei campi di tensione per questo tipo di elementi. L'obiettivo è quello 
di fornire valori accurati per la progettazione e la verifica sia di elementi snelli che tozzi. Inooltre 
si presenta un modello per comprendere meglio il comportamento dell'acciaio e del calcestruzzo 
in presenza dell'azione di spinotto nelle barre di armatura. 

Modelli coerenti basati su campi di tensione adeguati, come ad esempio i modelli a traliccio ad 
angolo variabile, possono essere utilizzati per la progettazione a taglio di membrature snelle con 
armatura a taglio, come proposto dall'Eurocodice 2 (EN:1992-1-1:2004) e dal fib Model Code 
2010. Tuttavia, questo tipo di approccio solitamente trascura il contributo dell’appoggio diretto 
per i carichi applicati in prossimità degli appoggi, e quindi sottostima la resistenza in questi casi. 
Per tenere conto di questo fenomeno, la resistenza a taglio degli elementi snelli nelle normative 
è stata in genere corretta in modo empirico. Questa tesi mostra i vantaggi di progettare questi 
elementi sulla base di campi di tensione adattati, i quali consentono una transizione graduale tra 
elementi snelli e tozzi, fornendo previsioni più accurate rispetto alle correzioni empiriche. Su 
questa base, vengono sviluppate semplici formule di verifica che serviranno come base per una 
revisione della prossima generazione di normative (Model Code 2020 e seconda generazione 
dell’Eurocodice 2). 

Le barre d'armatura sono comunemente progettate per lavorare con sforzi assiali, trascurando la 
loro capacità di resistere a forze trasversali sotto l’azione di spinotto, che può verificarsi 
all’interfaccia delle fessure, alle connessioni tra vari elementi in calcestruzzo o tra due parti in 
calcestruzzo gettate in tempi diversi. Lo svantaggio è che l'azione di spinotto può influire sulla 
resistenza a fatica delle barre d'armatura che sono sottoposte a carichi ciclici, inducendo 
concentrazioni di tensione in prossimità delle interfacce con spostamenti relativi trasversali alla 
barra. 

Questa tesi contribuisce a migliorare la comprensione dell'azione di spinotto attraverso due serie 
di test. La prima serie si concentra sulla risposta sotto azioni monotone o cicliche con bassi livelli 
di tensione, con misure eseguite utilizzando fibre ottiche e correlazione di immagini digitali. I 
risultati mostrano l'influenza del diametro della barra, della cinematica della fessura imposta e 
dell'angolo tra la barra e la fessura. La seconda serie di prove studia il comportamento del 
calcestruzzo sotto la barra soggetto ad un carico puntuale. I risultati mostrano una forte 
dipendenza dalla posizione del carico lungo la barra.  

Riguardo la valutazione dello stress nelle barre di armatura dovute all'azione di spinotto, questa 
tesi presenta una nuova formulazione per la rigidezza del calcestruzzo sotto la barra da introdurre 
nel modello di Winkler in funzione dello spostamento trasversale. La formulazione è calibrata 
sulla base di considerazioni meccaniche e di misure con fibre ottiche. La formulazione della 
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rigidezza proposta porta a una buona stima sia della risposta della forza di spinotto allo 
spostamento trasversale, sia della tensione di picco nella barra di armatura sia per prove 
monotone che cicliche.  

Parole chiave: taglio, appoggio diretto, normative per le costruzioni, campi di tensione, 
armatura a taglio, azione di spinotto, fessure, variazione di tensione, correlazione digitale di 
immagini, fibre ottiche, rigidità portante del calcestruzzo. 
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Resumen 

Las normas de diseño de estructuras pueden ser excesivamente conservadoras, en particular para 
la resistencia a cortante de vigas de hormigón con armadura de cortante cuando actúan grandes 
cargas cerca de los apoyos. Esta tesis aborda este tema proponiendo un procedimiento de diseño 
refinado basado en el método de los campos de tensiones, con el objetivo de proporcionar valores 
precisos para el diseño o la verificación de miembros tanto esbeltos como compactos. La 
segunda parte de la tesis presenta un modelo para comprender mejor la interacción entre las 
barras de armadura y el hormigón como resultado del efecto pasador. 

Los modelos basados en campos de tensiones, como por ejemplo los modelos de celosía de 
ángulo variable, pueden utilizarse para el cálculo de la resistencia a cortante de elementos 
esbeltos con cercos, tal y como proponen el Eurocódigo 2 (EN:1992-1-1:2004) y el Código 
Modelo de 2010 de la fib. Sin embargo, este tipo de modelos suele despreciar la contribución de 
las bielas directas para cargas aplicadas cerca de los apoyos y, por tanto, subestima la resistencia 
en estos casos. Para tener en cuenta este fenómeno en las normas actuales, la resistencia a 
cortante de los elementos esbeltos se ha ajustado mediante factores de corrección empíricos. 
Esta tesis muestra las ventajas de diseñar estos elementos usando campos de tensiones, ya que 
permiten una transición progresiva entre elementos esbeltos y compactos, al mismo tiempo que 
proporcionan predicciones más precisas que las correcciones empíricas (Código Modelo de 2020 
y 2ª generación del Eurocódigo 2). 

Las barras de armadura suelen diseñarse para resistir solicitaciones axiales, olvidando su 
capacidad para resistir solicitaciones de cortante debidas al efecto pasador. Éstas pueden 
producirse en las fisuras, en las conexiones entre elementos de hormigón o entre dos elementos 
hormigonados en momentos diferentes. Esta combinación de solicitaciones puede tener un 
efecto negativo en la resistencia a la fatiga de las barras sometidas a cargas cíclicas, ya que 
generan concentraciones de tensiones cerca de las interfaces donde se producen los 
desplazamientos transversales a la barra. 

Esta tesis contribuye a una mejor comprensión del efecto pasador mediante dos series de 
ensayos. La primera serie se centra en el comportamiento de las barras debido a solicitaciones 
transversales monotónicas y cíclicas para niveles de tensiones bajos, utilizando mediciones con 
fibra óptica y correlación digital de imágenes. Los resultados muestran la influencia del diámetro 
de la barra, la cinemática de la fisura y el ángulo entre la barra y la fisura. La segunda serie de 
ensayos investiga el comportamiento del hormigón bajo la barra debido a una carga puntual. Los 
resultados muestran una fuerte dependencia de la posición de la carga a lo largo de la barra. 

En cuanto a la predicción de tensiones en la barra debidas al efecto pasador, esta tesis presenta 
una nueva formulación de la rigidez del hormigón bajo la barra que despende del desplazamiento 
transversal, para su uso en el modelo de Winkler. La formulación ha sido calibrada en base a 
consideraciones mecánicas y resultados experimentales de las fibras ópticas. La rigidez 
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propuesta conduce a buenas predicciones tanto de la relación entre la fuerza y el desplazamiento 
transversal como de la tensión máxima en la barra para ensayos monotónicos y cíclicos.  

Palabras clave: cortante, biela directa, códigos de diseño, campos de tensiones, armadura de 
cortante, efecto pasador, fisura, variación de tensiones, correlación digital de imágenes, fibra 
óptica, rigidez del hormigón. 
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摘要 

现行规范中对于有腹筋梁的条款可能过于保守，特别是当较大的荷载作用于支座附近的

位置时。针对此类构件，本文提出了一种基于应力场的改良设计方法，可为高剪跨比以

及低剪跨比的构件提供更准确的抗剪设计和校验。本文继而提出了一个更好地解释加劲

钢筋销栓效应中钢筋和混凝土作用的模型。 

基于适宜的应力场的设计模型，例如变角度桁架模型，可被用于高剪跨比含腹筋构件的

抗剪设计。Eurocode 2 (EN:1992-1-1:2004) 以及 fib Model Code 2010 均采纳了此类模型。

然而，此类模型通常忽略了当荷载作于于支座附近时，直接压杆传力模式对抗剪的贡献，

因而低估了此类作用下构件的承载力。为了计入此现象的影响，规范中对于高剪跨比构

件的抗剪模型通常计入了基于经验的修正系数。本文展示了使用适宜的应力场方法分析

此类构件的优势。本文所提出的应力场模型允许从低到高剪跨比构件的平滑过渡，并且

提供了比经验模型更准确的抗力评估。基于此模型，本文亦提出了相应的简化的设计公

式，可被用于新一代的设计规范 (Model Code 2020 以及第二代 Eurocode 2）中相应条款

的修订。 

混凝土结构中的钢筋通常被用于承载轴向力，而其因销栓效应而对横向承载力的贡献通

常被忽略不计。销栓效应的贡献通常在裂缝界面、混凝土构件的连接处以及浇筑时间不

同的混凝土界面上发展。但另一方面，销栓效应也可能对钢筋在循环荷载作用下的抗疲

劳性能有负面影响，因为销栓效应会在钢筋存在相对横向位移的界面引发应力集中。 

本研究通过两个系列试验对销栓效应进行了深入研究。第一个系列试验着重于研究在单

调荷载和低应力循环荷载作用下的销栓效应。本实验采用了光纤传感测量和数字图像相

关（DIC）等先进量测技术。试验结果表明，钢筋的直径、被动施加的裂缝发展模式以

及钢筋与裂缝方向之间的夹角都会对销栓效应造成影响。第二个系列试验研究了钢筋下

方混凝土在集中力作用下的响应。结果表明其响应取决于荷载在钢筋上的施力位置。 

针对销栓效应在钢筋中引起的应力分析，本文提出了一个新的基于横向位移的钢筋下混

凝土刚度的计算公式。该公式可被引入到温克勒模型 （Winkler’s model）中，对销栓效

应在钢筋中引起的应力进行分析。在力学分析和光纤量测数据基础上，对该公式进行了

参数校准。引入该公式的刚度分析后，实现了对单调试验和循环试验中的锚固力-横向

位移响应以及钢筋中的峰值应力的准确预测。 

关键词：剪力，直接压杆传力，设计规范，应力场，腹筋，销栓效应，裂缝，应力变化，

数字图像相关技术，光纤传感测量，混凝土承载刚度 
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Chapter 1 

Introduction 

1.1 Context and motivation 

The shear behaviour of reinforced concrete structures presents several challenges because it 
involves complex phenomena. Over the years, most of these phenomena have been clarified and 
the corresponding load-carrying actions have been formalised, providing engineers with 
analytical expressions for both the design of new and the assessment of existing structures. 
However, commonly used expressions, as found in codes of practice, sometimes yield overly 
conservative results. This is particularly the case of the shear resistance of members with shear 
reinforcement subjected to large loads on the upper chord near the supports, where a direct strut 
develops in concrete. In this context, developing more accurate models of the shear behaviour 
is essential to minimize the material usage, reduce the maintenance and their associated costs. 
In a similar manner, the local bending of reinforcing bars due to dowel action, a load-carrying 
mechanism which is often neglected, can lead to stress concentrations which can potentially lead 
to fatigue failures. This thesis addresses these two relatively distant topics: the shear design of 
reinforced concrete members with shear reinforcement based on the stress field approach, and 
the dowel action of reinforcing bars embedded in concrete.  

 

Design of slender and squat members with shear reinforcement using stress fields 

The stress field method is a consistent tool for the design and assessment of concrete 
structures [Mut96, Nik17, Kos09, Fer07]. Based on equilibrium and yield conditions, it provides 
safe predictions of the load-carrying capacity according to the lower-bound theorem of limit 
analysis [Fer07, Dru61, Nie11]. The stress field method is especially advantageous for designing 
new structures, enabling designers to select the most appropriate load-carrying actions. For the 
assessment of existing structures, if the considered stress field is compatible with the admissible 
failure mechanism (upper-bound solution of limit analysis), the exact solution of the load-
carrying capacity according to limit analysis can be calculated [Jen79, Jen81, Jen78, Nie11]. 
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The initial development of stress fields considered a rigid-plastic response of the 
materials [Mut96], which allowed for simple manual calculations and the selection of the 
suitable load-carrying actions. More refined solutions are also possible for the assessment of 
existing structures according to the Levels-of-Approximation approach [FIB21]. In the rigid-
plastic analysis, to account for the cracking in concrete, a constant strength reduction factor of 
concrete ν is typically adopted [Mut96, Vec86] based on strain conditions in the member. To be 
applicable, this approach requires a minimum amount of shear reinforcement to ensure a 
smeared development of cracking [Mon22]. 

The shear design of slender members is based on stress fields, as proposed by several codes of 
practice [FIB13, Eur04, ACI08, SIA13]. This is for example the case of the Variable-Angle 
Truss models (VAT) which are based on the acting shear force in equilibrium with an inclined 
compression field and the longitudinal and transverse reinforcement in tension (Fig. 1.1a). Based 
on the VAT models and rigid-plastic stress fields, simple design expressions have been 
incorporated into codes of practice, such as Eurocode 2 EN 1992-1-1:2004 [Eur04] and 
fib’s MC 2010 [FIB13]. This approach provides accurate predictions of the resistance for 
slender beams. However, it yields overly conservative results in the case of gravity loads applied 
on the upper chord near the supports, because it neglects the development of a direct strut in the 
concrete between the load and the support (Fig. 1.1b). This strut leads to a more favourable 
cracking state and thus to a larger shear resistance. This was recognised and empirical 
corrections of the shear resistance of slender members were introduced for the design of 
members with a large contribution of the direct strut. Unfortunately, these empirical corrections 
are mechanically inconsistent and can be overly conservative. This thesis investigates the shear 
design of various reinforced concrete members using the stress field method through various 
Levels-of-Approximation (LoA). The transition between squat and slender members as well as 
the main load-carrying actions are analysed using the most refined approach (the Elastic-Plastic 
Stress Fields, EPSF) [Fer07] which provide exact solutions according to the limit analysis. On 
that basis, simplified Rigid-Plastic Stress Fields are proposed for the design accounting for the 
direct strut. In addition, a consistent approach to evaluate the associated strength reduction 
factors accounting for compatibility of deformations is presented. The proposed expressions are 
simple to use, and are a basis for the revision for the next generation of design codes (Model 
Code 2020 and 2nd generation of Eurocode 2). 

 

Figure 1.1: Design of slender and squat members: (a) slender member (VAT approach) 

and (b) direct strut action.  

�
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Dowel action in reinforcing bars 

Reinforcing bars are typically designed to carry axial forces and their ability to resist transverse 
forces (by dowel action) due to their bending stiffness is neglected to simplify the structural 
design. Dowel action can be accounted for at the ultimate limit state in cases when it contributes 
to the resistance, for instance, in connections of precast elements (Fig. 1.2c), at the interface 
between two concrete parts cast at different times (Fig. 1.2b), etc. On the negative side, dowel 
action can have a negative impact on the fatigue life due to associated additional longitudinal 
bending stresses in the reinforcing bars. These stresses are induced by a relative crack 
displacement component transverse to the bar axis, resulting from the sliding of the crack 
perpendicular to the bar, and the opening and sliding of a crack inclined with respect to the 
bar (Fig. 1.2a,f).  

 

Figure 1.2: (a) Cracks due to torsion in the Weyermannshaus Viaduct (Bern, 

Switzerland); (b-e) other cases where dowel action can occur and 

(f) components of the crack kinematics. 

Typically, the fatigue verification in presence of dowel action can be based on an estimate of the 
crack kinematics and a model of the dowel action giving an estimate of the stresses as a function 
of the imposed deformations, accounting for the interaction between the reinforcing bar and the 
surrounding concrete. For the assessment of existing structures, in-situ measurements could also 
be used, for example using strain gauges or fibre optics [Can20, Cor23, Bad21, Mon21] in the 
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reinforcement. Unless these devices were placed before casting of concrete, this approach is 
invasive because it involves removing the concrete cover, which disrupts the local bond and 
dowel behaviour. Alternatively, in-situ measurements of strains and crack movements at the 
surface of the concrete using image recognition and correlation techniques [Can21] can be used 
without invasive action. In this case, a model enabling to predict the stresses in reinforcing bars 
based on the measured crack kinematics is required.  

If the concrete cover is not strong enough, spalling of the concrete cover tends to limit the dowel 
force, and consequently the steel stresses [Vin86]. Conversely, when the cover is strong, 
substantial stresses in the reinforcing bars can occur, causing plastic hinges in the reinforcement 
due to localized bending combined with localized concrete crushing beneath the bar near the 
crack (or the interface between concrete parts cast at different times). This type of failure results 
in a relatively ductile behaviour due to the potentially large steel plastic strains. Consequently, 
numerous authors have evaluated the dowel resistance of a steel bar using the limit analysis 
approach (see Rasmussen [Ras62] and [Sor86, Dul72, Dei87, Dei92, Tan11, Pru88, Nør15, 
Vin87]). The presence of an axial force in the bar was observed to reduce the dowel 
resistance [Sha69, Kem77, Tak19, Mae96, Mae96]. In addition, the dowel resistance decreases 
when the angle between the bar and the crack decreases [Dul72]. Experimental investigations of 
the dowel behaviour under imposed cyclic loading [Ele74, Sta77, Jim79] typically indicated an 
increase of the shear displacement with cycles, a substantial degradation of the stiffness, and a 
reduction of the area of hysteresis loops over cycles. 

A better understanding of the phenomenology of dowel action in a strong concrete embedment 
is needed. This particularly concerns the contribution of dowel action to carry shear forces and 
its impact on stress variations in reinforcing bars, which can potentially lead to a decrease in 
fatigue life.  

To that aim, this thesis presents a contribution to a better understanding of dowel action by two 
test series. The first series investigates the dowel behaviour using the concrete specimens with 
embedded bars subjected to monotonic or low stress-level cyclic actions. The measurements 
included optical fibres on the surface of the reinforcement and digital image correlation on the 
concrete surface. The tests typically finished with the development of the full plastic capacity of 
the dowel and a rupture due to catenary action. The results are strongly influenced by: the bar 
diameter, the imposed crack kinematics and the angle between the bar and the crack. The second 
test series focuses on the behaviour of concrete underneath a bar subjected to a point load. The 
results show a strong dependency on the position of the load along the bar.  

For the fatigue verifications, it is crucial to accurately estimate the stresses in the reinforcement 
due to dowel action as a function of the associated imposed transverse displacement. In that 
context, this thesis presents an improvement of the model by Winkler, introducing a new 
formulation for the bearing stiffness of concrete under the bar, calibrated based on mechanical 
considerations and measurements with optical fibres. The formulation accounts for various 
effects: bar diameter, concrete strength, angle between the crack and the bar, casting conditions, 
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thickness of the concrete cover, number of load cycles and local secondary cracks in concrete 
near the ribs due to the axial force. The results of the improved model are in good agreement 
with monotonic and cyclic tests, both for the shear force-transverse displacement response and 
for the peak stress in the reinforcing bar. Additionally, the case of asymmetric behaviour on both 
sides of the crack, which typically results from bleeding and settlement of fresh concrete as well 
as the presence of a free concrete surface near the bar, is investigated analytically.  
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1.2 Scientific contributions 

The main scientific contributions of this thesis are: 

 Development of suitable stress fields including a concentrated direct strut to determine 
the load-carrying capacity of squat reinforced concrete members with shear 
reinforcement.  

 Calibration of the strength reduction factor accounting for the cracking state of concrete 
for slender and squat members with shear reinforcement. This factor and the stress fields 
accounting for the concentrated direct strut are implemented in the next generation of 
design codes (Model Code 2020 and 2nd generation of Eurocode 2). 

 Development of suitable stress fields accounting for the full and partial spreading of the 
direct strut to estimate the load-carrying capacity of squat reinforced concrete members 
with shear reinforcement.  

 Investigation of the shear failure mechanisms and the main load-carrying actions in 
squat and slender members with shear reinforcement using the Elastic-Plastic Stress 
Fields (EPSF).  

 Establishment of a database of 463 tests of members with shear reinforcement failing in 
shear with various material and geometrical properties, including various shear 
slendernesses. 

 Experimental programme comprising dowel tests on 11 specimens subjected to 
monotonic or low stress-level cyclic actions to investigate the influence of the diameter 
of the bar, the imposed crack kinematics and the angle between the bar and the crack. 

 Refined measurements with optical fibres of strains in the reinforcing bar to investigate 
the dowel behaviour and the distribution of internal forces in the bar.  

 Experimental programme comprising compression tests of concrete underneath the 
reinforcing bar of 9 specimens to investigate the concrete behaviour due to a point load 
introduced at various locations into concrete through a reinforcing bar.  

 Refined measurements based on the digital image correlation of the concrete surface 
underneath the bar to investigate the concrete behaviour.  

 Establishment of a database of 142 dowel tests failing with plastic hinges and concrete 
crushing to evaluate the existing dowel models for the resistance prediction.  

 Proposal of a new formulation for the concrete bearing stiffness to be used in the model 
by Winkler. It is calibrated based on mechanical considerations and optical fibre 
measurements, accounting for various effects in real-life structures. 
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 Proposal of a new concrete confinement factor to be used in the model by Rasmussen. 
This factor is calibrated based on optical fibre measurements accounting for various 
angles between the crack and the bar.  

1.3 Structure of the thesis 

This thesis consists of the following chapters: 

 Chapter 1: Introduction 

Context and motivation, scientific contributions and list of publications. 

 Chapter 2: Design of slender and squat reinforced concrete members with shear 
reinforcement 

Simple design expressions based on tailored stress fields are formulated in an effort to 
serve as a revision for the next generation of design codes (Model Code 2020 and 
2nd generation of Eurocode 2). 

 Chapter 3: Experimental investigation of dowel action in reinforcing bars using 
refined measurements 

Dowel tests and compression tests of concrete underneath the bar are conducted using 
measurements with optical fibres and digital image correlation.  

 Chapter 4: Steel stresses and shear forces in reinforcing bars due to dowel action 

A new formulation for the concrete bearing stiffness to be used in Winkler’s model is 
proposed based on mechanical considerations and measurements with optical fibres. 
Additionally, the case of asymmetric behaviour on both sides of the crack is investigated 
analytically. 

 Chapter 5: A contribution to predicting the dowel resistance  

A new confinement factor to be used in Rasmussen’s model is proposed accounting for 
various angles between the bar and the crack.  

 Chapter 6: Conclusions and outlook 

Conclusions of this thesis and the outlook on the potential future work. 

The Chapters 2 to 4 contain their own introductions, literature review (state-of-the art), 
conclusions, appendixes and notations as this thesis is based on journal publications. The 
complete bibliography is given at the end of the thesis. 
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Design of slender and squat 
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shear reinforcement 

This chapter is a post-print version of the following publication: 
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concrete members with shear reinforcement, Structural Concrete, 17 p., 2022. 
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Prof. Miguel Fernández Ruiz and Prof. Aurelio Muttoni who consistently offered the 
constructive feedback, proofreading, and manuscript revisions. 

The main contributions of Marko Pejatović to this publication and chapter are the following: 

 Elaboration of suitable stress fields accounting for the concentrated direct strut, the 
direct strut with the full and partial spreading for squat reinforced concrete members 
with shear reinforcement.  

 Collection of the database with 463 shear tests of members with shear reinforcement 
with various material and geometrical properties used to validate the considered models. 

 Investigation of the shear failure of squat and slender members with the shear 
reinforcement using the Elastic-Plastic Stress Fields (EPSF).  

 Calibration of the strength reduction factor based on the collected database. 

 Elaboration of the figures and tables included in the publication and writing of the 
manuscript of the publication.  
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Abstract 

As proposed in several design standards for structural concrete, including Eurocode 2 (EN:1992-
1-1:2004) and fib’s Model Code 2010, the shear design of slender members with shear 
reinforcement can be performed by means of consistent models based on suitable stress fields. 
This is for instance the case of the variable-angle truss models, where the acting shear force is 
equilibrated by an inclined compression field and the shear reinforcement in tension. The 
application of such design expressions to squat members or when gravity loads are applied on 
the upper chord near to the supports, has however been observed to lead to overly conservative 
results. This is due to the fact that a direct strut can develop in the concrete between the load and 
the support without the need of being suspended through shear reinforcement. In addition, this 
leads to a more favourable cracking state and thus to enhanced shear resistance. Despite the fact 
that such phenomena can be also formulated in a consistent manner with the stress field method, 
empirical corrections of the resistance of slender members have traditionally been adopted to 
design beams when significant loads act close to supports. In this chapter, the benefits of 
designing such cases on the basis of tailored stress fields are demonstrated. Such an approach 
provides a smooth transition between slender and squat members and, when compared to tests, 
leads to a significantly lower Coefficient of Variation than empirical corrections. On that basis, 
simple design expressions are formulated in an effort to serve as a revision for the next 
generation of design codes (Model Code 2020 and 2nd generation of Eurocode 2). 

Keywords: design codes, direct support, D-regions, shear reinforcement, stress fields 

2.1 Introduction 

Stress fields are comprehensive and consistent tools for design and assessment of concrete 
structures [Mut96, Nik17, Kos09, Fer07]. Based on equilibrium and yield conditions, the stress 
field method provides safe estimates of the load-carrying capacity according to the lower-bound 
theorem of limit analysis [Fer07, Dru61, Nie11]. This approach is particularly convenient for 
the design of new structures, allowing a designer to select the most suitable load-carrying 
actions. In addition, provided that the resulting stress field is compatible with an admissible 
failure mechanism (upper-bound solution of limit analysis), it can also be used to calculate exact 
solutions of the load-carrying capacity according to limit analysis [Jen79, Jen81, Jen78, Nie11]. 
Such stress fields are thus also valuable tools for the assessment of existing structures, providing 
the load-bearing capacity of a structure and allowing for verification of detailing comprising the 
force that should be anchored by the longitudinal reinforcement at the support. 

Stress fields were originally developed considering a rigid-plastic response of the 
materials [Mut96]. This enables the simple hand-made calculations, allowing to select the most 
convenient load-carrying actions and to design the member accordingly. Also, more refined 
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solutions can be developed upon need, as for the assessment of existing structures following the 
Levels-of-Approximation approach [FIB21]. Since cracking of concrete reduces its effective 
compressive strength [Vec86, Bre63, Vec04, Bet18], a constant strength reduction factor of 
concrete ν is usually adopted in rigid-plastic analyses depending on the expected strain 
conditions of the member [Mut96, Vec86]. This approach can be applied provided that the 
member has a minimum amount of transverse reinforcement to ensure a smeared development 
of cracking [Mon22]. A more refined estimate of the shear resistance can be obtained by 
assuming a simplified strain state and by calculating the strength reduction factor using semi-
empirical expressions [Vec86, Sig11, FIB13]. Recently, the use of the finite element method has 
opened the possibility to develop stress fields accounting for compatibility conditions, allowing 
for refined estimates of the strength reduction factors associated to concrete cracking and also 
for automatic calculation of exact solutions [Nik17, FIB21]. 

Accounting for its generality and consistency, the design for shear of slender members based on 
stress fields has been incorporated into several codes of practice [FIB13, Eur04, ACI08, SIA13] 
as the Variable-Angle Truss models (VAT). VAT models (see Fig. 2.1, Fig. 2.2a) are based on 
the equilibrium of an inclined compression field (assuming that concrete carries only 
compression stresses) and the shear reinforcement (carrying only tensile forces). In this case, the 
shear resistance can be governed by three failure conditions as sketched in Fig. 2.1. In this 
Figure, the ordinate represents the shear stress resistance τR (equal to the shear force VR divided 
by the width of the web bw and the flexural lever arm z) normalized by the concrete uniaxial 
compressive strength fc whereas the abscissa shows the shear reinforcement ratio 
(ρw = Asw / (bw ꞏ s), where Asw is the area of a shear reinforcement unit and s is its spacing) 
multiplied by the ratio between the yield strength of the shear reinforcement fy and the concrete 
uniaxial strength fc. 

With respect to the three regimes, the latter (regime III) refers to concrete crushing at an angle 
of 45º without yielding of the shear reinforcement. The second (regime II) refers to simultaneous 
crushing of the compression field and yielding of the shear reinforcement. With respect to the 
regime I, it governs for low amounts of shear reinforcement and is related to the minimum angle 
of the compression field θmin which can be activated consistently with the considered strength 
reduction factor associated to the cracking of the web.  
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Figure 2.1: Shear resistance as a function of the amount of shear reinforcement 

according to the Variable Angle Truss models (VAT). 

Other than the VAT, alternative design approaches for shear such as the Modified Truss Analogy 
(MTA) also known as “truss approach with concrete contribution” (ASCE-ACI Committee 445 
1998 [ASC98]) are implemented in some codes of practice [ACI19, AAS20]. The MTA 
accounts in its design formulation for the contribution of concrete (in compression and 
potentially in tension), as well as for a contribution of the shear reinforcement. Although MTA 
and VAT models do not necessarily lead to the same results, they are grounded on similar 
principles. For this reason, they are combined in some design codes, such as 
fib’s Model Code 2010 (Sigrist et al. 2013 [Sig13]). 

With respect to shear design based on VAT models and rigid-plastic stress fields, simple and 
efficient design expressions have been provisioned into codes of practice (as in Eurocode 2 EN 
1992-1-1:2004 [Eur04] or the level of approximation II according to fib’s MC 2010 [FIB13]). 
This approach provides accurate estimates of the resistance for slender beams without significant 
concentrated loads near to the support. Its design expressions are also easy to understand and to 
use for practical purposes. Such an approach is however not directly applicable to squat members 
with gravity loads acting on the upper chord, as a direct strut can develop between the load and 
support without the need of carrying the complete shear force by the shear 
reinforcement (Fig. 2.2b). In addition, the crack openings developed in the web are more limited 
for the same level of shear force than for slender members, enhancing the effective concrete 
strength and eventually the resistance of the member. In order to account for the beneficial effect 
of the direct strut action, empirical corrections have been proposed as a pragmatic approach in 
the past. For instance, in EN 1992-1-1:2004, the contribution of loads closer than av ≤ 2d to the 
support is reduced by an empirical coefficient β (Fig. 2.2b). In case of a single concentrated load 
near to the support (acting shear force equal to the load), the design equation reads: 
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where n is the number of activated shear reinforcement units located within three-quarters of the 
clear shear span av [Asi00], fyw is the yield strength of the shear reinforcement, Asw is the cross 
section area of a shear reinforcement unit, and VRd,c is the design shear resistance of a member 
without shear reinforcement. The coefficient β depends on the ratio between the clear shear 
span av and the effective depth of the cross-section d and is calculated as:  

0.25
2

va

d
     (2.2) 

The same expression, but with a value β ≥ 0.5, is assumed by fib’s Model Code 2010 [FIB13].  

As it can be noted, the approach based on the use of coefficient β is theoretically inconsistent, 
as it has been derived for members without shear reinforcement and corrects a model developed 
for slender beams with shear reinforcement (that cannot physically develop when direct strut 
governs). The performance of the empirical approach of EN 1992-1-1:2004 is compared in 
Fig. 2.2c with the results of a database on shear-critical beams with shear reinforcement (refer 
to Table 2.3 in Appendix 2.C, comprising 463 tests and completing a previous database of 263 
tests previously collected by Liu [Liu19]). The results of this comparison, see Fig. 2.2c, show a 
relatively poor performance and is associated with a high scatter.  

 

Figure 2.2: Design of slender and squat members: (a) VAT approach; (b) direct strut 

action and (c) comparison of EN 1992-1-1:2004 accounting for arching 

action with tests as a function of the shear slenderness a/d. 

In an effort to provide more consistent design approaches for squat members, tailored methods 
have been developed in the past based on rigid-plastic stress fields (lower-bound of the 
resistance, see Müller [Mül78], Fig. 2.3a) and failure mechanisms (upper-bound of the 
resistance, Nielsen et al. [Nie11], Fig. 2.3b). Such solutions constitute sound approaches. 
However, as the state of strains can be significantly different from that of slender members, 
questions can be raised on the value of the effective strength to be considered in the compression 
field (strength reduction factor ν according to EN 1992-1-1:2004). 
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Figure 2.3: Rigid-plastic approaches (a) lower bound approach [Mül78] and (b) 

upper bound approach [Nie11]. 

Also, specific strut-and-tie models have been proposed in the past (as Russo’s 
model [Rus05], Fig. 2.4a) or more refined models, as the Two-Parameter Kinematic 
Theory (2PKT) by Mihaylov et al. [Mih10, Mih13] (Fig. 2.4b). These approaches are efficient 
to calculate the response of squat members, but can be difficult to generalize and particularly to 
provide a smooth transition to slender members. 

 

Figure 2.4: Comparison of tailored approaches for squat members: (a) Russo’s 

model applicable for tests for a/d ≤ 2 and (b) Two-Parameter Kinematic 

Theory (2PKT) by Mihaylov et al. for a/d ≤ 3. 

In this chapter, the shear design of squat and slender members is investigated using the stress 
field method through various Levels-of-Approximation (LoA). The structural response and the 
transition between squat and slender members are first analysed using the most refined approach 
(the Elastic-Plastic Stress Fields, EPSF) [Fer07] in order to clarify the governing load-carrying 
actions. EPSF allow fulfilling equilibrium and yield conditions as well as compatibility of 
deformations, resulting into an admissible stress field compatible with a failure mechanism as 
for an exact solution according to limit analysis. On that basis, in this chapter, simplified Rigid-
Plastic Stress Fields are proposed for design considering direct struts and fans (or other stress 
fields to ensure load spreading). In addition, a consistent method is presented to suitably evaluate 
the associated strength reduction factors accounting for compatibility of deformations. The 
resulting expressions appear to be simple to be used in practice, and ground the current draft for 
the revision of fib MC2020 and EN 1992-1-1 (prEN 1992-1-1:2022).   

(a) (b) P qi

M
V

P

h

l
x

h

hD

�M
V

M
V

(a) (b)

V te
st 

 / V
ca

lc
  
[-

]

0 2 4 6 8

 a / d  [-]

0

0.5

1

1.5

2

2.5

3

3.5

avg=0.98
cov=16.5%
222 tests

Russo et al. 2005

0 2 4 6 8

a / d  [-]

avg=1.10
cov=16.3%
276 tests

Mihaylov et al. 2013 

rectangular
cross-section

flanged
cross-section



Suitable stress fields for slender and squat members 

15 

2.2 Suitable stress fields for slender and squat members 

2.2.1 Influence of slenderness on the mechanical response of 
concrete members 

Shear design has typically been performed distinguishing between slender and squat members 
following geometrical rules based on the shear slenderness of the member (defined by the shear 
span-to-effective depth ratio a/d = M /(V ∙ d)). According to the works of Kani for members 
without shear reinforcement [Kan64], a squat member response is assumed for slenderness ratios 
below a/d ≈ 2.5 (with the possibility to consider a direct strut action between the load and the 
support).  

For members with shear reinforcement, a more general approach to consider direct support 
conditions shall however be discussed with reference to the mechanical response of the element. 
To that aim, the Elastic-Plastic Stress Fields (EPSF) will be used in the following. This approach 
provides consistent estimates of the resistance both for discontinuity regions (where direct 
support conditions apply) and slender elements (where plane section deformation holds 
valid) [Fer07, Mut16, Nik17]. Fig. 2.5 shows for instance a comparison of the resistance 
calculated with the EPSF approach against a reduced database containing 119 beams with both 
slender and squat members (a subset of the extended database previously modelled with EPSF 
by Niketic et al. [Nik17], see Table 2.3). The EPSF approach provides very accurate 
results (Fig. 2.5) with a mean value (avg) of the measured-to-calculated resistance equal to 1.04 
and a Coefficient of Variation (cov) equal to solely 10.6%.  

 

Figure 2.5: Performance of EPSF to model squat and slender beams. 

Fig. 2.6 provides more detailed insights of the response observed with EPSF, by comparing three 
tests with varying slenderness performed by Birrcher et al. [Bir09, Tuc16] and three numerical 
simulations completing the series. All beams had a rectangular cross section (height h = 1.905 m 
and width bw = 0.533 m) as well as a constant amount of vertical shear reinforcement 
(ρw = 0.21 %) and horizontal web reinforcement (ρh = 0.21 %, except beam 1.85-02 that 
presented ρh = 0.19 %). All specimens had comparable uniaxial compressive concrete strength 
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(fcm = 34 MPa) and flexural reinforcement ratio (ρl = 2.37 %). The specimens were modelled 
using EPSF [Fer07] according to the guidelines of Muttoni et al. [Mut16] as well as by means 
of rigid-plastic stress fields (RPSF) adapted from Müller [Mül78] and considering a constant 
value of the strength reduction factor ν = 0.5 to account for the detrimental effect of concrete 
cracking in the web. As it can be noted, the accuracy of the models is fairly good in both cases, 
with RPSF being slightly more conservative than the EPSF.  

 

Figure 2.6: Comparison of the three tested beams with EPSF and RPSF. Blue lines of 

EPSFs represent directions and relative intensity of principal compressive 

stresses; light and dark red lines represent elastic tension and yield stresses 

in the reinforcement, respectively (the thickness of red lines being 

proportional to the steel stress). 

The analysis by EPSF clearly shows the transition from the direct strut action (for low shear 
slenderness) towards a compression field with constant stress over the member’s depth (for 
higher slenderness). It is also worth noting that when the concentrated load acts closer to the 
support, the horizontal web reinforcement can be easily activated in the critical region, and both 
the horizontal and vertical web reinforcements control the spreading of the inclined direct strut 
carrying shear. Conversely, for slender members, the vertical shear reinforcement usually yields 
and the horizontal reinforcement plays a minor role. In addition, in this case, the direct strut 
contribution vanishes for a shear slenderness of approximately a/d > 2.5.  
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With respect to the analysis of the strains, the distribution of the first principal tensile strain ε1 
and the vertical strain εy along the beam axis is shown in Fig. 2.7a. Concerning the shear 
reinforcement, the EPSF analysis shows that it is fully yielded at failure in the critical zone of 
slender beams. For shear slenderness lower than 0.8, it remains on the contrary in the elastic 
regime (Fig. 2.7a). The results also indicate that both strains experience peak values 
approximately in the middle of the shear span for squat members (a/d ≤ 2.5), while the point of 
maximum strains shifts towards approximately three-quarters of the shear span for the slenderest 
member (a/d = 5). Such strain distributions govern the strength reduction factor (ν, Fig. 2.7c, 
where ν is determined according to Vecchio et al. [Vec86] on the basis of the calculated local 
principal tensile strain ε1) and the location of the critical crushing regions.  

 

Figure 2.7: Results of simulations based on EPSF: (a) first principal tensile strain ε1 and 

vertical strain εy distributions along the longitudinal beam axis; 

(b) longitudinal strain profiles εx over the defined control sections and 

(c) concrete strength reduction factor ν for three beams with varying shear 

slenderness. 

Finally, the longitudinal strain profile εx is evaluated at a control section located in the middle 
of the clear shear span av for members with direct strutting and at the distance z/2∙cotθ from the 
edge of the loading plate for members without direct strutting (where θ is the inclination of the 
compression field, refer to Fig. 2.7c). The results are compared for the different cases in 
Fig. 2.7b. It is worth nothing that, particularly for squat members, the profile of the longitudinal 
strain εx deviates significantly from the linear distribution and thus that the Bernoulli-Navier 
hypothesis (plane sections remain plane) is not applicable, in agreement with the expected 
behaviour of discontinuity regions (Fig. 2.7b). Such strain level is in fact comparable to the one 
in the tension chord.  
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2.3 Stress fields accounting for direct strutting conditions 

In the following, a number of stress fields will be developed aiming at representing the transfer 
of forces in the support region under direct strut conditions. Their level of refinement will be 
progressively increased, following a Levels-of-Approximation (LoA) approach [FIB13, 
Mut12]. First, simple stress fields according to Müller [Mül78] combining fans and concentrated 
struts will be presented. Such stress fields are developed on the basis of simple and safe 
assumptions for the strain state and the associated efficiency factors ν for the concrete strength. 
These fields will correspond thus to a LoA I and will be refined (LoA II) in a second step by 
considering consistent estimates of the strain state (accounting for compatibility of deformations 
at the critical regions), in an effort to improve the accuracy of the predicted efficiency factors ν. 
A more general stress field will later be introduced (LoA III) considering the spreading of the 
concentrated forces and enabling the activation of the horizontal reinforcement in the web. These 
models are eventually completed with the EPSF analyses presented in Section 2.2, which 
constitute the highest degree of refinement (LoA IV, ensuring the compatibility of deformations 
in the whole element). 

2.3.1 Stress Fields with concentrated strut (CSSF) (LoA I, II) 

The simplest stress fields for a consistent design of support regions with direct strut conditions 
are developed assuming rigid-plastic constitutive laws, in a similar manner as Müller [Mül78] 
for panels. Such stress field consists of a direct (concentrated) inclined strut and two fan regions 
which activate the shear reinforcement (Fig. 2.9a). The fan regions can consist of struts with 
varying inclination (as the upper fan region in Fig. 2.9a) or uniaxially and a biaxially compressed 
wedges (as the lower fan region in Fig. 2.9a) which represent an almost equivalent solution. As 
it can be noted in Fig. 2.8, when no direct strut develops, the stress field is identical to the one 
assumed for the design of slender members (Fig. 2.9c), ensuring a smooth transition between 
cases with and without direct strutting. 

 

Figure 2.8: Governing stress fields and associated resistance compared to the plastic 

solution for slender beams.  
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Based on a free-body analysis of the stress field with direct strutting (Fig. 2.9b), the shear 
resistance of squat beams can be calculated as the sum of the contributions of the direct strut Vc 
and the one of the shear reinforcement Vs according to Eq. 2.3. 

 

Figure 2.9: RPSF for end regions of beams: (a) stress field with concentrated strut 

(CSSF); (b) free-body analysis of the CSSF; (c) stress field for slender 

members, and (d) Mohr’s circle of strains at the control point. 

R c sV V V    (2.3) 

It can be noted that the direct strut is inclined at an angle θ, whereas the inclination of the free-
body corresponds to an angle β defined by the clear shear span (implicitly accounting for the 
size of the bearing plates) and the lever arm (cotβ = av / z). 

The value of the angle θ is estimated assuming simultaneous yielding of the shear reinforcement 
and crushing of the compression field for a slender member [Nie11] (Fig. 2.8). The shear force 
carried by the shear reinforcement intersected by the free-body defined at an angle θ results: 

cots w w ywV b f z        (2.4) 

while the shear force carried by concrete for a slender member is calculated as  

cos sinc cp wV f b z          (2.5) 

Assuming both resistances to be equal (failure at simultaneous concrete crushing and 
reinforcement yielding, Vs = Vc) and solving the equation as a function of the angle θ, it results: 
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cot 1
w





    (2.6) 

where ν refers to the strength reduction factor accounting for the cracking state of concrete 
(which will be evaluated later according to different levels of refinement) and ωw is the 
mechanical shear reinforcement ratio (ωw = ρw ꞏ fyw / fcp) where fcp = ηfc ∙ fc is the equivalent 
uniaxial plastic concrete strength, where the concrete brittleness factor ηfc is evaluated according 
to MC2010 (see also Moccia et al. [Moc20]): 

1

330
1.0

cf

cf
  

 
 
 

  (2.7) 

with fc in MPa.  

If the ratio cotβ / cotθ is larger than 1, the response of a slender member can be considered 
corresponding to that of a slender member without direct strutting (Fig. 2.8). On the contrary, if 
cotβ / cotθ < 1, direct strut action occurs and the width of the concentrated strut hc can be 
determined geometrically as: 

 sin
sin

c

z
h  


    (2.8) 

Thus, the contribution of this strut to the total resistance results: 

sinc w c cpV b h f        (2.9) 

where bw refers to the effective width of the web, z to the lever arm and fcp to the equivalent 
uniaxial plastic concrete strength. On that basis, it results a shear resistance: 

2

cot cot
cot

1 cot
R w cp w w swV b z f b z

 
   




        


 (2.10) 

where sw is the stress in the shear reinforcement crossing the direct strut. If the resistance is 

written in terms of shear stress resistance τR = VR / (bw ꞏ z), previous equation can be rewritten as 
follows: 

2

cot cot
cot

1 cot
R cp w swf

 
    




    


  (2.11) 

With respect to the term σsw, it can be calculated accounting for the compatibility of deformations 
in the clear shear span region (by using Mohr’s circle for instance, Fig. 2.9d): 

 2

3 3cotsw s y s x ywE E f              (2.12) 

where Es is the modulus of elasticity of the shear reinforcement, ε3 is the principal compressive 
strain in the direct strut which is assumed to be ε3 = -1 ‰ and εx is the longitudinal strain which 
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can be calculated as the average between the strain in the bottom longitudinal chord and the 
strain in the upper chord at the vertical cross-section defined by the control point shown in 
Fig. 2.9b (this is based on the assumption that plane sections remain plane, which has been 
observed to deviate from EPSF results particularly for squat members (Fig. 2.7b), but has a 
limited influence on the global resistance of the member). 

Also, for practical purposes, the term σsw can be assumed to be equal to the yield strength of the 
reinforcement (σsw = fyw) when cotθ > 1, which is in agreement with experimental evidences and 
also with elastic-plastic analysis of this region (Fig. 2.7).  

As for slender members, the shear resistance with the proposed approach is in any case limited 
by the crushing resistance of the concrete in the web (horizontal plateau in Fig. 2.8). For the case 
of vertical stirrups, the maximum resistance can be calculated investigating a free-body limited 
by a vertical section at mid-distance of the clear shear span, where both the direct strut and 
concrete in the fans reach their crushing capacities. For the calculation of the crushing resistance 
(upper limit of Eq. 2.13), it can be assumed that the different regions have the same inclination 
θ of the concrete fields (assuming the fans to be composed by three wedges each (Fig. 2.9a), 
where the ones next to the direct strut have the same constant angle as the direct strut [Nie11]): 

2 2

cot cot cot
cot

1 cot 1 cot
R cp w yw cpf f f

  
    

 


      
 

 (2.13) 

As the previous equation is based on a stress field (lower-bound of the resistance according to 
limit analysis), the best solution can be found by maximizing the load-carrying capacity as a 
function of the parameter θ. This can be performed considering, in a simplified manner for the 
LoA I, a constant value of the efficiency factor ν or by calculating ν on the basis of the strain 
state of the member at LoA II. 

In the former case (constant value of ν, LoA I), a value ν = 0.5 can be adopted (consistently with 
prEN 1992-1-1:2022 [Eur21]) resulting into: 

2cot cot cot 1 cot min         (2.14) 

where the right-hand side of the inequality corresponds to the condition for maximum shear 
resistance outside of this region (with a minimum inclination equal to cotθmin = 2.5 for members 
without axial force applied [Eur21, Eur04]). Other values 1 ≤ cotθ ≤ cotθmin can also be selected 
for design purposes and will constitute lower-bounds of the resistance. 

For the case of variable ν (LoA II), the value of θ can be determined numerically, by evaluating 
ν at a control point located in the middle of the clear shear span and at mid-height of the cross-
section, in a similar manner as Vecchio and Collins [Vec86]: 

  2

1 2 3

1
1.0

cotx xk k


   
 

    
  (2.15) 
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where, after calibration of the three parameters (k1, k2 and ε3), the best results are obtained for 
k1 = 1.0, k2 = 110 and ε3 = -0.001(see Rupf et al. [Rup13]) which represents a principal 
compressive strain in the direct strut. Despite the fact that a numerical procedure is required to 
derive the optimum value of θ with the previous equation, a first estimate can be determined in 
a simple manner considering: 

cot 1.3
a

z
    (2.16) 

The mechanical basis of the CSSF allows for a good accuracy (Fig. 2.10) while being still simple 
to be used. In its simplest formulation (LoA I, constant value of the strength reduction factor ν), 
it shows more conservative results (Fig. 2.10a), particularly for slender beams, primarily due to 
the condition limiting cotθ to cotθmin. The refined CSSF approach with variable strength 
reduction factor ν (LoA II) shows better results (Fig. 2.10b), mostly because it does not have the 
limitation cotθ ≤ cotθmin which is replaced by more realistic values of ν (low values of ν for 
smaller compression field inclinations). In any case, both approaches show better predictions 
than current empirical approaches as that of Eurocode 2 (EN 1992-1-1:2004, Fig. 2.2). It is also 
interesting to note in Fig. 2.10 that the limit between squat and slender members (red and blue 
colours, respectively) is not dictated only by the shear slenderness, but also by other factors, 
such as the shear reinforcement ratio. 

 

Figure 2.10: Comparison of CSSF model with tests: (a) simplified approach (LoA I) and 

(b) refined approach (LoA II). Note: red markers refer to tests with direct 

strutting (cotβ < cotθ); blue markers refer to members without direct 

strutting (cotβ > cotθ); diamond markers refer to flanged cross-sections 

while squares represent tests with rectangular cross-sections. 

For practical purposes, when multiple concentrated forces are applied [Pas22], all potential 
critical inclinations βi should be verified. In addition, in order to account for a uniformly 
distributed load q acting between the concentrated load and the support, Eq. 2.13 can be adjusted 
by adding q / bw to the term ρw ꞏ σsw in the shear reinforcement contribution Fig. 2.11. 
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Figure 2.11: Free-body analysis of a member with direct strut action accounting for a 

uniformly distributed load. 

2.3.2 Stress Fields with spreading strut (SSSF) (LoA III) 

According to the EPSF results shown in Fig. 2.7, it can be noted that the direct strut does not 
necessarily have a rectangular shape with constant thickness, but it tends to spread activating 
both the horizontal and the vertical reinforcement in the web. Such a response can be reproduced 
with a suitable stress field considering spreading of the strut as shown in Fig. 2.12a. Such a stress 
field can also be used to reproduce the response of members with higher 
slenderness (Fig. 2.12b,c), ensuring a transition to slender beams. Three cases can in general be 
distinguished: 

 Members with low slenderness, where full spreading of the direct strut occurs 
(θ2 > 0, Fig. 2.12a), with the potential to activate both the vertical shear reinforcement 
and the horizonal web reinforcement. 

 Members with moderate slenderness and larger shear reinforcement (typically 
θ2 ≈ 0, Fig. 2.12a), where partial spreading of the direct strut can be 
considered (Fig. 2.12b). In this case, the spreading is primarily ensured by the vertical 
shear reinforcement equilibrating the struts of the fan. 

 For slender members, a smeared compression field can be considered as previously 
discussed (Fig. 2.12c), where direct strutting completely vanishes.  
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Figure 2.12: Stress fields of SSSF: (a) full spreading; (b) partial spreading and (c) 

distributed constant compression field. 

A detailed description of the transmission of internal forces in the stress field with full strut 
spreading is sketched in Fig. 2.13a. Its geometry is assumed to be polar symmetric with respect 
to the point P located in the centre of the shear span. The deviated struts are inclined by angles 
θ1 and θ2 whereas the inner compression field has an inclination θ which can be simply assumed 
as cotθ = a/z. 

 

Figure 2.13: SSSF with full spreading: (a) equilibrium in nodes and (b) geometry. 

The full development of such case and the associated design expressions are presented in 
Appendix 2.B.1 of this chapter. 

The stress field with partial spreading represents a transition from squat to slender beams. The 
main definition of this stress field is presented in Fig. 2.14, while details on the solution and 
design expressions can be found in Appendix 2.B.2. With respect to the stress field for slender 
members, the governing design expressions remain the same as presented for the previous cases. 
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Figure 2.14: SSSF with partial spreading: (a) nodes of strut-and-tie model and (b) geometry. 

A comparison of the SSSF approach against the database of beams is shown in Fig. 2.15, 
showing consistent agreement and enhancing the accuracy of the CSSF. More details are given 
in the following section. 

Figure 2.15: Comparison of SSSF (LoA III) with direct strutting (red marks) and beams 

without direct strutting (blue marks). 

2.4 Performance of the considered shear models with 
respect to the extended and reduced databases 

A systematic comparison of the shear models is reported in Table 2.1 and 2.2 through statistical 
values for the extended database of 463 tests and the reduced database of 119 tests. The reduced 
database refers to a subset, containing the members analysed by EPSF (tests with sufficiently 
detailed descriptions of the geometry, the reinforcement and the loading conditions to be 
analysed using EPSF). The results are given for shear slenderness lower and higher than 
av /d = 2.25, which is here adopted as an approximated estimate of the limit between slender and 
squat response EN1992-1-1:2004 [Eur04]. 
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As it can be noted, the simplified CSSF (LoA I) provides a safe estimate with an accuracy 
comparable to that of the empirical correction of EN1992-1-1:2004. The accuracy is 
significantly improved with the refined CSSF (LoA II), and is further enhanced by using the 
SSSF (LoA III) and the EPSF analyses (LoA IV). It can be noted that the CSSF considers in 
these analyses the lever arm z as the governing geometrical dimension, but stress fields 
accounting for the height of the member h can also be developed for rectangular cross sections 
leading to an improvement of the results. 

Table 2.1: Performance of different shear models for beams with rectangular cross-

sections (avg - average and cov - coefficient of variation). 

Rectangular 
beams 

Reduced database Extended database 

all av /d<2.25 av /d ≥2.25 all av /d<2.25 av /d ≥2.25 

(54 tests) (28 tests) (26 tests) (310 tests) (270 tests) (40 tests) 

shear model avg cov avg cov avg cov avg cov avg cov avg cov 
EN1992-1-

1:2004 
1.54 0.31 1.45 0.39 1.65 0.20 1.66 0.34 1.68 0.35 1.54 0.23 

Simplified CSSF 
(LoA I) 

1.34 0.30 1.06 0.21 1.71 0.22 1.29 0.25 1.26 0.24 1.54 0.23 

Refined CSSF 
(LoA II) 

1.03 0.17 0.99 0.17 1.06 0.17 1.11 0.20 1.12 0.21 1.01 0.14 

SSSF (LoA III) 1.07 0.18 1.01 0.17 1.13 0.16 1.09 0.18 1.10 0.18 1.07 0.18 

EPSF (LoA IV) 1.01 0.11 0.98 0.10 1.03 0.10 - - - - - - 

 

Table 2.2: Performance of different shear models for flanged beams. 

Flanged beams 

Reduced database Extended database 

all av /d<2.25 av /d ≥2.25 all av /d<2.25 av /d ≥2.25 

(65 tests) (0 tests) (65 tests) (153 tests) (15 tests) (138 tests) 

shear model avg cov avg cov avg cov avg cov avg cov avg cov 
EN1992-1-

1:2004 
1.59 0.26 - - 1.59 0.26 1.35 0.27 1.17 0.12 1.37 0.27 

Simplified CSSF 
(LoA I) 

1.58 0.25 - - 1.58 0.25 1.42 0.23 1.29 0.14 1.43 0.24 

Refined CSSF 
(LoA II) 

1.22 0.14 - - 1.22 0.14 1.11 0.18 0.95 0.12 1.11 0.18 

SSSF (LoA III) 1.30 0.22 - - 1.30 0.22 1.15 0.23 0.97 0.14 1.17 0.23 

EPSF (LoA IV)             
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2.5 Conclusions 

This chapter investigates the response of beams with shear reinforcement and varying shear 
slenderness with the potential to develop direct strutting conditions. Its main conclusions are: 

1. The empirical corrections of the shear resistance of slender members adopted by several 
codes of practice (as EN 1992-1-1:2004 or Model Code 2010) for the design of squat 
members lack a physical basis and present highly scattered predictions.  

2. Consistent design methods based on stress fields can be developed for the shear response 
of squat and slender members leading to simple and physically-sound expressions. They 
can be safely used for the design of new structures (lower-bound of the resistance) and 
also, by optimization of the failure load, as accurate models for the assessment of 
existing structures. Such stress fields can be formulated with increasing level of 
refinement following a Levels-of-Approximation approach. 

3. A method named Stress Fields with a concentrated strut (CSSF) is presented enabling 
to cover direct strutting conditions for squat members with a smooth transition to the 
case without direct strutting for slender members. It consists of the combination of a 
direct inclined strut with two fan regions and can be interpreted as a simplification of 
the Elastic-Plastic Stress Field (EPSF) method. The CSSF provides accurate and reliable 
estimates of the shear resistance, while being simple to use. The proposed model allows 
calculating the efficiency factor ν accounting for concrete cracking, the inclination of 
the compression field θ and the tensile strains in the shear reinforcement accounting for 
compatibility of deformations at a control point (located at centre of the clear shear 
span).  

4. Two levels of refinement can be considered in the CSSF. The first (LoA I) is intended 
for simple design of new structures, assuming a constant value of the efficiency factor 
of concrete (ν = 0.5) and limiting the angle of the compression field as performed for 
slender members. The latter refers to a more refined approach (LoA II) intended for 
detailed design or for the assessment of existing structures. It allows calculating the 
value of ν on the basis of the strain state in the web without introducing an additional 
limit on the angle of the compression field.  

5. Both the simplified and the refined CSSF approaches, implemented in the second 
generation of Eurocode 2 and in MC2020, provide more accurate predictions of the 
shear resistance than those of EN 1992-1-1:2004. Particularly, the scatter of the test 
evaluation is significantly reduced when the refined method is applied. 
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6. An alternative interpretation of EPSF named Stress Fields with the spread strut 
(SSSF, LoA III) is also presented. It accounts for spreading of the direct strut by 
considering both the shear reinforcement and the horizontal web reinforcement. As for 
the CSSF, the efficiency factors are calculated based on the compatibility of 
deformations, resulting into less scattered results than the CSSF. 
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Appendix 2.A: Refined approach of CSSF (LoA II) 

The refined approach of the CSSF (LoA II) considers that the efficiency factor ν can be 
calculated on the basis of a refined estimate of chord forces in the middle of the shear span 
(see Fig. 2.16). These forces can be calculated as follows: 
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2 1 2T T T    (2.21) 

where ls,act refers to the width of the fan region where a part of the force is carried by the shear 
reinforcement, C2 and T2 to the corresponding compression and tension chord forces, 
respectively. The height and of the node can be approximated as Hn = Bn ∙ cotθ, where the width 

is calculated as 
2

cot cot

1 cotnB z
 







. 

 

Figure 2.16: Stress field with direct strut for refined calculation of chord forces. 
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Appendix 2.B.1: SSSF with full spreading (LoA III) 

In order to obtain the solution of the stress field with the full spreading, the equilibrium in the 
nodes is enforced (Fig. 2.13a,b) as follows: 
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cot cot
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sV V


 


          in node 1  (2.22) 

and 

 1

sin
cot cot
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sV V


 


           in node 2  (2.23) 

where ψ1(2) = θ1(2) + α. Here, α represents the inclination of the resultant of the forces in the shear 
reinforcement Fsv and of the horizontal web reinforcement Fsh which can be calculated as 
α = acot (Fsh / Fsv). Combining these two nodal equilibrium conditions, one obtains a 
geometrical condition: 

1 2cot cot 2cot      (2.24) 

In order to evaluate the stresses in the shear reinforcement satisfying the compatibility of 
deformations in the shear span, one can use the following formula: 

 2cot 0.001 0.001swv s y s x ywvE E f            (2.25) 

and the stresses in the horizontal web reinforcement can be calculated assuming an elastic-plastic 
behaviour according to: 

swh s x ywhE f      (2.26) 

where εx is the longitudinal strain evaluated at the control point in the middle of the clear shear 
span (see Fig. 2.9a). Furthermore, a geometrical condition has to be established based 
on Fig. 2.13b. It refers to the dimensions of the support/load node (B, C) projected at an inclined 
cut (at angle α) added to the projected distances (A, D) from the node to the edges governed by 
angles θ1 and θ2: 
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As Eq. 2.27 is non-linear, one can calculate the shear resistance V iteratively. The support and 
the load nodes as well as the deviated struts (under θ1 and θ2) are assumed to be uncracked 
(ν2 = 1) whereas the inner compression field (with inclination θ ) is considered to be cracked 
with an efficiency factor ν1 lower than 1, which can be calculated on the basis of the longitudinal 
strains and the compression field inclination as follows: 
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 (2.33) 

A limiting condition of the crushing nodes shall also be verified: 

 max, ,inf ,sup 2min ;
pc p p w cpV c c b f      (2.34) 

where cp, sup and cp, inf are the widths of the loading and support plates, respectively. The 
maximum possible shear resistance can be calculated referring to concrete crushing of a 
compression field of a free body cut at mid-way between the load and the support: 
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Appendix 2.B.2: SSSF with partial spreading (LoA III) 

The solution of the stress field with partly spread strut can be derived on the basis of the nodal 
equilibrium of forces (Fig. 2.14): 
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and 

2

1

tan
2 1

tan
sV V




 
 
 
 

        in node 2  (2.37) 

Combining the two conditions, it results: 

1 2tan tan 2 tan      (2.38) 

In addition, a geometrical condition based on the Fig. 2.14b has to be satisfied: 
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The inclination γ of the deviated strut can be calculated as follows: 
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and the two diagonal struts in the fan region are defined by the inclinations  3 and  4 as follows:  
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The considerations on the calculation of the strength reduction factor (already presented for the 
full spreading case), hold valid for the stress field with partial spreading, by accepting the 
Bernoulli-Navier hypothesis. Therefore, εx is approximately equal to εT / 2 which can be 
calculated at a cross section in the middle of the shear span on the basis of, for instance, the 
stress field sketched in Fig. 2.17. 

 

Figure 2.17: Tension chord forces. 

The shear reinforcement is considered active solely along its active length ls,act : 
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Furthermore, the tension force can be evaluated as: 
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Once Vs has been calculated and the fan geometry has been defined in terms of cot 3 and 

cot 4 (Fig. 2.14a), a shear resistance condition has to be verified: 
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In addition, another resistance condition has to be verified referring to concrete crushing 
(assuming the same inclination of the compression field all over the cross section): 
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The SSSF approach (LoA III) is developed for beams with rectangular cross section, and the 
presence of flanges will potentially increase the load-carrying capacity. 

 

Appendix 2.C 

The number of members stored in the extended and the reduced databases are reported in 
Table 2.3. 

 

Table 2.3: The extended and the reduced databases. 

Year Author(s) 

No of tests in 
the extended 

(reduced) 
database 

Year Author(s) 

No of tests in 
the extended 

(reduced) 
database 

1951 Clark [Cla51] 46 (-) 2005 Salamy et al. [Sal05] 8 (-) 

1954 Moody et al. [Moo54] 2 (-) 2007 Zhang et al. [Zha07] 4 (-) 

1963 Leonhardt et al. [Leo63] 11 (11) 2007 Sherwood et al. [She07] 2 (-) 

1963 Bresler et al. [Bre63] 5 (5) 2008 Garay et al. [Gar08] 2 (-) 

1966 Krefeld et al. [Kre66] 9 (9) 2008 Fernández et al. [Fer08] 4 (4) 

1971 Placas et al. [Pla71] 45 (23) 2009 Zhang et al. [Zha09] 14 (-) 

1974 Sørensen [Sør74] 10 (8) 2009 Birrcher et al. [Bir09] 27 (6) 
1980 Bach et al. [Bac80] 57 (10) 2010 Sahoo et al. [Sah10] 7 (1) 
1982 Lee [Lee82] 4 (-) 2010 Senturk et al. [Sen10] 4 (3) 
1982 Smith et al. [Smi82] 47 (-) 2010 Zhang et al. [Zha10] 1 (-) 
1986 Rogowsky et al. [Rog86] 10 (1) 2010 Mihaylov et al. [Mih10] 8 (-) 
1988 Levi et al. [Lev89] 7 (-) 2010 Sagaseta et al. [Sag10] 1 (1) 
1996 Kaufmann et al. [Kau96] 4 (4) 2011 Sagaseta et al. [Sag11] 7 (7) 
1998 Foster et al. [Fos98] 1 (-) 2013 Rupf et al. [Rup13] 13 (13) 
1998 Kong et al. [Kon98] 31 (2) 2013 Walraven et al. [Wal13] 18 (-) 
1999 Tan et al. [Tan99] 9 (-) 2015 De Wilde et al. [De15] 2 (2) 
2000 Yoshida [Yos00] 1 (-) 2018 Hu et al. [Hu18] 6 (6) 
2005 Tanimura et al. [Tan05] 36 (3)    

 

In the following, the comparison between considered tests and Levels of Approximation I, II 
and III is presented.  

  



Appendix 2.C 
 

35 

  LoA I LoA II LoA III   LoA I LoA II LoA III 
 test Vtest / Vcalc    test Vtest / Vcalc 

[Cla51] A1-1 0.98 0.92 1.01 [Lee82] SD-1 1.03 1.09 1.08 
 A1-2 0.92 0.87 0.96  SD-2 1.23 1.18 1.20 
 A1-3 0.98 0.93 1.03  SD-3 1.17 1.07 1.13 
 A1-4 1.07 1.01 1.10  SD-4 1.25 1.12 1.21 
 B1-1 1.19 1.22 1.14 [Smi82] 1A1-10 1.74 1.46 1.46 
 B1-2 1.07 1.07 1.00  1A2-11 1.64 1.38 1.36 
 B1-3 1.22 1.24 1.15  1A3-12 1.69 1.42 1.39 
 B1-4 1.15 1.17 1.09  1A4-51 1.73 1.46 1.41 
 B1-5 1.02 1.03 0.96  1A6-37 1.82 1.54 1.47 
 B2-1 1.06 0.84 0.99  2A1-38 1.43 1.14 1.16 
 B2-2 1.00 0.86 1.00  2A3-39 1.53 1.18 1.19 
 B2-3 1.10 0.91 1.07  2A4-40 1.50 1.17 1.16 
 B6-1 1.35 1.34 1.16  2A6-41 1.51 1.14 1.12 
 C1-1 1.13 1.18 1.01  3A1-42 1.55 0.86 0.98 
 C1-2 1.25 1.31 1.12  3A3-43 1.60 0.90 1.01 
 C1-3 1.03 1.08 0.93  3A4-45 1.53 0.90 0.97 
 C1-4 1.09 1.15 0.97  3A6-46 1.50 0.86 0.93 
 C2-1 1.00 0.88 0.90  1B1-01 1.55 1.44 1.29 
 C2-2 0.98 0.90 0.91  1B3-29 1.60 1.48 1.31 
 C2-4 0.87 0.85 0.84  1B4-30 1.53 1.42 1.24 
 C3-1 1.29 1.20 1.13  1B6-31 1.75 1.61 1.39 
 C3-2 1.18 1.08 1.02  2B1-05 1.34 1.12 1.07 
 C3-3 1.10 1.01 0.96  2B3-0.6 1.38 1.15 1.08 
 C4-1 1.29 1.30 1.07  2B4-07 1.44 1.15 1.07 
 C6-2 1.29 1.36 1.08  2B4-52 1.37 1.23 1.13 
 C6-3 1.33 1.40 1.11  2B6-32 1.46 1.24 1.14 
 C6-4 1.28 1.35 1.07  3B1-08 1.61 1.03 1.07 
 D1-1 0.99 0.98 0.86  3B1-36 1.55 1.03 1.08 
 D1-3 0.88 0.87 0.76  3B3-33 1.66 1.05 1.11 
 D2-1 0.97 0.89 0.81  3B4-34 1.61 1.02 1.07 
 D2-2 0.96 0.92 0.84  3B6-35 1.60 1.07 1.09 
 D3-1 1.12 0.90 0.84  4B1-09 1.79 0.83 1.00 
 D4-1 1.08 0.70 0.75  1C1-14 1.59 1.61 1.39 
 D1-6 1.01 1.05 0.98  1C3-02 1.52 1.55 1.33 
 D1-7 1.03 1.07 1.00  1C4-15 1.58 1.62 1.38 
 D1-8 1.07 1.11 1.04  1C6-16 1.51 1.54 1.30 
 E1-2 0.99 0.95 1.07  2C1-17 1.29 1.30 1.23 
 D2-6 0.78 0.79 1.00  2C3-03 1.12 1.10 1.04 
 D2-7 0.75 0.75 0.95  2C3-27 1.24 1.22 1.15 
 D2-8 0.83 0.82 1.06  2C4-18 1.27 1.29 1.20 
 D4-1 0.96 0.94 1.11  2C6-19 1.24 1.28 1.17 
 D4-2 0.90 0.89 1.07  3C1-20 1.40 1.07 1.15 
 D4-3 1.01 0.98 1.21  3C3-21 1.57 1.02 1.14 
 D5-1 1.09 0.99 1.05  3C4-22 1.45 1.00 1.10 
 D5-2 1.17 1.05 1.10  3C6-23 1.50 1.07 1.14 
 D5-3 1.17 1.07 1.14  4C1-24 1.55 0.93 1.12 

[Moo54] III-30 1.30 1.27 1.20  4C3-04 1.44 0.94 1.07 
 III-31 1.54 1.11 1.16  4C3-28 1.64 0.97 1.17 
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 test Vtest / Vcalc    test Vtest / Vcalc 
 4C4-25 1.21 0.99 1.18  3-1400/0.75 1.22 1.04 1.34 
 4C6-26 1.56 0.98 1.15  4-1750/0.75 1.21 1.09 1.40 
 4D1-13 0.91 0.82 1.08  2-1000/1.00 1.04 0.93 0.83 

[Rog86] BM1/1.0 T1 0.95 0.94 1.01  4-1750/1.00 1.09 1.10 0.89 
 V711/4 2.09 1.83 1.36  3-1400/1.00 1.24 1.20 0.99 
 V711/4 1.51 1.36 1.33 [Yos00] YB2000/4 1.61 0.93 0.91 
 V511/4 1.38 1.26 1.32 [Tan05] 2 1.64 1.23 1.18 
 V411/4 1.04 0.98 1.04  3 1.57 1.19 1.20 
 V711/4 1.84 1.66 1.30  4 1.53 1.18 1.25 
 V022/3 1.33 1.25 1.21  6 1.67 1.46 1.38 
 V511/3 1.26 1.20 1.20  7 1.40 1.27 1.17 
 V411/3 1.11 1.09 1.14  8 1.32 1.16 1.11 

[Fos98] B2.0-1 0.95 1.07 1.09  10 1.53 1.56 1.33 
[Kon98] S1-1 1.36 1.01 0.93  28 1.25 1.02 1.16 

 S1-2 1.24 0.92 0.85  11 1.15 1.09 1.08 
 S1-3 1.23 0.91 0.84  31 0.84 0.88 1.02 
 S1-4 1.66 1.23 1.13  12 1.30 0.94 1.06 
 S1-5 1.51 1.12 1.03  14 1.58 1.40 1.32 
 S1-6 1.34 0.99 0.91  15 1.35 1.24 1.14 
 S2-1 2.09 1.36 1.12  16 1.28 1.17 1.12 
 S2-2 1.63 1.12 0.96  17 1.22 1.08 1.02 
 S2-3 1.49 1.09 0.99  18 1.37 1.25 1.15 
 S2-4 1.29 0.95 0.86  19 1.15 1.04 1.00 
 S2-5 1.32 1.08 1.02  20 1.32 0.88 1.19 
 S3-1 1.64 1.17 1.04  21 1.18 0.61 0.92 
 S3-2 1.39 0.99 0.88  22 0.80 0.67 0.83 
 S3-3 1.80 1.21 1.00  29 1.11 0.93 1.11 
 S3-4 1.38 0.92 0.76  30 1.13 0.95 1.16 
 S3-5 2.44 1.55 1.22  32 0.71 0.66 0.92 
 S3-6 2.33 1.48 1.16  33 1.26 0.94 0.94 
 S4-1 1.32 0.81 0.71  34 1.16 0.88 0.88 
 S4-3 1.32 0.88 0.77  36 0.96 0.94 0.73 
 S4-4 1.49 1.07 0.95  37 0.89 0.91 0.72 
 S4-6 1.45 1.24 1.10  39 0.96 1.10 1.15 
 S5-2 1.74 1.10 1.04  40 0.87 0.89 1.01 
 S5-3 1.41 1.01 0.89  41 0.76 0.72 0.72 
 S5-4 1.57 1.69 1.38  46 1.20 1.19 1.26 
 S5-5 1.57 1.78 1.46  47 1.03 1.05 1.12 
 S8-1 2.17 1.41 1.16  48 1.10 1.28 1.17 
 S8-2 1.75 1.20 1.02  49 0.79 0.92 0.98 
 S8-3 1.82 1.33 1.20  L6 0.82 1.01 1.07 
 S8-4 1.56 1.14 1.03  L7 0.82 1.00 1.06 
 S8-5 1.40 1.11 1.05 [Sal05] B-3 1.22 0.95 0.88 
 S8-6 1.27 1.05 1.01 . B-4 1.66 1.30 1.30 

[Tan99] 2-1000/0.50 1.37 1.01 0.80  B-7 1.39 1.26 1.07 
 4-1750/0.50 1.24 1.10 1.15  B-8 1.25 1.19 1.07 
 3-1400/0.50 1.33 1.10 1.02  B-11 1.37 1.45 1.28 
 2-1000/0.75 1.23 0.97 1.29  B-12 1.25 1.14 1.16 
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I 

LoA  
II 

LoA  
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 test Vtest / Vcalc    test Vtest / Vcalc 
 B-17 1.09 1.16 1.09  IV-2123-2.5-02 1.06 1.19 1.21 
 B-18 0.99 1.03 1.01  M-03-4-CCC2436 1.54 1.63 1.53 

[Zha07] 1DB35bw 1.01 1.04 0.93  M-03-4-CCC0812 1.44 1.50 1.41 
 1DB50bw 0.88 0.92 0.83 [Sah10] BML-85-85 1.30 1.09 0.91 
 1DB70bw 0.95 1.00 0.93  BML-68-83 1.29 1.10 0.91 
 1DB100bw 0.88 0.93 0.84  BML-57-57 1.31 1.11 0.93 

[She07] L-10HS 1.52 0.86 0.82  BML-57-0 1.19 1.01 0.84 
 S-10HS 1.74 0.97 0.88  BML-26-0 1.02 0.89 0.74 

[Gar08] MS1-3 1.72 1.63 1.55  BML-53-100 1.20 1.03 0.85 
 MS2-3 1.59 1.76 1.59  BMМ-125-125 1.42 1.20 1.01 

[Zha09] 0.60/0.60/P 0.87 1.00 0.93 [Sen10] D6.A4.G60#5S 0.75 0.90 1.02 
 0.60/0.60/2P 1.06 1.22 1.14  D6.A4.G40#4S 0.79 0.98 0.99 
 0.60/0.60/5P 0.89 1.03 0.96  D6.A2.G40#4S 0.60 0.83 0.89 
 0.45/0.75/P 0.95 1.14 1.07  D4.A2.G40#4S 0.73 0.86 1.12 
 0.30/0.90/P 0.95 1.08 1.08 [Zha10] TCDB-2-3 0.80 0.88 0.85 
 0.30/0.90/5P 1.09 0.90 1.06 [Mih10] S1M 0.79 1.01 0.90 
 0.75/0.75/P 1.07 1.21 1.13  S1C 0.79 1.01 0.91 
 0.75/0.75/2P 1.00 1.13 1.06  L1M 1.03 0.89 0.83 
 0.75/0.75/4P 1.11 1.25 1.17  L1C 1.00 0.86 0.81 
 0.75/0.75/6P 0.78 0.88 0.82  B2 1.48 1.26 1.46 
 0.45/1.05/P 0.85 0.98 1.00  B8 1.29 1.16 1.36 
 0.45/1.05/2P 1.17 1.04 1.08  C2 1.52 1.29 1.50 
 0.30/1.20/P 0.84 0.86 1.01  C8 1.17 1.05 1.23 
 0.30/1.20/2P 1.17 0.96 0.73 [Rog86] 1/1.0 N 0.90 0.89 0.94 

[Bir09] I-03-2 1.21 1.34 1.28 [Sag10] AL3 1.12 1.20 1.16 
 I-03-4 1.30 1.45 1.41 [Sag11] BG1 0.90 0.82 0.82 
 I-02-2 1.33 1.43 1.32  BG2 0.85 0.70 0.70 
 I-02-4 1.41 1.53 1.44  BL1 0.97 0.87 0.87 
 II-03-CCC2021 1.30 1.41 1.36  BL2 0.98 0.89 0.89 
 II-02-CCC1021 0.96 0.99 0.87  CB1 1.00 0.80 0.80 
 II-03-CCT1021 1.35 1.55 1.53  CB2 0.93 0.88 0.88 
 II-03-CCT0507 1.32 1.49 1.45  DB1 0.97 0.78 0.78 
 II-02-CCT0507 1.34 1.42 1.38 [Hu18] D1.9 1.14 1.26 1.22 
 II-02-CCT0521 1.58 1.67 1.50  D2.5 0.92 0.87 1.12 
 III-1.85-02 1.42 1.53 1.44  D3.1 0.84 0.76 0.76 
 III-1.85-025 1.39 1.50 1.45  R1.9 1.05 1.15 1.13 
 III-1.85-03 0.91 1.01 0.98  R2.5 1.05 1.00 1.29 
 III-1.85-01 0.87 0.95 0.91  R3.1 0.95 0.85 0.85 
 III-1.85-03b 1.25 1.38 1.35 [Kre66] 26-1 1.42 0.85 1.08 
 III-1.85-02b 1.56 1.64 1.56  29a-1 1.65 0.89 0.98 
 III-1.2-03 1.69 1.53 1.60  29b-1 1.65 0.89 0.99 
 III-2.5-02 1.14 1.04 1.05  213.5-1 2.28 1.11 1.04 
 III-2.5-03 1.31 1.24 1.48  29a-2 2.05 1.14 1.31 
 IV-2175-1.85-02 1.15 1.22 1.07  29b-2 1.78 0.98 1.10 
 IV-2175-1.85-03 1.04 1.11 1.03  29c-3 1.50 0.93 1.17 
 IV-2175-2.5-02 1.14 0.92 0.91  29d-3 1.61 0.94 1.13 
 IV-2175-1.2-02 1.45 1.37 1.26  29e-3 1.87 1.00 1.11 
 IV-2123-1.85-03 1.45 1.70 1.77 [Rup13] SR21 1.65 1.20 1.20 
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 test Vtest / Vcalc    test Vtest / Vcalc 
 SR22 1.53 1.14 1.14  LG30L 1.32 1.11 1.11 
 SR23 1.75 1.23 1.23  LG30M 1.41 1.05 1.05 
 SR24 1.20 1.03 1.03  LG30H 1.43 0.86 0.86 
 SR25 1.40 1.16 1.16  LR30L 1.02 0.91 1.27 
 SR26 1.49 1.21 1.21  LR30M 1.04 0.84 0.84 
 SR27 1.16 1.09 1.09  LR30H 1.24 0.80 0.80 
 SR28 1.78 1.02 1.02  LG60L 1.00 0.94 0.94 
 SR29 1.22 1.05 1.05  LG60M 1.20 0.95 0.95 
 SR30 1.21 1.03 1.03  LG60H 1.34 0.81 0.81 
 SR31 1.86 1.20 1.20  GD90L 1.18 1.11 1.66 
 SR31B 1.82 1.18 1.18  GD90M 1.26 1.08 1.08 
 SR32 1.52 0.86 0.86  GD90H 1.54 1.11 1.11 

[Fer08] SH1 1.10 1.00 1.00 [Bac80] V6002W 1.85 1.31 1.59 
 SH2 0.94 0.89 0.89  V6002E 1.91 1.35 1.64 
 SH3 1.11 1.02 1.02  V6004W 1.44 1.19 1.72 
 SH5 1.28 1.13 1.13  V6004E 1.64 1.35 1.95 

[Kau96] VN1 1.25 1.00 1.00  U6004W 1.69 1.39 1.86 
 VN2 1.35 1.06 1.06  U6004E 1.79 1.47 1.96 
 VN3 1.33 1.05 1.05  U6007W 1.15 1.09 1.09 
 VN4 1.16 1.04 1.04  U6007E 1.23 1.16 1.16 

[Sør74] T21 1.25 1.06 1.06  U6010W 1.24 1.14 1.14 
 T22 1.30 1.10 1.10  U6010E 1.22 1.12 1.12 
 T23 1.59 1.24 1.24  U6017W 1.14 1.05 1.05 
 T3a 1.36 1.22 1.22 U6017E 1.14 1.00 1.00 
 T4a 0.99 0.98 0.98 U6007cW 1.18 1.16 1.16 
 T1b 1.40 1.23 1.23 U6007cE 1.18 1.16 1.16 
 T2b 1.45 1.27 1.27  U6010cE 1.18 1.12 1.12 
 T3b 2.06 1.52 1.52  U6013cW 1.25 1.05 1.05 
 T4b 1.79 1.35 1.35  U6013cE 1.14 0.96 0.96 
 T5 1.84 1.37 1.37  U6017cW 1.13 0.95 0.95 

[Leo63] TA1 1.53 0.98 0.98  U6017cE 0.97 0.81 0.81 
 TA2 1.46 1.07 1.07  U6023cW 1.04 0.82 0.82 
 TA3 1.35 1.13 1.13  U6023cE 1.04 0.82 0.82 
 TA4 1.35 1.25 1.25  U6029cW 1.13 0.89 0.89 
 TA13 1.33 0.92 0.92  U6029cE 0.99 0.78 0.78 
 TA14 1.31 1.02 1.02  U6044cW 1.15 0.76 0.76 
 TA15 1.32 1.14 1.14  U6044cE 1.15 0.76 0.76 
 TA11 1.34 1.32 1.32  U6007hW 1.25 1.18 1.18 
 TA12 1.31 1.21 1.21  U6007hE 1.29 1.22 1.22 
 TA6 1.15 0.96 0.96  U6010hE 1.06 0.98 0.98 
 TA16 1.33 1.15 1.15  U6017hW 1.01 0.88 0.88 

[Wal13] AE30L 1.10 0.98 0.98  U6017hE 0.96 0.84 0.84 
 AE30M 1.43 1.00 1.00  U4213mW 1.25 0.96 0.96 
 AE30H 1.54 0.92 0.92  U4213mE 1.20 0.92 0.92 
 GD30L 1.44 1.22 1.22  U4222mW 1.48 0.96 0.96 
 GD30M 1.42 0.96 0.96  U4222mE 1.31 0.85 0.85 
 GD30H 1.47 0.88 0.88  U4230mW 1.31 0.82 0.82 
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 U4230mE 1.19 0.74 0.74  T4 2.04 1.31 1.61 
 U4244mW 1.37 0.84 0.84  T5 1.30 1.11 1.11 
 U4244mE 1.37 0.84 0.84  T6 1.20 1.18 1.18 
 X6009W 1.30 1.17 1.17  T7 2.10 1.38 1.68 
 X6009E 1.40 1.26 1.26  T8 2.48 1.55 1.81 
 X6018W 1.61 1.36 1.36  T9 1.54 1.43 1.43 
 X6018E 1.50 1.26 1.26  T10 2.42 1.46 1.66 
 X9032W 1.38 0.96 0.96  T13 1.67 1.46 1.46 
 X9032E 1.53 1.06 1.06  T15 2.08 1.36 1.36 
 X9043W 1.43 0.98 0.98  T16 2.77 1.56 1.56 
 X9043E 1.56 1.08 1.08  T17 1.34 1.14 1.14 
 B6009W 1.20 1.20 1.20  T19 2.26 1.47 1.47 
 B6009E 1.06 1.07 1.07  T20 1.53 1.27 1.27 
 B9025aW 1.19 1.01 1.01  T25 2.14 1.30 1.55 
 B9029W 1.32 0.97 0.97  T26 1.79 1.25 1.25 
 B9040W 1.49 1.03 1.03  T27 1.60 1.48 1.48 
 U5617iW 1.25 1.08 1.08  T31 1.77 1.17 1.52 
 U5617iE 1.28 1.12 1.12  T32 1.22 1.22 1.22 
 U5604pW 1.57 1.43 1.43  T34 2.24 1.39 1.39 
 U5604pE 1.45 1.31 1.31  T35 2.29 1.45 1.45 
 R5651W 1.83 1.17 1.17  T36 1.79 1.56 1.56 
 R5651E 1.70 1.09 1.09  T37 1.09 1.12 1.12 

[Lev89] RC30A1 1.18 0.94 0.94  T38 1.28 1.30 1.30 
 RC30A2 1.20 0.95 0.95  W1 1.45 0.91 0.91 
 RC60A1 1.18 1.08 1.08  W3 1.27 0.85 0.85 
 RC60A2 1.12 1.02 1.02  W5 1.49 0.95 0.95 
 RC60B1 1.19 0.98 0.98  W6 1.23 0.78 0.78 
 RC60B2 1.25 1.03 1.03  W7 1.27 0.81 0.81 
 RC70B1 1.26 1.06 1.06 [Bre63] BSA2 2.20 1.29 1.29 

[De15] B104 1.78 1.41 1.66  BSB1 1.82 1.17 1.17 
 B105 1.59 1.26 1.26  BSB2 1.64 1.08 1.08 

[Pla71] R8 1.48 1.02 1.40  BSC1 1.38 0.96 0.96 
 R9 0.97 0.85 0.85  BSC2 1.47 1.02 1.02 
 R10 1.40 0.97 1.43  

    
 R11 1.67 1.13 1.45  

    
 R13 1.49 1.15 1.15      
 R15 1.39 1.10 1.10      
 R16 1.39 1.09 1.09      
 R17 1.30 1.12 1.12      
 R20 1.67 1.06 1.28      
 R21 1.49 1.04 1.04      
 R22 1.48 1.03 1.03      
 R24 1.84 1.16 1.16      
 R25 2.08 1.32 1.53      
 R27 1.06 0.98 0.98      
 R28 0.93 0.93 0.93      
 T1 2.05 1.40 1.90      
 T3 1.95 1.34 1.80      
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Nomenclature 

Latin characters: lower case 
a shear span 

av clear shear span 

bw width of web  

cp, inf width of the support plate  

cp, sup width of the loading plate 

d effective cross section depth 

fc uniaxial compressive concrete strength  

fck characteristic values of the uniaxial compressive concrete strength 

fcm mean uniaxial compressive concrete strength 

fcp uniaxial effective concrete strength 

fyw yield stress of the shear reinforcement  

fywh yield stress of the horizontal web reinforcement  

fywv yield stress of the vertical shear reinforcement  

h height of the beam  

hc direct strut thickness 

k1(2) calibration coefficients of the reduction factor ν 

ls,act length of the activated shear reinforcement 

n number of activated shear reinforcement units 
q uniformly distributed load 
s spacing of the shear reinforcement units 
z lever arm of internal forces 

  
Latin characters: upper case 
A, D  inclined projection of deviated struts  

Asw  area of shear reinforcement unit 

B, C inclined projection of node dimensions 

Bn width of node 

C2 force in compression chord in the middle of the shear span 

Es modulus of elasticity of steel 

Fsh force in the horizontal web reinforcement 

Fsv force in the vertical shear reinforcement 

Hm m-inclined projection of the compression field  

Hn height of node  

Hα α-inclined projection of the compression field  

T1 force in the tension chord close to the support 
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T2 force in the tension chord in the middle of the shear span 

V shear force 

Vc contribution of concrete in compression in VAT models 

Vc shear force carried by direct strut 

VEd design acting shear force  

Vfan shear resistance governed by crushing in fan regions 

Vmax,cp shear resistance governed by node crushing under concentrated loads 

Vmax,h shear resistance governed by crushing of the compression field 

VR total shear resistance 

VRd total design shear resistance 

VRd,c minimum design shear resistance provided by plain concrete 

Vs shear force carried by the shear reinforcement 

Vs resistance of the shear reinforcement 

ΔT2 increment of the force in the tension chord in the middle of the shear span 

  
Greek characters: lower case 

α 
inclination of the force resultant accounting for the force in the shear 
reinforcement and the horizontal web reinforcement   

β reduction factor for acting shear force according to EC2 
β critical inclination defining the shear span 

βi potential critical inclination i in case of multiple concentrated forces 

γ inclination of the deviated strut border 

ε1 principal tensile strain 

ε3 principal compressive strain 

εc longitudinal strain in the compression chord 

εT longitudinal strain in the tension chord 

εx longitudinal strain 

εy vertical strain / strain in the shear reinforcement 

ηfc strength reduction factor accounting for concrete brittleness 

θ compression field inclination 

θ1(2) angles of deviated compression struts 

θ3(4) inclinations of struts in the fan region 

θmin minimum compression field inclination 

ν concrete strength reduction factor 

ν1 concrete strength reduction factor in the middle of the shear span 

ν2 concrete strength reduction factor in deviated struts and nodes 

ρh horizontal web reinforcement ratio 

ρl flexural reinforcement ratio 
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ρw shear reinforcement ratio 

σsw stress in the shear reinforcement 

σswh stress in the horizontal web reinforcement 

σswv stress in the vertical shear reinforcement 

τ shear stress 

τR shear stress at the shear failure 

ψ1(2)  θ1(2) + α 

ωw mechanical shear reinforcement ratio 
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Chapter 3 

Experimental investigation of dowel 
action in reinforcing bars using 

refined measurements 

This chapter represents the following publication: 

Pejatović M., Muttoni A., Experimental investigation of dowel action in reinforcing bars using 
refined measurements, Structural Concrete, 2024 [submitted, December 2023]  

The authors of this publication are Marko Pejatović (PhD candidate) and Prof. Aurelio Muttoni 
(thesis director, École Polytechnique Fédérale de Lausanne, Switzerland). 

This work was conducted by the first author (Marko Pejatović) under the supervision of 
Prof. Aurelio Muttoni who consistently offered the constructive feedback, proofreading and 
manuscript revisions. 

The main contributions of Marko Pejatović to this publication and chapter are the following: 

 Dowel tests: preparation, casting and testing 11 specimens subjected to monotonic or 
low stress-level cyclic actions, including various parameters: bar diameter, imposed 
crack kinematics and angle between the bar and the crack. 

 Preparation of the optical fibre measurement system on opposite sides of each 
reinforcing bar for the continuous strain measurement along the bar.  

 Compression tests under the bar: preparation, casting and testing 9 specimens subjected 
to a point load introduced at various locations into concrete through a reinforcing bar.  

 Detailed measurements by digital image correlation of the displacement field. 

 Post-processing of the experimental data: interpretation and analysis. 

 Elaboration of the figures and tables included in the publication. 

 Manuscript preparation for the publication. 
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 Collection of the database containing 142 dowel tests to evaluate the existing dowel 
models for the resistance prediction.  
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Abstract 

In typical reinforced concrete design, reinforcement is designed to carry axial forces, but it can 
also resist transverse forces by dowel action. This is usually neglected for simplicity’s sake in 
the design phase, but it can be accounted for either explicitly in mechanical models or implicitly 
in empirical relationships. Furthermore, there are cases where the connection between various 
concrete elements explicitly depends on dowel action, as for example in connections between 
precast elements or between two concrete parts cast at different times. On the other side, dowel 
action can have a negative impact on the fatigue resistance of reinforcing bars subjected to cyclic 
loading, because of the local stress concentrations near interfaces due to relative movements, 
either in sliding or in opening of cracks not perpendicular to the bar. For the assessment of the 
remaining capacity of existing structures, improved models of the behaviour are needed, 
including realistic models of the behaviour of concrete, steel and their interfaces. The aim of the 
present chapter is to provide a contribution to a better understanding of dowel action by two test 
series. The first series focused on the behaviour of the dowel: the concrete specimens with the 
embedded bars were placed in a custom-made test setup and subjected to monotonic or low 
stress-level cyclic actions with a longitudinal and a transverse crack opening component, up to 
developing the full plastic capacity of the dowel and rupture at the peak of catenary action. The 
measurement system included tracking the displacement field at the surface of the concrete and 
the strains in the dowel by optical fibres glued on its surface. The latter measurements allow to 
derive the internal forces in the reinforcing bar and deformed shape of the bar as well as the 
contact pressure between the bar and the surrounding concrete. The results show a strong 
dependency on the test variables: diameter of the bar, imposed crack kinematics and angle 
between the bar and the crack. The second test series looked more closely at the behaviour of 
concrete underneath the bar, in the presence of a point load introduced at various locations into 
concrete through a reinforcing bar. A comparison of the test results with existing models shows 
a general good agreement and some aspects that deserve to be improved. 

Keywords: dowel action, cracks, structural joints, shear, fatigue, digital image correlation, 
optical fibres, existing structures 

3.1 Introduction 

The steel reinforcement in reinforced concrete (RC) structures is commonly designed to carry 
longitudinal forces only. Its ability to resist transverse forces by dowel action is usually 
neglected to simplify the structural design and the assessment of existing structures. Dowel 
action is the transmission of transverse forces in a reinforcing bar on either side of 
cracks (Fig. 3.1a), in connections of precast elements (Fig. 3.1c), at the interface between two 
concretes cast at different times, etc. (Fig. 3.1b), where a relative displacement component 
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perpendicular to the bar axis occurs. Reinforcing bars can also be designed to carry transverse 
forces at the ultimate limit state (Fig. 3.1c,d), provided the concrete embedment is strong 
enough. If cracks or joints are subjected to cyclic loadings, for instance due to traffic loads, stress 
concentrations due to dowel action can lead to fatigue failures of the reinforcing bars.  

Simplified design formulae in codes of practice [Eur04, FIB13, SIA13] are typically 
conservative, underestimating the actual structural resistance for most cases. This can become 
problematic for the assessment of existing structures, because underestimating the actual 
strength can lead to unnecessary retrofitting measures, with the associated costs. This is why 
more refined models are needed, allowing to accurately estimate the actual resistance. In some 
cases, the analytical verification can be complemented with in-situ measurements. This is 
typically the case for the fatigue verification, where the stress variations in the steel 
reinforcement can be estimated on the basis of detailed measurements on the concrete surface. 
Directly gluing strain gages on reinforcing bars is impractical as it implies a significant 
disturbance of the bond behaviour and the dowel action. This is why more refined models of 
dowel action are needed to reliably evaluate the resistance of the existing structures at the 
ultimate and fatigue limit states. 

 

Figure 3.1: (a) Cracks due to torsion in the Weyermannshaus Viaduct (Bern, 

Switzerland) and (b-e) other cases where dowel action can occur. 

Previous investigations have often focused on dowel action at the ultimate limit state under 
monotonic or cyclic loads (e.g. due to seismic actions). Three failure modes are generally 
distinguished (Fig. 3.2): (1) splitting of the concrete cover for dowel forces parallel to the free 
surface, (2) spalling of concrete perpendicular to the free surface and (3) local crushing of 
concrete in combination with yielding of the dowel bar in bending. 
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Figure 3.2: Failure modes due to dowel action. 

The first two failure modes typically occur for concrete covers smaller than 6-7 times the bar 
diameter [Vin86]. In this case, the dowel resistance was observed to depend on the bar diameter, 
the concrete strength, the thickness of the cover, the crack kinematics (crack opening and relative 
displacement parallel or perpendicular to the free surface), etc. [Mar51, Kre66, Tay69, Bau70, 
Dei93, Aut23]  

If the concrete cover is larger than 6-7 times the bar diameter, splitting and spalling failures are 
prevented. In this case, relatively large imposed transverse displacements can be reached leading 
to plastic hinges in the steel bar due to local bending. At the same time, local crushing of the 
concrete occurs under the bar, near the crack (or the interface between concretes cast at different 
times) [Ras62, Sor86, Dul72, Sor17, Dei87, Dei92, Hof69, Tan11, Pru88, Nør15, Vin87, Czi83]. 
In this case, most of the concrete reaction is provided over a length of approximately two bar 
diameters from the crack, where the plastic hinge is located [Vin84]. If the dowel is not 
perpendicular to the crack, its resistance decreases [Dul72]. Significant concrete strains 
associated to concrete crushing can be observed, up to a depth of around half a bar diameter 
from the crack [Dei92]. The effect of an axial force in the bar on its dowel response has also 
been examined: in addition to concrete crushing, larger tensile axial forces also degrade the 
dowel response, as they reduce the stiffness of the concrete embedment due to the development 
of micro cracks around the bar associated to the bond stresses [Got71, Mae96, Mae96a]. In 
addition, the bending resistance of the bar which contributes to the dowel resistance is reduced 
by the presence of an axial tensile force [Sha69, Kem77, Tak19, Mae96, Mae96a]. The 
activation of the second-order catenary action in a dowel bar has also been observed for large 
transverse displacements. If the axial tensile force in the bar reaches the plastic axial force, the 
bending capacity of the dowel disappears. Under these conditions, the catenary action is the only 
remaining contribution to the dowel resistance [Sor17]. If the bar is subjected to large cyclic 
stresses, the dowel response is notably degraded after only a couple of cycles, because of 
yielding of the dowel and local concrete crushing [Vin86, Vin87, Tak19].  

The stiffness and the strength of the concrete embedment have also been investigated and their 
values exhibit a large scatter. They were observed to depend on multiple parameters including 
the bar diameter, the compressive concrete strength, the confinement level, the magnitude of the 
imposed displacements, etc. [Sor87].  
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The modelling of the dowel mechanism has been investigated by numerous authors. The elastic 
solution was developed based on the analysis of a beam on elastic foundation [Tim25, Fri38, 
Win67, Zim88]. The dowel resistance at the ultimate limit state was calculated using the 
principles of limit analysis [Ras62, Nør15, Sor17, Nie11]. Existing predictions of fundamental 
load-displacement relationships are typically based on empirical formulations. This particularly 
concerns the evolution of the stiffness of the concrete embedment [Vin86, Sor86, Dul72, Dei87, 
Dei92]. More general models account for the interaction between the axial force and the dowel 
force [Mae96, Mae96a].  

With respect to its phenomenology, further in-depth understanding of dowel action in the 
confined concrete embedment is still required. This particularly concerns the contribution of the 
dowel action to carry shear forces and its influence on steel stress variations, which can 
potentially lead to a fatigue failure.  

To that purpose, this chapter presents the results of an experimental investigation of dowel action 
in a confined concrete embedment (with sufficient concrete cover) subjected to monotonic 
loading up to failure and low-stress cyclic loading. This includes cutting-edge measurement 
techniques: Three-Dimensional Digital Image Correlation (DIC-3D) [Non13] and optical fibre 
sensors [Can20, Bad21, Lem22]. They allow for precise measurements of, respectively, the 
complete 3D-displacement field of the cracked concrete surface and the continuous strain 
distribution in the steel reinforcement. The dowel test series consisted of bars embedded in 
concrete blocks designed to prevent concrete spalling and to limit the risk of concrete splitting. 
They were subjected to low-stress level cycles and/or monotonic loading up to the bar rupture 
due to excessive catenary action. Imposed axial and shear forces were selected in the cyclic tests 
to match typical service load scenarios. The results of an additional test series, aimed at 
investigating the local concrete behaviour and resistance under the bar, are also reported in this 
chapter. The modelling of dowel action at ultimate and fatigue limit states will be the subject of 
a future work by the authors.  

3.2 Experimental programme 

The experimental programme was carried out at the Structural Concrete Laboratory of the École 
Polytechnique Fédérale de Lausanne in Switzerland. It consisted of two different test campaigns: 
the first investigated the dowel action (DP series) and the second studied the stiffness and 
strength of concrete under a rebar (CP series). 
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3.2.1 Specimens and test set-ups 

The main design idea for the specimens of both series was to reproduce the behaviour of 
confined structural details at cracks or member interfaces, as shown in Fig. 3.1. The laboratory 
tests of DP series (dowel action) were performed using 11 concrete block specimens (Fig. 3.3b-
e). Each specimen contained a single ribbed reinforcing bar of diameters Øs = 20 mm or 14 mm 
subjected to dowel action. Each bar was 500 mm long and was symmetrically embedded in a 
300 mm concrete block. The reinforcing bars subjected to dowel action had threaded ends which 
allowed anchoring them to the testing machine (Fig. 3.3a). Each concrete block (Fig. 3.3c-e) 
was in two parts, separated by a smooth pre-made notch with a thin concrete layer around the 
bar to simulate the crack. The notch was created by placing steel sheets in the formwork during 
the casting of concrete, and removing them after hardening of the concrete. This ensured that 
there was no transfer of stresses by the aggregate interlock. The angle between axis of the bar 
and the crack (θ, Fig. 3.3a) was 45°, 70° or 90°. The casting direction of the specimens is shown 
in Fig. 3.3c. To prevent a global splitting failure of the concrete, each half of the specimen was 
reinforced by four stirrups (Ø10 mm, Fig. 3.3c-e). To align the applied shear force with its 
horizontal reaction, the specimens were confined using steel plates fixed by threaded steel bars 
(Fig. 3.3a), which allowed controlling the global rotation of the specimens. The external 
confining bars were fixed sufficiently far from the pre-made crack that they did not affect the 
dowel response. The properties of the specimens are summarised in Table 3.1.  

The specimens were tested in a test setup (Fig. 3.3a) that was derived from that previously used 
to investigate aggregate interlocking and local bond behaviour [Tir21, Pun19]. The testing 
machine has a stiff steel frame with three vertical columns, rigidly connected by the steel caps. 
Two perpendicular hydraulic jacks were fixed to the machine frame and enabled to apply 
displacements in two independent directions. A set of rollers prevented unwanted rotations. The 
vertical jack was attached to the bottom steel cap. Its tensile capacity was close to 1 MN for 
static loading. The vertical jack allowed applying the axial force by pulling on the vertical 
reinforcing bar. The bar was fixed to two steel anchoring plates (Fig. 3.3a) using small steel 
plates and nuts screwed on both threaded bar ends. The anchoring steel 
plates (500 x 500 x 50 mm) had slits to enable the placement of the specimens on the test 
machine. The horizontal jack used to impose the transverse displacement had a 0.3 MN 
compression capacity for the static loading (no tensile force was applied). It was fixed to two 
frame columns of the test machine while the third frame column was used as a horizontal 
support.  
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Figure 3.3: Test set-up and specimens for dowel DP tests: (a) test set-up; (b) photo of 

a specimen; and geometry of specimens, reinforcement and applied forces 

for (c) 90°; (d) 45° and (e) 70° specimens (dimensions in mm). 

The second experimental campaign (CP series), aimed at investigating the concrete behaviour 
under a steel reinforcing bar, consisted of 9 specimens. Each specimen contained a single 
reinforcing bar (Øs = 20 mm, length: 120 mm) horizontally embedded on top of the concrete 
block (Fig. 3.4). The concrete blocks were shaped so that the acting and reacting forces were 
vertically aligned. The embedded bar was welded to a steel profile with a rectangular cross-
section (120 x 30 x20 mm, Fig. 3.4a). This allowed applying the point load along the bar causing 
small bending deformations. It also provided a vertical surface for DIC measurements of the bar 
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kinematics as the bar itself was hidden in concrete. The concentrated force was applied at various 
locations along the axis of the bar (distance a from its end, Fig. 3.4a). In all tests of this series, 
the concrete surface representing the crack surface was perpendicular to the bar (θ = 90°) and 
was aligned with the end of the bar. The specimens were confined by horizontal reinforcing bars 
and stirrups (Ø8 mm) to prevent a brittle global splitting failure. The specimens were cast from 
the side and turned by 90° to be tested (casting direction shown in Fig. 3.4a). Relatively small 
casting height with respect to the bar ensured good concrete conditions around the bar, 
preventing notable voids due to bleeding and fresh concrete settlement [Moc21]. The specimens 
of the CP series were tested using a Schenck test machine with a compression capacity of 
2.5 MN. The point load on the investigated bar was applied under displacement control. 

 

Figure 3.4: Specimens for CP tests: (a) geometry, reinforcement and applied force and 

(b) photo of a specimen.  

3.2.2 Material properties 

Normal strength concrete with crushed aggregates with the maximum size of 16 mm was used 
for all specimens. The uniaxial compressive concrete strength fcm was measured on 
cylinders (Ø160 x 320 mm). Their mean values at the time of testing were 36.3 MPa and 
27.5 MPa for the DP and the CP series, respectively (details are given in Tables 3.1 and 3.2).  

Conventional ribbed steel rebars were used for both test series. Figure 3.5a shows the 
experimental stress-strain relationships for the two used diameters. 
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Figure 3.5: Stress-strain relationships of the reinforcement. 

Table 3.1 summarises the main test variables and properties of the DP test series: angle θ 
between the bar and the crack, bar diameter Øs, mean concrete compressive strength fcm, yield 
strength of the dowel bar fy, tensile strength of the dowel bar fu, ultimate first-order dowel 
force Vdow I,u (without the contribution of catenary action), test type, angle α defining the applied 
crack kinematics in monotonic tests (see section 3.3 and Fig. 3.9), initial crack opening 
component in the direction of the reinforcement δ||, init and initial global axial force Ninit. The first 
two digits in the name of the specimens refer to the bar diameter while the last two are the serial 
number. 

Table 3.1: Properties of dowel tests (series DP). 

Test 
θ 

[°] 
Øs 

[mm] 
fcm 

[MPa] 
fy 

1)
 

[MPa] 
fu 

[MPa] 
test type 

α 
[°] 

δ||, init 
[mm] 

Ninit 
[kN] 

Vdow I,u  
[kN] 

DP2001 
90 

20 

33.6 

524 606 monotonic 

0 0.08 47.1 76.1 2) 
DP2002 33.9 15 0.20 78.8 63.8 
DP2007 70 37.3 

0 

0.20 122 51.5 2) 
DP2008 45 38.3 0.20 120 32.8 
DP2022 90 34.9 

520 590 
cyclic / 

monotonic 
0.15 98.1 52.5 2) 

DP2027 45 36.2 0.10 51.1 35.5 
DP1403 

90 

14 

35.6 
510 584 monotonic 

30 0.20 42.6 18.6 2) 
DP1404 35.5 

0 

0.20 40.2 30.2 2) 
DP1411 45 38.9 0.20 51.4 19.0 
DP1437 45 38.4 

547 618 
cyclic / 

monotonic 
0.20 38.7 18.1 

DP1440 90 36.8 0.10 21.5 25.1 2) 
1) The yield strength is taken at 0.2% residual strain.  

2) Based on the shear force without catenary action (see Fig. 3.8 for tests without clearly defined plateau).  
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Table 3.2 summarises all relevant properties related to the CP test series including the position 
of the point load a, the compressive concrete strength fcm and the peak load Fu.  

Table 3.2: Properties of tests of concrete behaviour under a rebar (series CP). 

Test 
Øs 

[mm] 
a 

[mm] 
fcm 

[MPa] 
Fu 

[kN] 
CPa101 

20 

18 26.7 87.0 
CPa102 18 26.7 78.5 
CPa104 18 27.9 87.1 
CPa205 31 27.3 146.5 
CPa206 30 27.9 150.4 
CPa307 44 27.9 213.9 
CPa308 45 27.3 193.1 
CPa409 60 28.5 270.5 
CPa410 60 27.3 254.1 

3.2.3 Measurements 

For the DP series, the applied forces were measured by load cells while 3D Digital Image 
Correlation was used to measure the displacement field in three perpendicular directions [Mat20, 
Can20]. The DIC was used to track displacements of the concrete surface around the 
crack (Fig. 3.6b). A pair of digital cameras SVCam-hr29050 (29 megapixels) were used. The 
black speckle dots had the diameter of around 2-3 mm. The pixel size of the images was in the 
range from 0.155 mm to 0.220 mm. The acquisition rate of the cameras was in the range of 1-
2 Hz up to the ultimate dowel force. Thereafter, when the catenary action started to increase, it 
was decreased to 0.5 Hz up to the final bar rupture. The VIC-3D software was used to analyse 
and post-process the acquired images [Cor10]. Before each test, a sufficient number of images 
of the unloaded specimens was taken to verify the noise level of the measurement. The mean 
noise value of maximum and minimum displacements was around 1/70 and 1/20 of a pixel size 
for in-plane and out-of-plane displacements, respectively.  

In addition, optical fibres were used to continuously follow the longitudinal strains in the dowel 
(Fig. 3.6a,b). The software Odisi-B by Luna Innovations [Lun13] was used to analyse the 
results. This software is based on Optical Frequency Domain Reflectometry which treats optical 
light paths and reflection characteristics. This allows for the refined measurements with the high 
frequency and the sufficiently large spatial resolutions [Can20, Bra19, Bad21, Bad21a]. In this 
work, the spatial resolution was chosen as the gage pitch of 0.65 mm for all the specimens. 
Optical fibres (125 μm diameter) were glued inside grooves milled on two opposite sides of the 
reinforcing bar (Fig. 3.6a,b, see green and blue colours). The grooves were 1 mm wide and 2 mm 
deep. The fibres were placed using a two-component glue. In some specimens, the fibres were 
additionally protected by a soft silicon layer along the groove. This allowed reducing the 
perturbation of the optical fibre measurement due to the stress concentrations at the ribs. More 
information about the adopted fibre installation process can be found in [Can20].  
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Four vertical LVDTs were used to control the imposed crack opening component δ|| (relative 
displacement between the two crack faces in the direction of the bar axis, Fig. 3.6b). Two of 
them were fixed on the front and two on the back side of the specimen. A pair of horizontal 

LVDTs were used to control and measure the transverse displacement (δ⊥, relative displacement 

between the two sides of the crack perpendicular to the bar axis).  

For the CP series (Fig. 3.6c), in the DIC measurement pixel size was somewhat less than 0.1 mm 
for all specimens. The rest of the DIC properties were similar to those of the DP series. The 
speckle pattern for the measurement was applied: on the front vertical concrete surface below 
the end of the bar, on the front cross-section of the bar and on the vertical side of the welded 
steel piece along the bar axis. This enabled the DIC measurements to follow the in-plane and 
out-of-plane displacements of the concrete surface, the penetration of the bar end into the 
concrete δ and the kinematics of the bar welded to the steel profile. 

 

Figure 3.6: Measurements: (a) optical fibres glued on the reinforcing bar; (b) DIC and 

LVDTs measuring δ|| / δ⊥ ratios in DP series and (c) DIC measurement in 

CP series. 

3.3 Experimental results 

The results of the dowel tests (DP) are divided in two groups, depending on their loading regime: 
monotonic and cyclic tests. The test results of the concrete behaviour under the bar (CP) are 
presented in another subsection. 

3.3.1 Monotonic dowel tests 

The monotonic dowel tests were conducted under controlled displacement to follow the full 
dowel response up to the bar rupture. The monotonic tests were carried out in two phases. In the 
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first phase (called MI for Mode I), the bar was pulled to impose a specified initial crack opening 
component δ||, init in the direction of the reinforcement. In the second phase, a gradually increased 

transverse displacement δ⊥ (crack opening component perpendicular to the reinforcement) was 

applied. The opening component δ|| was either simultaneously incremented proportionally with 

δ⊥ in Mixed-Mode (MM) or kept approximately constant in Mode II (MII). 

Figure 3.7 shows the results of the monotonic dowel tests in terms of the shear force Vdow and 

the global axial force N, as a function of the transverse displacement δ⊥. The results are shown 

for the specimens with various crack-bar angles θ and bar diameters Øs. Figure 3.7a,c shows the 

response up to a transverse displacement δ⊥ = 3 mm, whereas Fig. 3.7b,d shows the full dowel 

response up to the bar rupture. 

It can be observed that the dowel response is linear-elastic for small imposed transverse 
displacements (small shear forces). As the force increases, the bar reaches its yield strength and 
the concrete embedment starts crushing locally under the bar, close to the crack. These two 
phenomena reduce the initial stiffness of the dowel response (Fig. 3.7a). An almost horizontal 
plateau in the shear force – transverse displacement relationship is reached when a plastic hinge 
develops in the reinforcement and the concrete strength is reached (in accordance with 
Rasmussen’s model [Ras62]). The plateau is clearly visible for tests with cracks inclined with 
respect to the bar, whereas for cracks perpendicular to the bar, the shear forces slightly increased. 
The load defined by the plateau, which is characterized by a negligible second-order catenary 
action is defined as first-order resistance Vdow I,u. Figure 3.7b shows that after reaching this 
plateau, the dowel force can be further increased by activating the catenary action related to a 
significant displacement (transverse displacement larger than approximately one bar diameter). 
This is enabled by the fixed bar ends which reproduce the typical boundary conditions in most 
structural RC cracked members (sufficient anchorage away from the crack). The tests typically 
finished with the bar rupture close to the crack. This occurs at the cross-section with the 
maximum combination of local axial strains due to bending and the local axial force. The axial 
force measured at the edges of the specimen (in the direction of the undeformed bar) was 

observed to decrease up to the transverse displacement δ⊥ reached approximately Øs /2 and 

increased thereafter showing the activation of the catenary action (Fig. 3.7c,d). This decrease of 
the axial force can be explained by the loss of the bond between the concrete and the bar as the 
transverse displacement increases (δ|| was an imposed displacement). In addition to that, when 
the bar’s most stressed cross-section is fully plasticized (refer to the plastic domain in Fig. 3.8g), 
the axial force reduces due to the plastic deformation associated to the local bending of the bar. 

For the transverse displacement δ⊥ larger than approximately half of the bar diameter, the axial 

force increases again due to the local elongation associated with the catenary action.  
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Figure 3.7: Monotonic test results - dowel force Vdow and global axial force N as a 

function of the transverse displacement for: (a,c) elastic and plastic 

response up to a displacement δ⊥ = 3 mm and (b,d) complete response up to 

failure; (e) main crack kinematic parameters and forces. 

For large transverse displacements, the dowel resistance results from two components. The first-
order component (Vdow I), is related to a shear force in the reinforcing bar while the catenary 
action (Vdow,cat) corresponds to the transverse component of the inclined local axial force in the 
rotated bar in the plane of the crack (N’, Fig. 3.8f). It can be calculated using the equilibrium of 
forces on the deformed bar configuration (rotation ψ, Fig. 3.8f). It can be observed that the local 
axial force in the bar frequently reaches the axial yield strength (Np = π Øs

2 fy/4) between the 
plastic hinges. This occurs due to the elongation related to the large transverse displacement of 
the catenary action. Consequently, in this configuration, the cross-section of the bar is not able 
to resist any bending moment (Fig. 3.8c) and the dowel resistance is provided by the sole 
catenary action.  
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Figure 3.8: (a-f) Catenary action in monotonic tests as a function of transverse 

displacement and (g) yield domain of a round cross-section of a reinforcing 

bar. 

 

Effect of the angle between the bar and the crack 

To underline the influence of the angle between the bar and the crack, the responses of three 

specimens with the same bar diameter (20 mm), displacement protocol ( ≈ 0), but variable 

angles (θ = 45°, 70° and 90°) are shown in Fig. 3.9. The results are shown in terms of the average 
shear stress as a function of the normalized transverse displacement. Tests DP2001 and DP2007 
experienced a rupture of the bar due to catenary action whereas the test DP2008 experienced a 
premature failure triggered by the rupture of the anchorage at the end of the bar. These 
experiments show that the angle of the crack has a significant influence on the initial stiffness 
and on the final dowel resistance. Cracks perpendicular to the bar correspond to a stronger and 
stiffer concrete embedment under the bar, which limits concrete cracking and crushing. On the 
contrary, smaller angles cause a decrease in both dowel resistance and initial stiffness. 
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Figure 3.9: Monotonic tests: shear stress in the reinforcing bar as a function of the 

normalized transverse displacement for three specimens with various 

angles between the bar and the crack: (a) initial stiffness; (b) complete 

behaviour up to failure and (c) displacement protocol for monotonic tests. 

 

Effect of the bar diameter 

Figure 3.10 shows a comparison between two comparable specimens with different bar 
diameters (Øs = 14 mm, 20 mm). It appears that the 20 mm and the 14 mm bar exhibit a similar 
behaviour for small displacements in the normalized representation of Fig. 3.10a (the difference 
for small transverse displacements may be due to measurement inaccuracies), but the normalized 
resistance of the 14 mm bar is larger, showing a clear size effect.  

 

Figure 3.10: Monotonic tests: shear stress in the reinforcing bar as a function of the 

normalized transverse displacement for two specimens with various bar 

diameters (Øs = 14 mm and 20 mm); (a) initial stiffness and (b) complete 

behaviour.  
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Optical fibre measurements 

Optical fibres glued on both sides of the bar (Fig. 3.6a and 3.11a) allowed for the continuous 
monitoring of the longitudinal strains in the monotonic tests. Figure 3.11 shows the 
measurement of the DP2027 test (Øs = 20 mm, θ = 45°), while the results of the other tests are 
shown in Appendix 3.B. Optical fibre measurements allow calculating the distribution of 
internal forces in the bar (assuming a bilinear stress-strain relationship for steel according to 
Fig. 3.11j, see results in Fig. 3.11c,d,e), the contact pressure on the concrete embedment exerted 
by the bar (by double derivation of the moment in the bar, see results in Fig. 3.11f), the 
curvature (difference of the strains on both sides divided by the distance between fibres, see 
results in Fig. 3.11g), the rotation (by integrating the curvature, see Fig. 3.11h) and the deformed 
shape of the reinforcing bar (by integrating the rotation, Fig. 3.11i). The results are shown for 
five different load levels including the ultimate dowel force Vdow I,u. In some graphs, the raw data 
is presented together with smoothed values over a length of around 0.5 to 2 bar diameters 
[Can20, Cor23]. 

In the presented test, the local axial force remains approximately constant for all the considered 
load stages (average tensile stress around 190 MPa). The normalized axial stress due to bending 
(Fig. 3.11d assuming elastic behaviour) reaches a peak value in tension larger than 500 MPa, 
indicating yielding of the bar. The distribution of the concrete pressure is calculated as the first-
order derivative of the shear force and assumed to be constant over the bar diameter (Fig. 3.11f). 
The peak pressure is located at a distance of approximately one bar diameter from the crack 
plane and has a value of around 62 MPa (~ 1.70 fcm).  

Figure 3.11i shows the transverse displacement δ⊥ calculated by double integration of the 

curvature assuming zero rotation at bottom extremity and neglecting the shear deformation of 
the bar (solid line). The calculated transverse displacement is compared with the DIC 
measurements (dashed lines, Fig. 3.11i) for various load levels. The agreement between the two 
measurements is fairly good, showing that the procedure is reliable and that the shear 
deformation of the bar is negligible. 

The results clearly show the two critical cross-sections with the largest bending moments in the 
bar (Fig. 3.11b). They are observed to be symmetrical with respect to the crack for the same 
concrete properties on both crack sides. The distance between the crack and the critical cross-
section is approximately 1.5Øs. This distance appears to be slightly smaller for perpendicular 
cracks than for inclined ones (Fig. 3.11l), due to the stiffer and stronger concrete embedment 
under the bar. Figure 3.11k shows that there is no evident size effect with respect to the bar 
diameter.  

Large local axial forces in the reinforcing bar lead to reaching the yielding strain for smaller 
transverse displacements. On the other hand, larger local axial forces cause second-order effects 
for a larger imposed transverse displacement, which slightly reduce the longitudinal stresses due 
to the bending in the bar. 
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Figure 3.11: Optical fibre measurements: (a) bar deformation and parameter definitions; 

(b) measured strains; (c) normalized local axial force; (d) normalized 

moment (stress assuming an elastic behaviour); (e) average shear stress; 

(f) pressure between bar and concrete (averaged over the bar diameter); 

(g) normalized curvature; (h) bar rotation; (i) transverse displacement 

(dashed lines show the results of the DIC measurement); (j) assumption for 

calculating the internal forces; (k) distance between the crack and the 

critical cross-section as a function of the bar diameter and (l) as a function 

of angle between the crack and the bar (test DP2027 with Øs = 20 mm, 

θ = 45°, see Appendix 3.B for the other tests). 

Figure 3.12 shows the interaction diagram of the normalized bending moment and the 
normalized local axial force at the critical bar cross-section (position of the maximum bending 
moment, derived from the optical fibre measurements). The plastic bending moment of the bar 
with a circular cross-section can be calculated as Mp = Øs

3 fy /6. The dots refer to the calculated 
values for steps of 0.2 Vdow I,u , the last one referring to the first-order ultimate force Vdow I,u 
(except for DP2007 for which optical fibres measured up to 0.9 Vdow I,u). The local axial force 
tends to increase or to be approximately constant for small transverse displacements while it 
appears to slightly decrease when the critical cross-section is almost fully plasticized. It can be 
observed that regardless of the specimen configuration, for V=Vdow I,u, the most stressed cross-
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section reaches or is relatively close to the plasticity domain at the first-order ultimate shear 
force. For larger imposed transverse displacement (V >Vdow I,u), the fibre measurement were lost, 
but one can assume that the local axial force increased again (see increase of the global axial 
force in Fig. 3.7d), so that the local internal forces had to follow the plasticity domain of 
Fig. 3.12 toward the limit N = Np; M = 0. 

 

Figure 3.12: M-N interaction diagram of the critical cross-section. 

Figure 3.13a shows the peak values of the contact pressure between the bar and the 
concrete (qmax / Øs) along the bar, calculated by double derivation of the bending moments from 
the optical fibre measurements as a function of the normalized transverse displacement for 
various load levels up to the first-order ultimate force Vdow I,u (0.9 Vdow I,u DP2007). Figure 3.13b 
displays their normalized values qmax / (Øsꞏfcm). It is important to note that the specimens with 
θ = 90° have the largest peak values of the concrete pressure. The specimen with the slightly 
inclined crack (θ = 70°) shows almost the same peak pressure values along the bar, except at the 
ultimate load, for which the pressure is smaller. More inclined cracks (θ = 45°) exhibit reduced 
values of the normalized pressure, approximately half of those observed in specimens with 
θ = 90°.  

Figure 3.13c shows the normalized stiffness, calculated as the secant slope of the pressure curves 
normalized with the ratio of the bar diameter to modulus of elasticity of the concrete Øs / Ec. The 
specimens with θ = 90° have on average the largest normalized stiffness for initial load stages. 
However, this stiffness reduces as concrete begins to crack (due to splitting) and crush under the 
bar. The degradation of concrete becomes more pronounced at around 0.4 - 0.6 Vdow I,u. 
Interestingly, the degradation rate of the normalized stiffness is similar for all considered 
specimens. Figure 3.13c shows that both bar diameters exhibit, on average, similar normalized 
stiffnesses.  
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Figure 3.13: Local pressure and local stiffness of concrete derived from optical fibre 

measurements: (a) peak pressure; (b) pressure normalized with respect to 

the uniaxial concrete strength; (c) scheme with definitions; and (d) 

normalized secant stiffness of peak pressure curves. 

3.3.2 Cyclic dowel tests 

The cyclic dowel tests were conducted under force control. The majority of the tests were 
performed through three phases (Fig. 3.14a). In the first phase, the initial axial force N was 
imposed (mode I). After that, the initial shear force Vdow was applied (mode II). Eventually, the 
third phase included various combinations of the shear forces Vdow and axial forces N (with the 
minimum and maximum values Vdow, min/max and Nmin/max within each cycle combination, 
Fig. 3.14a,b). In some cases, instead of the three phases, only mode II (Vdow) was imposed, 
without applying any initial axial force N (Fig. 3.14b). In this case, the bar was not attached to 
the test machine, ensuring no axial force was applied. The magnitudes of the forces were chosen 
to cause only elastic stresses in the reinforcement steel. After the application of initial forces, 
several groups of typically 5 to 10 cycles with a small stress amplitude were imposed to each 
test specimen.  
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Figure 3.14: Cyclic tests: (a) protocol principle (rectangles indicate groups of typically 

5-10 cycles with constant Vdow / N ratios) and (b) maximum and minimum 

values within performed Vdow / N cycle groups (each group of cycles as 

presented in (a) is shown in (b) by a segment connecting two points). 

Figure 3.15 shows the optical fibre measurements of a cyclic test performed on the specimen 
DP2027cyc due to the cycle combination with the minimum / maximum shear force 
Vdow, min/max = 2 / 8 kN and the axial force Nmin/max = 20 / 40 kN (specimen with identical geometry 
and materials as DP2027 used for the monotonic test). For small stress amplitude cycles, the 
reinforcing bars typically remain elastic. The strains are composed of the average axial 
stress (σs, avg, Fig. 3.15c) and the nominal longitudinal bending stress at the edge of the bar cross-
section (σs, flex Fig. 3.15d). The critical cross-section (Fig. 3.15b) sustains average axial stresses 
of 63 / 135 MPa due to the minimum and maximum axial force Nmin/max within the cycle 
combination. The nominal axial stresses due to bending reach the values of 82 / 186 MPa due to 
the minimum and maximum shear force Vdow, min/max. Due to the same shear forces, the peak 
pressure on the concrete (Fig. 3.15f) along the bar is 9 / 24 MPa (~0.25 / 0.66 fcm). Again, the 
bar deformation derived from the optical fibre measurements (Fig. 3.15i) corresponds well to 
the DIC measurement on the concrete surface.  
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Figure 3.15: Optical fibre measurements: (a) main parameters and installed optical 

fibres; (b) measured strains and (c-i) derived results (specimen DP2027cyc, 

see Fig. 3.11 for description). 

The peak longitudinal stresses at the critical cross-section (σs,flex due to bending and σs,avg due to 
local axial force, Fig. 3.15) are shown as a function of the two components of the displacement 

(δ|| and δ⊥) in Fig. 3.16a. The figure identifies the three phases of the test protocol: pure 

tension (MI) in which the axial force N is imposed, pure shear (MII) in which the dowel 
force Vdow is imposed and a group of cycles in mixed-mode (MM).  
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Figure 3.16: Cyclic test results for specimen DP2027cyc: (a) relationship between stress 

and kinematic components in mode I, mode II and mixed-mode and 

(b) internal forces at the critical cross-section. 

Figure 3.17 shows the optical fibre measurements at the critical cross-section for all cyclic tests. 
Only values corresponding to the minimum and maximum shear force Vdow, min/max and the axial 
force Nmin/max within cycle groups are presented (see Fig. 3.14). Again, the measured longitudinal 
stresses are decomposed into the average stress σs,avg and the bending stress σs,flex. Figure 3.17a-
c show the nominal elastic stresses due to bending (associated to Vdow, min/max) and due to the axial 
force Nmin/max as a function of the normalized transverse displacement for all cyclic tests (tests in 
which both shear force Vdow and axial force N are applied are identified by solid markers and 
tests in mode II only, with N = 0, are identified by empty markers). Figure 3.17a shows that the 
longitudinal stress due to bending (associated to Vdow, min/max) increases approximatively linearly 
with the transverse displacement. The stiffness of this response increases with the bar diameter 
and with the crack-bar angle. In addition, there appears to be a slightly larger measured 
transverse displacement associated with smaller average local axial stresses. Figure 3.17c shows 
that the reinforcing bars subjected to the pure shear (MII with no initial axial force) do not sustain 
any average axial stresses at the critical cross-section. However, these stresses increase for the 
somewhat larger shear force (this occurs because the bar elongates as it is anchored by the 
concrete embedment). Figure 3.17d shows the average elastic stresses due to the minimum and 
maximum axial force Nmin/max within each group of cycles at the critical cross-section as a 
function of the normalized longitudinal displacement δ|| for two different bar diameters. These 
results encompass both pure tension tests (mode I, empty markers) and tests in which both shear 
force Vdow and axial force N are applied (full markers). The relationship between longitudinal 
stress due to axial force and longitudinal displacement is approximately linear. 
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Figure 3.17: Calculated longitudinal stresses of all cyclic tests corresponding to the 

minimum and maximum shear force Vdow, min/max and axial force Nmin/max 

within group of cycles at the critical cross-section based on optical fibre 

measurements: (a) axial stress due to bending as a function of the 

normalized transverse displacement, (b) definitions; average axial stress as 

a function of (c) the normalized transverse displacement; and (d) of the 

normalized longitudinal displacement component δ||. 

3.3.3 CP test series 

The CP test series examined the concrete stiffness and strength underneath a rebar subjected to 
a concentrated load perpendicular to the bar axis. The position of the force is denoted as 
distance a from the concrete edge (representing the crack surface in dowel tests, Fig. 3.18). In 
Fig. 3.18a, the relationship between the applied force F and the penetration δ of the bar at 
concrete edge is shown (colours indicating various distances a). Both the initial stiffness and the 
peak force increase with the distance a between the concrete edge and the point load, due to the 
larger concrete area carrying the applied force. However, the post-peak branches exhibit similar 
rates of decrease for all load positions.  

For comparison, Fig. 3.18b shows the local shear force in the bar for three corresponding dowel 
tests (DP series, black curves, all of them with bar diameter Øs = 20 mm and θ = 90°, δ assumed 

to correspond to δ⊥/2). It can be observed that the CP tests can reproduce the behaviour of the 

comparable dowel tests for the load position a = 0.9 Øs = 18 mm (red curves). This match occurs 
because this force position approximately corresponds to the position of the resultant of the 
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pressure distribution along the bar in the dowel tests. It is interesting to note that in the CP tests, 
after reaching the peak load, a softening behaviour associated with the development of splitting 
cracks perpendicular to the concrete surface and spalling cracks associated with concrete 
crushing can be observed. A similar softening behaviour can also be observed in the considered 
dowel tests if the contribution of the catenary action is removed (Fig. 3.18b, brown curves). On 
the contrary, when the catenary action is accounted for, the dowel tests exhibit a hardening 
behaviour in the depicted range. This observation seems to indicate that the shear force 
contribution of the catenary action is transferred to concrete at larger distances from the crack 
surface. Moreover, the spalling patterns at the free surface are similar in the CP tests and the DP 
tests (see Appendices 3.A and 3.C).  

DIC measurements on the lateral surface of the welded steel piece allowed to determine the 
displacement profiles of the bar which are shown in Fig. 3.18c at the peak load Fu for various 
load positions a. In most cases, the bars do not bend and only rotate because they are stiffened 
by the welded steel profile. However, bars subjected to a centric load (orange curves) exhibit 
slight bending underneath the point load due to the larger forces and lever arms involved. 

 

Figure 3.18: CP test results: force-penetration relationships for (a) CP tests; (b) DP tests 

and (c) deformed shape of the bar at peak load for different load positions 

(same colours as in (a)). 

  

Øs = 20 mm

30
a = 18 mm

45
60

(b)

(c)

(a)

0 1 2 3 4 5 6 7 8

0 0.05 0.1 0.2 0.3 0.4

 [mm]

0

50

100

150

200

250

300

 F
 [

k
N

]

�

� / Øs aF 120 mm

casting
direction

concrete edge
representing
the crack interface
in dowel tests

Øs

�

-4

-2

0

2

 v
 [

m
m

]

0204060120 100 80

 x [mm]

Fu

a

spalling splitting

surface for DIC
measurement
of bar displacement

Fu

x

v

DP tests (dowel tests)

DP2001

with
membrane
action

without
membrane
action

DP2002
DP2022

0 1 2 3 4 5 6 7 8

0 0.05 0.1 0.2 0.3 0.4

 [mm]�

� / Øs

0

50

100

150

200

250

300
 F

 [
k

N
]

CP tests Øs = 20 mm



Experimental investigation of dowel action in reinforcing bars using refined measurements 

68 

Figure 3.19a shows the relationship between the measured peak force Fu and the distance a. The 
peak force increases approximately linearly with its distance from the edge of the bar.  

If the compressive stress in concrete under the bar is assumed to be uniformly distributed and 
symmetrical with respect to the point of application of the load, a nominal concrete plastic stress 
can be calculated: σc,pl = Fu / (Øsꞏ2a). Figure 3.19b shows the values of the plastic stress 
normalized by the uniaxial concrete strength as a function of the normalized force distance. All 
the values are close to four due to the confinement effect of the concrete embedment. It must be 
noted that the stress σc,pl shown in Fig. 3.19b is affected by several assumptions which are a 
rough simplification of the reality. In addition, the load introduction device did not allow for 
sufficiently exact definition of the position of the force. These two effects can explain the larger 
normalized strengths for small distances a which is counterintuitive (for very small distances a, 
the biaxial stress state at the surface should become governing). 

 

Figure 3.19: CP test results: (a) peak force as a function of the distance from the bar end 

to the load and (b) plastic concrete stress normalized by uniaxial concrete 

strength as a function of the load position. 

The concrete near the edge crushes and gradually spalls due to the penetration of the bar. 
Figure 3.20 shows the values of concrete spalling (out-of-plane displacement, w) at discrete 
points along the vertical axis under the bar end. Significant spalling commonly occurs within a 
depth of two to three bar diameters (spalling failure patterns at peak load are given in 
Appendix 3.C). The depth of spalling is an indicator of the stiffness degradation, which starts at 
approximately half a peak force. The amplitude of the measured spalling displacement w 
(several mm at peak load) suggests that in the dowel tests of series DP, where the imposed 
longitudinal displacements were significantly smaller, spalling is partially prevented, which 
leads to a larger strength and/or a less brittle behaviour (this effect could also explain the 
different behaviour of the DP and CP tests shown in Fig. 3.18). 
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Figure 3.20: Out-of-plane displacement (spalling, w) of the concrete face under the bar 

for various specimens at various load stages measured by DIC. 

3.4 Comparison with existing models 

3.4.1 Concrete stiffness at the serviceability limit state 

The existing formulae that predict the concrete stiffness under the bar were typically derived 
empirically. In this section, two analytical expressions are compared to the experimental results 
presented in this work. The first is the formula by Soroushian et al. [Sor87] which was fitted on 
numerous tests involving compressed concrete under the bar (similar to the series CP described 
above). The expression defines the stiffness kc (contact pressure between bar and concrete 
divided by the transverse displacement δ) as a function of the bar diameter Øs and the uniaxial 

compressive concrete strength fc: 
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where kc is expressed in MPa/mm, fc in MPa and Øs in mm (the exponent on the bar diameters 
relates to a size effect). This expression solely predicts the initial concrete stiffness under the 
bar.  

The second considered expression by Brenna et al. [Bre90] is also empirical. It was fitted on 
multiple dowel tests using the beam-on-the-elastic-foundation model [Tim25, Fri38, Win67, 
Zim88]. This expression accounts for the degradation of the concrete stiffness with increasing 
transverse displacement, but has no size effect: 
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(3.2) 

In Fig. 3.21, a comparison is presented between the two predictions and the local concrete 
stiffness derived from the optical fibre measurements of test series DP. The stiffness derived 
from these measurements is calculated as the ratio between the peak pressure qmax / Øs and the 

transverse displacement δ⊥, q at the point of maximum pressure. The stiffness results are 

normalized (dimensionless values) and presented as a function of the normalized transverse 
displacement. The predictions are shown by envelopes, accounting for the variability of 
governing test parameters. Soroushian’s expression generally underestimates the concrete 
stiffness except for large transverse displacements, where the initial underestimation is 
compensated by the neglected concrete degradation. This discrepancy arises because 
Soroushian’s expression was calibrated on tests involving relatively long bars laterally loaded 
against concrete, which is different from dowels that transmit stresses to concrete over a smaller 
area, resulting in a larger stiffness. The concrete stiffness predicted by Brenna et al. [Bre90] 
corresponds well with the results of the tests with θ = 90°, while it tends to overestimate the 
stiffness for θ = 45°. However, this prediction effectively captures the degradation rate of the 
concrete stiffness. 

 

Figure 3.21: Comparison of the existing empirical expressions with the derived stiffness 

based on optical fibres measurements in dowel tests. 

3.4.2 Ultimate resistance 

The first-order dowel resistance Vdow I,u can be predicted using the model proposed by 
Rasmussen [Ras62] which was derived on the basis of the limit analysis approach (plastic 
behaviour of the dowel bar, with a bending resistance Mp = fy Øs

3 / 6, and a uniformly distributed 
contact pressure between concrete and bar. The expression for the case where the point of 
contraflexure in the bar is at the concrete edge (crack) is given by: 
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where η3 is a coefficient accounting for the concrete strength increase due to the triaxial stress 
state in concrete under the dowel (calibration parameter according to the Rasmussen’s approach) 
and fy is the yield strength of the bar. Figure 3.22 shows the comparison between the model's 
predictions and a database of 121 dowel tests with θ = 90°. For tests where the point of 
contraflexure in the bar does not correspond to the concrete edge, Equation 3.3 is adapted 
according to the original model by Rasmussen [Ras62]. Three values of the coefficient η3 are 
used for this comparison. The first value (Fig. 3.22a), η3 = 5.1 as proposed by Rasmussen based 
on his tests, provides slightly unconservative results (average value of the measured-to-predicted 
resistance ratio of 0.91) and a relatively large scatter (CoV = 19.9%). In Fig. 3.22b, the 
comparison is conducted assuming η3 = 3.0 (in accordance with Tanaka et al. [Tan11]). In this 
case, the coefficient of variation is reduced to 16.8% and the average value of the measured-to-
predicted resistance ratio is 1.14. Assuming η3 = 4.0 as observed in the CP test series of this 
work (see Fig. 3.19b), the statistical values become CoV = 18.1% and avg = 1.0 (see Fig. 3.22c 
for comparison). It must be noted that this model was originally developed for bars perpendicular 
to cracks (or concrete edges, θ = 90°) and without applied axial force.  

 

Figure 3.22: Comparison of Rasmussen’s model with the considered database of dowel 

tests with θ = 90°.  

For other crack angles (θ < 90°), the first-order dowel resistance Vdow I,u can be predicted using 
the expression proposed by Dulacska [Dul72]: 
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where kN = 1 - (N / Np )2 is a parameter which accounts for the axial force in the bar (with N being 
the axial force and Np being the axial resistance), kcal = 0.05 is a calibration coefficient proposed 
by Dulacska based on their tests, η3 = 4 and fc,cube is the concrete strength measured on 150 mm 
cubes. Figure 3.23 shows the comparison between the predictions and 21 dowel tests with 
θ < 90°. The expression provides fairly good results, with an underestimation of resistances for 
tests with relatively large axial forces in the bar (few tests from the present study). The average 
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value of the measured-to-predicted resistance ratio is 1.09 and the coefficient of variation is 
21.3%.  

 

Figure 3.23: Comparison of Dulacska’s model [Dul72] with the considered dowel tests 

with θ < 90°. 

The plastic dowel response including the activation of the catenary action can be predicted by 
the model proposed by Sørensen et al. [Sor17] which is also based on the limit analysis 
approach. Figure 3.24a shows a comparison of this model with the experimental responses of 
the present study. The model’s prediction is accompanied by an envelope accounting for the 
various test variables. Its lower and upper boundaries account for the prediction considering the 
bar’s yield and tensile strength, respectively. Figure 3.24b shows the main parameters of the 
model. For the concrete confinement coefficient, η3 = 4.0 is assumed. The model’s prediction 
shows a relatively good agreement with the final catenary load stages. It is important to note that 
also this model was developed for the bars perpendicular to cracks or concrete faces. 

 

Figure 3.24: (a) Comparison of the model proposed by Sørensen et al. [Sor17] with the 

performed dowel tests and (b) model’s hypotheses. 
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3.5 Conclusions 

This chapter presents an experimental investigation of the dowel action in steel reinforcing bars 
using refined measurements: digital image correlation and distributed optical fibres. Dowel 
action (DP test series) was studied for various angles between the crack and the bar, bar 
diameters and imposed crack kinematics with monotonic or cyclic loadings. The chapter also 
investigates the behaviour of concrete under a rebar (CP test series). Several models are 
evaluated against these tests. The majority of the findings observed in this study align closely 
with or provide further support for the conclusions from previous research. The main 
conclusions are: 

1. The observed dowel response is significantly influenced by the angle between the bar 
and the crack, the bar diameter and the applied crack kinematics. A bar nearly 
perpendicular to the crack and a larger bar diameter correspond to a stiffer dowel 
response and a larger first-order ultimate load. The imposed crack kinematics determine 
both the linear and non-linear regime of the dowel response.  

2. Large shear forces in the bar associated to large imposed transverse displacements result 
in concrete crushing under the bar near the crack. Yielding of the bar is caused by the 
combination of bending and axial force in the bar. 

3. The dowel resistance under large transverse displacements consists of two components: 
the first-order ultimate dowel force associated with a shear force in the bar and the 
second-order catenary force associated with the axial force and the rotation of the bar in 
the crack region.  

4. According to optical fibre measurements, the section of the bar with maximum 
longitudinal stresses (combined local axial force and bending) is located approximately 
at 1.5 times the bar diameter Øs from the crack.  

5. The angle between crack and reinforcement has a significant influence on the behaviour. 

6. A substantial degradation of the concrete stiffness under the bar occurs at approximately 
40% to 60% of the first-order ultimate load (shear resistance before activating the 
catenary action). The degradation rate remains approximately constant across all 
specimen configurations with respect to the normalized transverse displacement.  

7. The dowel response remains comparable under monotonic and low-stress amplitude 
cyclic loading within the studied service-load domain. Furthermore, several low-stress 
cycles do not reduce significantly the stiffness.  

8. The existing models considered provide reasonably accurate predictions of the concrete 
stiffness under the bar, the first-order dowel resistance and the dowel plastic response. 
Yet, there remains room for improvement, particularly regarding the influence of the 
angle between the crack and the bar as well as the influence of the axial force. 
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Appendix 3.A: Failure pattern of DP test series 

The monotonic dowel tests which experienced the rupture of the reinforcing bar allowed 
observing the concrete spalling patterns. They are shown in Fig. 3.25 in a crack plan view in 
terms of normalized coordinates. 

 

Figure 3.25: Concrete spalling patterns of monotonic dowel tests after catenary rupture. 
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Appendix 3.B: Optical fibre measurements of DP series 
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Figure 3.26: Optical fibre measurements and derived parameters in monotonic dowel 

tests. 
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Appendix 3.C: Spalling pattern at peak load in CP tests 
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Figure 3.27: Spalling pattern at peak load in CP tests: front face of specimens where the 

penetration of the bar in reported with respect to the applied force in 

Fig. 3.18a.  
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Nomenclature 

 Latin characters: lower case 
a distance of the concentrated load from the bar end 

fc,cube uniaxial concrete strength measured on cubes  

fcm mean uniaxial compressive concrete strength on day of testing 

fu tensile strength of the rebar 

fy yield strength of the rebar 

kc concrete stiffness under a rebar 

kcal constant in accordance with Dulacska's model 

kN = 1 - (N / Np )2 in Dulacska’s model 
ksec secant slope of pressure curves  

q / Øs contact pressure between concrete and the rebar 

qmax / Øs peak contact pressure between concrete and the rebar 

w out-of-plane displacement (spalling) 

xmax position of the critical cross-section in the rebar 
  

 Latin characters: upper case 

As area of the bar cross-section 

Ec elastic modulus of concrete 

Es elastic modulus of the rebar 

F point load in CP tests 

Fu peak force in CP tests 

M bending moment in the rebar 

Mmax maximum bending moment in the rebar 

Mp plastic bending moment of the rebar 

N global axial force 
N' inclined local axial force in rebar 

Ninit initial global axial force 

Nmin / max minimum / maximum axial force within a cyclic combination 

Np axial resistance of the rebar 

V shear force in the rebar 

Vdow dowel force 

Vdow I first-order dowel force 

Vdow I,u ultimate first-order dowel force 
Vdow, min / 

max 
minimum / maximum shear force within a cyclic combination 

Vdow,cat catenary action 
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 Greek characters: lower case 
α angle defining the applied crack kinematics in monotonic dowel tests 
δ penetration of the bar end in concrete  

δ|| crack opening component in the direction of the rebar 

δ||, init initial crack opening component in the direction of the rebar 

δ||min / max minimum / maximum crack opening component in the direction of the rebar 

δ⊥ transverse displacement 

δ⊥,q transverse displacement corresponding to the position of the peak pressure 

δ⊥min / max minimum / maximum transverse displacement 

εfibre / a / b strains measured by optical fibres on both sides of the rebar 
εs strain in the rebar 
εs,avg average longitudinal strain in the rebar 
εs,flex longitudinal strain in the the rebar due to bending 
εy yield strain in the rebar 

η3 concrete confinement factor 

θ angle between the crack and the rebar 

σc,pl plastic stress in concrete 

σs stress in the rebar 

σs,avg average axial stress in the rebar 

σs,flex nominal longitudinal stress due to bending at the edge of the bar cross-section 

χ curvature of the rebar 
ψ rotation of the rebar 
  

 Others 
CP tests of the concrete behaviour under a rebar 
DIC Digital Image Correlation 
DP dowel tests 
MI Mode I 
MII Mode II 
MM Mixed-Mode 

Øs diameter of the dowel bar 
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Chapter 4 

Steel stresses and shear forces in 
reinforcing bars due to dowel action 

This chapter represents the following publication: 

Pejatović M., Muttoni A., Steel stresses and shear forces in reinforcing bars due to dowel 
action, 2024. [publication in preparation]  

The authors of this publication are Marko Pejatović (PhD candidate) and Prof. Aurelio Muttoni 
(thesis director, École Polytechnique Fédérale de Lausanne, Switzerland). 

This work was conducted by the first author (Marko Pejatović) under the supervision of 
Prof. Aurelio Muttoni who consistently offered the constructive feedback, proofreading and 
manuscript revisions. 

The main contributions of Marko Pejatović to this publication and chapter are the following: 

 Collection and analysis of various experimental data to establish the concrete bearing 
stiffness formulation to be introduced in Winkler’s model. 

 Elaboration of the proposed formulation for the concrete bearing stiffness.  

 Collection of the data of dowel test results and the validation of the model with the 
proposed formulation of the concrete bearing stiffness. 

 Elaboration of the figures and tables included in the chapter. 

 Manuscript preparation of the chapter.  
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Abstract 

Reinforcing bars in structural concrete are typically designed to carry longitudinal axial forces. 
Nevertheless, due to their bending stiffness, they can also carry transverse forces. This transverse 
force is often referred to as dowel action which induces stress concentrations in the reinforcing 
bars due to bending related to the relative displacements of two lips of a crack (or two concrete 
parts cast at different times) transverse to bar axis. Such a displacement component can occur 
due to the sliding of a crack perpendicular to the bar and/or to the opening and sliding of a crack 
inclined with respect to the bar. Due to the relatively large deformation capacity of steel, the 
bending stresses in the reinforcing bars due to dowel action are not detrimental at the ultimate 
limit state. However, for the fatigue verification, it is crucial to accurately estimate these stresses 
as a function of the imposed transverse displacements or of the imposed shear force. The 
traditional Winkler’s model (beam on elastic foundation) can be used to describe the dowel 
behaviour. In this model, the bearing stiffness of concrete under the bar is typically formulated 
to account for only few parameters such as the bar diameter and the concrete strength. However, 
the actual behaviour is much more complex and, therefore, this model can be improved by 
accounting for other effects present in actual structures. To that purpose, this chapter introduces 
a new formulation for the bearing stiffness to be used in Winkler’s model, which is calibrated 
based on mechanical considerations and measurements with optical fibres. Besides the bar 
diameter and the concrete strength, the proposed formulation accounts for the following effects: 
angle between the crack and the bar, casting conditions, thickness of the concrete cover, number 
of load cycles and the softening effect of local secondary cracks in concrete near the ribs due to 
the axial force. A comparison between the model’s prediction with the proposed bearing stiffness 
and considered monotonic and cyclic dowel tests shows a good agreement, both in terms of the 
shear force-transverse displacement response and of the peak longitudinal stress in the 
reinforcing bar.  

Keywords: dowel action, cracks, shear, fatigue of reinforcing bars, concrete bearing stiffness, 
stress variation, existing structures 

4.1 Introduction 

Reinforcing bars in structural concrete, which are usually designed for longitudinal axial forces, 
can also carry transverse shear forces due to their bending stiffness. In some cases, this transverse 
force (also known as dowel action) is beneficial and can be accounted for in the dimensioning 
at the ultimate limit state (e.g., to carry shear forces along interfaces between two concrete parts 
cast at different times or in refined mechanical models for shear and punching, where a portion 
of the shear force can be carried by the longitudinal reinforcement). On the other side, the dowel 
action, which develops due to an imposed deformation, can be detrimental in case of fatigue due 
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to the associated additional longitudinal bending stresses in the reinforcing bars. These stresses 
develop in case of transverse relative displacements due to the sliding of a crack perpendicular 
to the bar or to the opening and sliding of a crack inclined with respect to the bar (e.g., for an 
inclined shear crack which crosses the longitudinal and shear reinforcement, see Fig. 4.1a). In 
general, the transverse component of the displacement between the two lips of the crack can be 
calculated from the opening and the sliding of the crack and the angle between the bar and crack 

(see component δ⊥ in Fig. 4.1b). 

The fatigue verification to account for this phenomenon can be based on an estimate of the crack 
kinematics and a model of the dowel action which allows estimating the stress variations as a 
function of the imposed deformations, accounting for the interaction between the reinforcing bar 
and the surrounding concrete. For the assessment of existing structures, a possibility could 
consist in measuring directly the strain variations on the reinforcement surface due to variable 
actions using strain gauges or fibre [Can20, Mon22, Cor23, Bad21]. Nevertheless, if the strain 
gages are not installed before casting, this would require a removal of the concrete cover which 
would significantly affect the local behaviour near the crack, compromising the results. An 
interesting alternative consists in measuring the crack kinematics on the concrete surface using 
image recognition [Rez20, Dor18] and correlation techniques [Can21, Can20, Geh22]. In this 
case also, a model which allows calculating the stress variations on the basis of the measured 
crack kinematics is required.  

 

Figure 4.1: (a) Schematic representation of shear cracks in an existing reinforced 

concrete structure and (b) components of the crack kinematics. 

The dowel force, and thus also the steel stresses, can be limited by spalling of the concrete cover, 
primarily occurring when the concrete cover (net distance between concrete surface and bar) is 
thin compared to the bar diameter [Vin86]. Alternatively, in cases with sufficient cover, the 
dowel force can be limited by localized concrete crushing near the interface combined with 
yielding of the bar in bending (development of a plastic hinge in the bar). Focusing on the latter 
case with sufficient cover, failure is characterized by a relatively ductile behaviour due to the 
potentially significant steel plastic strains. Consequently, many authors have evaluated the 
dowelling resistance of a steel bar by using the limit analysis approach (see Rasmussen [Ras62] 
and [Sor86, Dul72, Dei87, Dei92, Tan11, Pru88, Nør15, Vin87]). This approach assumes that 
the plastic hinge develops in the bar at a certain distance from the crack which crosses the bar. 
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In the limit analysis approach, the contact pressure between the bar and concrete activated by 
dowel action is typically assumed to be constant. This pressure can reach a value significantly 
larger than the uniaxial concrete strength due to the local tri-axial stress state. The ratio between 
the confined concrete strength and the uniaxial concrete strength (measured on cylinders) is 
often referred to as a confinement factor. Its values were typically determined from dowel tests 
with interfaces perpendicular to the bar, with a range between approximately 3 and 5 [Tan11, 
FIB08, Ras62]. For angles between the bar and the crack smaller than 90°, the dowel resistance 
was observed to decrease [Dul72]. The resistance was also observed to decrease in presence of 
an axial force in the reinforcing bars [Sor86, FIB13]. 

The behaviour of dowels under cyclic loads has also been experimentally investigated in the past 
[Ele74, Sta77, Jim79]. These experiments commonly indicated an increased shear displacement 
with cycles (in case of imposed shear forces), a considerable stiffness degradation, and a 
reduction in hysteresis loop areas over cycles. Vintzeleou et al. [Vin87] conducted an extensive 
parametric experimental investigation of dowels under cyclic loads, emphasizing the influence 
of the concrete cover. They observed an increased stiffness degradation in cases involving fully 
reversed deformations. Using these findings, they proposed a model addressing the failure due 
to steel yielding and concrete crushing [Vin86]. Soltani et al. [Sol08] developed a path-
dependent mechanical model for deformed reinforcing bars at the concrete interface under the 
coupled cyclic shear and axial force. This model considered the bond-slip strain relationship, the 
three-dimensional yield criterion, and the cyclic stiffness deterioration. Tests by 
Kato et al. [Kat73] showed no substantial response degradation in the reinforcing steel due to 
cyclic loads. Consequently, the degradation in the dowel response is primarily associated with 
the degradation of concrete. Li et al. [Li18] conducted dowel tests to investigate the response 
deterioration due to fatigue and to identify fatigue failure modes. Their study highlighted that 
the accumulated fatigue damage significantly reduced the dowel resistance measured under 
monotonic loads. Based on these findings, they proposed a nonlinear bond model for numerical 
applications, accounting for the effect of the fatigue damage.  

Regarding service loads, the model developed by Winkler [Win67] and Zimmermann [Zim88] 
already in the 19th century with the elastic analysis solution of slender beams resting on a 
cohesionless foundation can be adapted to describe the interaction between the reinforcing bar 
and the surrounding concrete for moderate dowel forces. In this case, the concrete can be 
modelled as linear springs smeared along the bar. The mathematical solution for a bar with an 
infinite length was reported by Timoshenko et al. [Tim25], subsequently applied by 
Friberg [Fri38] for the case of dowel bars between concrete pavement segments. The uncertainty 
in the prediction relies on estimating the concrete stiffness under the bar, which remains a 
challenge due to the complexity of the problem related to the development of local cracking. 
Many authors have attempted to estimate this stiffness through empirical expressions, typically 
accounting for the bar diameter and the concrete strength [FIB08, Sor87]. These expressions 
were usually calibrated to fit the load-displacement curves using the shear force or the 
transversal displacement as indicators of the concrete degradation [Bre90, Dei92, Sol08], 
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particularly for larger loads. However, the stiffness is significantly influenced by other factors 
such as casting conditions due to the plastic settlement and bleeding of the fresh 
concrete [Moc20], thickness of the concrete cover [Mon21], angle between the crack and the 
bar, number of cyclic loadings, and secondary cracks induced by the axial force [Got71].  

This chapter introduces a new formulation for the concrete bearing stiffness under the 
reinforcing bar to be used in Winkler’s model (beam on elastic foundation) to estimate the 
bending stresses in the reinforcing bar and the activated dowel shear force as a function of the 

imposed transverse displacement δ⊥ (see Fig. 4.1b). The formulation accounts for the 

aforementioned phenomena and is calibrated based on mechanical considerations and 
measurements with optical fibres described in another publication by the authors [Pej22]. In 
addition, the case of unsymmetric behaviour on both sides of the crack, which can be typically 
observed due to bleeding and settlement of fresh concrete as well as the presence of a free 
concrete surface near the bar, is also investigated analytically. 

4.2 Steel stresses and shear force in the bar according to 
Winkler’s model 

4.2.1 Analytic solution for the symmetric case 

As descried above, Winkler’s model [Tim25, Fri38] can be used to investigate in the elastic 
domain a reinforcing bar embedded in concrete which is subjected to an imposed transverse 

displacement at its end which corresponds to half the crack slip δ⊥ (Fig. 4.2a, or transverse 

component of the crack opening in case of cracks not perpendicular to the bar).  

For this purpose, one can assume that (1) at interface between reinforcing bar and concrete, no 
tensile forces can be carried and that (2) on the compression side, the contact pressure between 
the bar and the concrete can be smeared over the bar diameter Øs (Fig. 4.2c), so that the average 
value of the pressure can be calculated from the distributed bearing force q (in N/mm) between 
the bar and the concrete: q/Øs (in MPa). 

According to Winkler’s assumption, the pressure q/Øs is proportional to the local relative 

transverse displacement δ෨⊥ : q/Øs = kc  δ෨⊥ , where kc is the bearing stiffness (in MPa/mm) which 

will be treated in the following. The differential equation of Winkler’s model for our case 
without external action on the bar thus becomes: 

4

4
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s s sc

d
E ØI k
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
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
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where x is the bar’s axis, Es is the elastic modulus of the reinforcing bar and Is = πØs
4/64 is the 

moment of inertia of the rebar. The solution of Eq. 4.1 in terms of the local relative transverse 

displacement δ෨⊥ is:  

   1 2 3 4cos sin cos sinx xe C x C x e C x C x     
      (4.2) 

where  
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   
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  (4.3) 

in mm-1 is a parameter which expresses the relative stiffness between the bar and the surrounding 
concrete, and C1 to C4 are constants which can be found based on given boundary conditions. 
For x > 0, since the effect of the imposed crack displacement at x = 0 must decrease with 
increasing x, coefficients C1 and C2 must be zero. The constant C4 can be calculated using the 
condition of the zero-bending moment at the crack location (x = 0): 

   2

3 4 40  2 sin cos  0    0 II x

s s s sM x E I E I e C x C x C   
          (4.4) 

and the constant C3 can be calculated from the displacement condition for x = 0: 

  30
2

Cx


 
      (4.5) 

The shear force along the bar is thus: 

 3 sin cosIII x

s s s sV E I E I e x x    
      (4.6) 

which allows calculating the dowel force Vdow for x = 0: 

3
dow s sV E I    (4.7) 

The position of the maximum bending moment along the bar (Fig. 4.2d) can be calculated from 
the condition V (xmax) = 0. The solution of tan(β xmax) = 0 gives:  
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 (4.8) 

After replacing the position of the peak moment into: 

  2 sin  II x
s s s sM x E I E I e x   

      (4.9) 

the maximum bending moment can be calculated as: 

2
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so that the maximum stress in the bar (Fig. 4.2e) becomes: 

a
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
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where ck  = kc Øs / Ec, with Ec being the elastic modulus of concrete. 

 

Figure 4.2: (a) Reinforcing bar subjected to the crack kinematic components δ⊥ and δ||; 

(b) forces on a portion of the bar in the longitudinal section and (c) cross-

section; (d) longitudinal stress σs,flex and its variation Δσs,flex due to bending 

along the bar’s axis and (e) stress σs,flex and its variation Δσs,flex at the critical 

cross-section. 

Equations 4.7 and 4.11 show that the bearing stiffness kc is a crucial parameter for the accuracy 
of the model’s prediction. Several empirical formulations for kc have been proposed in the 
past (see subchapter 4.2.2), typically accounting for the bar diameter and the concrete strength. 
In the following, a new expression for the bearing stiffness kc is proposed, based on mechanical 
considerations and measurements with optical fibres (chapter 4.3). 

4.2.2 Existing models for the bearing stiffness of concrete 

The existing formulae that predict the concrete bearing stiffness under the bar were typically 
derived empirically. In this subchapter, two analytical expressions are compared to the 
experimental results presented in [Pej22]. The first is the formula by Soroushian et al. [Sor87] 
which was fitted on numerous tests involving compressed concrete under a bar. The expression 
defines the bearing stiffness kc as a function of the bar diameter Øs and the uniaxial compressive 
concrete strength fc: 
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where kc is expressed in MPa/mm, fc in MPa and Øs in mm (the exponent 2/3 on the bar diameters 
relates to a size effect). This expression solely predicts the initial concrete stiffness under the 
bar.  

The second considered expression by Brenna et al. [Bre90] is also empirical. It was fitted on 
dowel tests on the basis of the Winkler’s model. This expression accounts for the degradation of 
the concrete stiffness with increasing transverse displacement, but has no size effect: 
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 (4.13) 

In Fig. 4.3, a comparison is presented between the two predictions and the bearing stiffness 
derived from the optical fibre measurements of a test series presented in [Pej22]. These results (a 
representative test is shown in Fig. 4.4a-d) allow to calculate the local values of the bearing 
stiffness kc by dividing the measured concrete pressure q/Øs (Fig. 4.4b) by the corresponding 
transverse displacement of the bar (Fig. 4.4c). In Fig. 4.4d, the distribution of the calculated 

values of ck (bearing stiffness kc normalised by the ratio Øs / Ec) is presented along the bar. It 

can be observed that the derived local bearing stiffness increases farther from the crack interface, 
reaching a plateau approximately half a diameter away from the crack. The average stiffness 
values taken from the plateau are presented for several tests in Fig. 4.3 as a function of the 

transverse displacement δ⊥. One can observe that for small transverse displacements δ⊥, the 

normalised value of kc is almost constant. In Fig. 4.3, the predictions are shown by envelopes, 
accounting for the variability of governing test parameters. Soroushian’s expression generally 
underestimates the concrete stiffness except for large transverse displacements, where the initial 
underestimation is compensated by the neglected concrete degradation. The concrete stiffness 
predicted by Brenna et al. [Bre90] corresponds well with the results of the tests with θ = 90°, 
while it tends to be overestimated for θ = 45°. However, this prediction effectively captures the 
degradation rate of the concrete stiffness. This means that current expressions can be improved 
accounting for parameters and effects which have not been considered in the empirical 
evaluation. 
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Figure 4.3: Comparison of the existing empirical expressions with the derived stiffness 

based on optical fibres measurements in dowel tests [Pej22]. 

4.3 Improved expression for the bearing stiffness 

4.3.1 General formulation, influence of angle θ and of imposed 
displacement 

The bearing stiffness, which is defined in Winkler’s model as the ratio between pressure and 

local displacement (kc = q/(Øsꞏδ෨⊥) as described above), can be calculated assuming as a first 

approximation from the case of a strip load applied to a concrete half-space according to 
Boussinesq [Bou78]. For a strip with the width Øs (Fig. 4.2c), the bearing stiffness is related to 
the concrete elastic modulus and the bar diameter:  

c
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E
k

Ø
   (4.14) 

where the product λ Øs can also be seen as the length of an idealized spring (see Fig. 4.2b and 

c). It can also be noted that Eq. 4.14 is similar to the normalised stiffness ck described above, 

where λ is the reciprocal of ck . 

Since the case of the reinforcing bar submitted to dowel action is significantly different from the 
strip load according to Boussinesq (half-space limited vertically by the crack, circular shape of 
the bar), the factor λ can be calibrated on the basis of the bearing stiffness calculated from optical 
fibre measurements.  

The angle θ between the crack and the reinforcing bar can be accounted for by applying to the 
bearing stiffness according to Eq. 4.14 a coefficient ηθ defined in Eq. 4.15: 
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As shown in Fig. 4.4e, the normalised bearing stiffness is suitably corrected with the coefficient 
ηθ defined in Eq. 4.15. For all cases, the normalised value of kc for small transverse 

displacements δ⊥ is approximately 0.2, which means λ = 5 can be assumed. Interestingly, as 

shown in Figure 4.5, similar results can be obtained from the compression tests (series CP 
from [Pej24]). 

Fig. 4.4e also shows that the bearing stiffness kc starts to gradually decrease when the transverse 

displacement δ⊥ reaches a critical value due to the development of splitting cracks, local concrete 

crushing and spalling near the crack. This reduction can be accounted for by applying a reduction 

factor ηδ fitted based on the available data as a function of the transverse displacement δ⊥ 

according to Eq. 4.16: 

0
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1.5
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sØ

 

 


  (4.16) 

The transverse displacement δ⊥ for which the stiffness starts to decrease is therefore

0.02
25

1.5 1
s sØ Ø 


 . 

Figure 4.4e shows the comparison with the tests results accounting for both coefficients ηθ and 
ηδ showing fine agreement.  
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Figure 4.4: Calibration of the concrete stiffness under the reinforcing bar based on 

optical fibre measurements: (a) representative specimen with main 

parameters; (b) pressure between concrete and the bar; (c) transverse 

displacement of the bar; (d) normalised concrete stiffness and (e) 

comparison between the measured and the calculated bearing stiffness 

accounting for coefficients ηθ and ηδ (data from [Pej22]). 

Figure 4.5: Coefficient λ as a function of the x / Øs ratio for the dowel (DP series from 

[Pej22]) and compression tests (CP series from [Pej24]). 

To account for other effects, Eq. 4.14 is adapted by introducing additional coefficients as shown 
in Eq. 4.17: 
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where ηc accounts for the presence of a free surface near to the bar; ηcast for presence of pores 
and cracks due to the bleeding and settlement of fresh concrete (Monney et al. [Mon21], 
Moccia et al. ([Moc20]); ηfc for the concrete strength; ηbond for the presence of local cracks 
induced by bond activated by a longitudinal component of the crack opening and ηcyc for cyclic 
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loading. Each of these factors is calibrated based on various test results (the details are presented 
in following subchapters).  

4.3.2 Influence of the casting conditions, concrete cover, and 
direction of the dowel force 

It is well known from other researchers (see for instance Moccia et al. [Moc20]) that fresh 
concrete behaves just after casting in a manner similar to a saturated soil with resulting 
settlements and bleeding (migration of mixing water toward the top part of the concrete 
element). These phenomena can cause settlement cracks near the top reinforcement bars as well 
as voids (due to settlement) and pores (once the bleeding water is evaporated) under the top bars 
as shown in Fig. 4.6a. These cracks, voids and pores typically have a detrimental effect on the 
bond behaviour of reinforcing bars located in the top parts of concrete elements (also known as 
top-bar effect, or poor casting conditions, see for instance Moccia et al. [Moc21]) which is 
accounted for in most codes of practice when calculating the anchorage and laps lengths. With 
respect to the dowel action, this effect has not been investigated yet, but some results of tests 
carried out to investigate the bond and other problems can be used to estimate the bearing 
stiffness in the Winkler’s formulation. Figure 4.6b shows the 8 cases which need to be 
distinguished and the covers cx and cy which can have an influence on the behaviour. Since in 
actual structures, different cases occur on either side of a crack (namely A with D, B with C, E 
with H and F with G), the bearing stiffness on either side of the crack can be different. This 
effect is treated in subchapter 4.3.6 and Appendix 4.A.  

For the cases A, B, E and F, the results of the tests conducted by Monney et al. ([Mon21], 
Fig. 4.7) can be used to calibrate the coefficients ηc and ηcast . In these tests, a reinforcing bar 
was pressed into concrete prisms in a similar manner to the tests of series CP [Pej24]. The 
cover cx (Fig. 4.7c) was varied from cx / Øs = 0 to 3 and two bar diameters were used 
(Øs = 14 mm and 20 mm). In a series, the reinforcing bar was supported on the top of the lateral 
formworks during casting (poor casting conditions). In a second series, the reinforcing bar was 
placed on the bottom formwork during casting and tested upside-down (good casting 
conditions). Figure 4.7a shows the uniform pressure under the bar (σc,avg, averaged across the bar 
width and length) normalised by the uniaxial concrete strength fc as a function of the bar 
penetration in the concrete δ normalised by the bar diameter Øs. The blue and red curves 
correspond to good and poor casting conditions, respectively, while different shades represent 
various cover-to-bar diameter ratios cx / Øs. As expected, the stiffness is smaller for poor casting 
conditions than for good conditions. 
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Figure 4.6: (a) Consequences of settlement and bleeding of fresh concrete around top 

bars (adapted from Moccia et al. [Moc20]); and (b) investigated cases and 

proposed coefficients ηc (influence of cover) and ηcast (influence of casting 

condition). 

Figure 4.7b shows the initial slope of the stress-bar penetration curves as a function of the cover-
to-diameter ratio cx / Øs. The results, which can be associated to the bearing stiffness kc, are 
normalised by the values for good casting conditions and large cover cx, so that they can be 
associated to the product ηc ꞏ ηcast . The results show that the normalised stiffness increases with 
the cx / Øs ratio, gradually reaching its maximum value for approximately cx / Øs = 3. One can 
observe a similar increasing trend for both casting conditions and bar diameters, but the 
reduction for thin covers is larger for poor bond conditions than for good ones. Based on these 
results, empirical expressions for coefficients ηc (influence of cover) and ηcast (influence of 
casting condition) are proposed (Fig. 4.7b, dashed curves):  
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Figure 4.7: (a) Normalised average stress under a bar as a function of the bar 

penetration-to-diameter ratio; (b) coefficients ηc (influence of cover) and 

ηcast (influence of casting condition) for cases A, B, E and F in Figure 4.6b; 

and (c) specimen (adapted from [Mon21]). 

The tests conducted by Moccia et al. ([Moc21], Fig. 4.8) can be used to investigate the influence 
of the casting conditions and the cover for the cases C and G shown in Figure 4.6b (dowel force 
pushing perpendicularly against a free surface). The cases of corner bars D and H are not 
considered due to the lack of experimental evidence. In the tests by Moccia et al., a pressure was 
applied in cylindrical openings (diameter 20 mm) located at various distances cy from the free 
surface (ratios cy / Øs ranging from 0.25 to 2.5). Casting with the opening on top of the formwork 
was associated with poor conditions, while casting with the opening at the bottom corresponded 
to good conditions.  

Figures 4.8a,b show the internal pressure p in the opening as a function of the displacement δ 
measured on the free concrete surface for both poor and good casting conditions. The shades 
correspond to various cy / Øs ratios. The initial slope of the curves (bearing stiffness kc) shown 
in Fig. 4.8c is normalised by the value for good casting conditions and relatively large cover, so 
that it represents the product ηc ꞏ ηcast . Based on these results, the same coefficient ηcast as for 
the other cases can be used (namely 1.0 and 0.45 for good and poor casting conditions, 
respectively), whereas for coefficient ηc , the following empirical expression can be 
proposed (Fig 4.8c, dashed curves):  
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It has to be noted that Eq. 4.21 describes only the influence of the cover on the initial stiffness. 
The development of spalling cracks (subparallel to the free surface, also called delamination 
cracks) is not considered with this expression and should be accounted for in case of imposed 
transverse displacements sufficiently large to trigger the development of this type of cracks. 
Here again, there is a need for further research to cover this case which can be governing in 
practice. 

 

Figure 4.8: (a) Internal pressure as a function of the cover-to-diameter ratio cy / Øs from 

tests conducted by Moccia et al. [Moc21] for poor and (b) good casting 

conditions; and (c) coefficients ηc (influence of cover) and ηcast (influence 

of casting condition) for cases C and G in Figure 4.6b.  
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4.3.3 Influence of the concrete strength 

The influence of the concrete strength should be theoretically accounted for by its elastic 
modulus which, if not measured on specific tests, can be derived from the concrete strength 
using the relationships defined in codes of practice. In this work, the comparisons are conducted 
with an average value of: 

1 310 ' 0 00c cE f                     (4.22) 

Nevertheless, the expressions proposed by Soroushian et al. [Sor87] and Brenna et al. [Bre90] 
described in subchapter 4.2.2 which were fitted on their tests give larger values of the bearing 
stiffness for higher strength concrete (see comparison in Figure 4.9). This is also confirmed by 
the results of tests by Monney et al. [Mon21] described above (two series with concrete strengths 
of about 34 and 76 MPa). In Figure 4.9, the bearing stiffness by Monney et al. corrected with 
the coefficients ηc and ηcast defined above are compared to the analytical solutions by 
Soroushian et al. [Sor87] and Brenna et al. [Bre90]. The results by Monney et al. lie between the 
two analytical solutions, so that the following expression for the correction factor ηfc to account 
for the influence of the concrete strength can be proposed: 

2 5

30
c

fc

f    
 

  (4.23) 

 

Figure 4.9: Concrete stiffness as a function of the concrete strength, tests by 

Monney et al. [Mon21] compared to the analytical solutions by 

Soroushian et al. [Sor87] and Brenna et al. [Bre90] (normalised to provide 

identical results for fc = 30 MPa, analytical solution by Brenna et al. shown 

for initial stiffness with δ⊥ = 0). 

It must be noted that this expression is based on a small number of tests and a phenomenological 
explanation is still missing. For this reason, this effect deserves to be investigated more in detail 
in the future.  
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4.3.4 Interaction with bond 

From a phenomenological point of view, the development of secondary cracks near the ribs of 
reinforcing bars due to bond (Figure 4.10a, see also Goto [Got71]), can reduce the bearing 
stiffness related to the dowel action. To investigate this effect, a cyclic test reported in [Pej22] 
(Øs = 14 mm and θ = 90°) has been repeated using plain bars. Figure 4.10b shows the maximum 
and minimum shear force Vdow, min/max as a function of the corresponding transverse 

displacement δ⊥ for constant Vdow / N cycle groups for approximately constant crack opening 

components parallel to the bar (δ|| ≈ 0.08 mm and 0.1 mm). One can observe that the response 
of the ribbed bar (red markers) is slightly less stiff than for smooth bar (blue markers). Based on 
this comparison, the following coefficient ηbond to reduce the bearing stiffness in Winkler’s 
model to account for the interaction with bond can be proposed: 

1 6

1

1 0.2
bond






 
 
 

  (4.24) 

 

Figure 4.10: (a) Presence of secondary cracks due to bond around ribs in reinforcing bars 

compared to plain bars and (b) shear force as a function of the transverse 

displacement δ⊥ for constant δ|| in cyclic tests [Pej22] (Øs = 14 mm and 

θ = 90°).  

Here again, this coefficient is fitted on a very small number of tests, so that additional 
investigations are needed in the future to verify and probably enhance this relationship. 

4.3.5 Influence of the number of cycles 

For cyclic loading, a stiffness degradation in the dowel response can also be observed as a 
function of the number of cycles and of the amplitude of cyclic loads. The dowel tests conducted 
by Li et al. [Li18] (Øs = 12, 20 and 25 mm and θ = 90°) are analysed to investigate this effect. 

Figure 4.11a shows the dowel force as a function of the transverse displacement δ⊥ for two 

identical specimens, one tested under a monotonic load and the other under cyclic loading 
(colours correspond to the response after the various numbers of cycles N). In all considered 
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tests, the minimum and maximum cyclic load was 0.5% and 55% of the dowel resistance 
measured in the monotonic test, respectively. One can observe an increase of the transverse 
displacement and a considerable degradation of the stiffness with an increasing number of 
cycles N. Figure 4.11b shows the secant stiffness of the dowel response after the Nth cycle 
normalised to the stiffness at the first cycle with the exponent of 4/3 according to Eq. 4.7, which 
corresponds to the coefficient ηcyc. The results show a larger stiffness degradation for smaller 
bar diameters. Based on these results, the following coefficient ηcyc to account for the number of 
cycles can be proposed: 

2001 log
sØ

cyc N     (4.25) 

where N is the number of cycles and Øs is the bar diameter. 

 

Figure 4.11: (a) Monotonic and corresponding cyclic dowel test after different numbers 

of cycles N (adapted from Li et al.  [Li18]) and (b) proposed coefficient ηcyc 

as a function of the number of cycles (the abscissa is in logarithmic scale). 

It must be noted that this expression is based on a small number of tests, so that an additional 
investigation including a larger range of cyclic conditions is needed in the future.  

4.3.6 Solution of Winkler’s equation for different bearing stiffness 
on opposite sides of the crack 

It has been shown in subchapter 4.3.2 that the presence of a free surface near the bar and the 
direction of the dowel force with respect to the free surface can affect the bearing stiffness and 
thus the dowel behaviour. As described above, since in actual structures, different cases occur 
on either side of a crack (namely A with D; B with C; E with H; and F with G), the bearing 
stiffness on the two sides of the crack can be different. Figure 4.12 shows a case where the 
bearing stiffness is expected to be smaller on the side where the bar pushes against the concrete 
cover (case G in Fig. 4.6b) compared to the opposite side where the bar pushes away from the 
cover (case F in Fig. 4.6b). This asymmetry in the bearing stiffness results in different dowel 
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behaviours on either side of the crack, leading to different distributions of the bending moment 
and the corresponding stress σs,flex along the bar (Fig. 4.12).  

To predict the dowel behaviour in this case, Winkler’s model can be adapted by considering two 
different bearing stiffnesses kc

* and kc on either side of the crack, where kc
*≤ kc, to be used in the 

parameters  4 4sc s sk Ø E I    and  4 4c s ssk EØ I  , respectively. The ratio between the 

two parameters is defined as k    . In this case, the transverse displacement at the crack 

interface of the bar with the larger bearing stiffness of concrete (Fig. 4.12) becomes 

 2 21k k   , where δ⊥ is transverse component of the relative displacement of the two crack 

lips (see development in Appendix 4.A). The distance between the crack and the position of the 
maximum bending moment along the bar, which occurs on the side with the largest bearing 
stiffness (Fig. 4.12) can be calculated as:  

max

arctan k
x 


   (4.26) 

The maximum bending moment along the bar can thus be calculated as: 

2
2

max 2

arctan 1
2

1 1
s s

k k
M E I e

k k

 

 

 


 
 (4.27) 

which can be approximated by: 

*
4

max
2

s sE I
M e      (4.28) 

This means that the maximum moment, and thus the maximum steel bending stress, can be 
calculated using the same equations as for the symmetric case (Eq. 4.10) by replacing the 
parameter β by the geometric average of parameters β and β*.  

The dowel force can be calculated for x = 0 with: 

* 3
2

2 2

1 1dow s sV
k

E I
k 

  



  (4.29) 

which can be approximated as: 

*2
dow s sV E I    (4.30) 
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Figure 4.12: Asymmetric dowel behaviour due to the different bearing stiffnesses on 

opposite sides of the crack. 

4.4 Validation of the enhanced expression for the bearing 
stiffness kc 

In Fig. 4.13, the proposed bearing stiffness kc according to Eq. 4.17 is compared to the stiffness 

derived using Winkler’s model calculated to fit with the experimental Vdow - δ⊥ curves (brown 

solid line). The results, normalised by the ratio Øs / Ec, are shown for the dowel tests of series DP 
from [Pej22], Brenna et al. [Bre90] and Soltani et al. [Sol08] as a function of the transverse 

displacement δ⊥. The considered tests had various geometrical and material properties (bar 

diameter, angles θ, etc.). One can observe a satisfactory agreement between the fitted curves 
from the experimental data and the proposed prediction for the depicted range of the transverse 

displacement δ⊥.  
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Figure 4.13: Comparison between the predicted and experimental bearing stiffness 

(fitted from the experimental Vdow - δ⊥ curves). 

Figure 4.14 shows, for the same tests, the experimental curves (Vdow - δ⊥) and the curves 

according to various models. The first yielding of the reinforcing bar, measured by optical fibres, 
is identified with a red solid marker. One can observe again a relatively good agreement between 
the test results and the prediction according to Eq. 4.17 for all tests.  
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Figure 4.14: Comparison between experimental and predicted Vdow - δ⊥ curves. 

Figure 4.15 compares the model’s prediction with the proposed stiffness to the optical fibre 
measurements for test DP2027 from [Pej22]: the normalised axial stress due to bending 
(Fig. 4.15c, assuming elastic behaviour), the normalised curvature (Fig. 4.15d), the rotation 
(Fig. 4.15e) and the deformed shape of the reinforcing bar (Fig. 4.15f). The results are shown 
for five different load levels including the dowel resistance Vdow I,u. The enhanced model shows 
a good agreement with the presented measurements for all considered parameters. 

Figures 4.15g,h show the comparison between the predicted and measured distance xmax between 
the crack and the most stressed cross-section as a function of the angle θ and the bar diameter Øs. 
Again, one can observe a good correspondence between the model and the test results. 
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Figure 4.15: Comparison between the optical fibre measurements and the prediction by 

Winkler’s model with the proposed concrete stiffness: (a) bar deformation 

and parameter definitions; (b) measured strains; (c) normalised moment 

(stress assuming an elastic behaviour; red line indicates the prediction); 

(d) normalised curvature; (e) bar rotation; (f) transverse displacement;

(g) distance between the crack and the critical cross-section as a function of

the bar diameter and (h) as a function of angle between the crack and the

bar ((a)-(f): test DP2027 with Øs = 20 mm and θ = 45°, [Pej22]).

In a similar manner, the enhanced model is also validated against a representative cyclic test in 
Fig. 4.16. Here again, the model provides accurate estimates of the behaviour. 
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Figure 4.16: Comparison between the enhanced model and the optical fibre 

measurements: (a) bar deformation and parameter definitions; (b) measured 

strains; (c-f) derived parameters (specimen DP2027cyc by [Pej22]). 

Figure 4.17 compares the predicted peak longitudinal stress σs,flex at the critical cross-section to 
the fibre measurements normalised with the yield strength fy. The results are presented for all 
monotonic tests by [Pej22] at five load levels including the dowel resistance Vdow I,u (with a step 
of 0.2Vdow I,u) and for the cyclic tests for the minimum and maximum load levels within a constant 
Vdow / N cycle combination. One can observe a good agreement between the prediction and the 
measurements with an average of the measured-to-predicted stress ratio of 0.95 and a coefficient 
of variation CoV =12.8% for the considered tests.  

 

Figure 4.17: Comparison between the predicted and measured peak longitudinal 

stress σs,flex at the critical cross-section (red markers represent monotonic 

tests and blue markers cyclic tests). 
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4.5 Conclusions 

This chapter presents a new formulation for the bearing stiffness of concrete under the 
reinforcing bar to be used in Winkler’s model to calculate the steel stresses due to local bending 
and the maximum shear force in a reinforcing bar due to dowel action related to an imposed 
transverse displacement. The formulation for the bearing stiffness accounts for various effects 
and is calibrated based on mechanical considerations and optical fibres measurements. The main 
conclusions are: 

1. The new formulation for the bearing stiffness of concrete in Winkler’s model is
proposed to account for various effects: angle between the reinforcing bar and the crack,
concrete strength, casting conditions, concrete cover and reduction of the stiffness due
to a large number of cycles, as well as due to secondary cracks caused by bond.

2. The bearing stiffness under a ribbed bar in case of an imposed crack sliding (transverse
displacement) was observed to be slightly smaller than under a smooth bar. This
difference is likely due to the secondary cracks which develop near ribs due to bond
generated by the imposed crack opening.

3. Like for bond (top bar effect), casting conditions have an influence on the bearing
stiffness. Compared to good casting conditions, the bearing stiffness is reduced by more
than 50% in case of poor casting conditions, leading to smaller steel stresses due to local
bending and smaller dowel forces activated for a given imposed transverse
displacement.

4. In case of bars near a free surface, the bearing stiffness increases with the cover-to-bar
diameter ratio c / Øs. The stiffness reaches its maximum value for
approximately c / Øs = 3.

5. The analysed cyclic tests have shown an increased shear displacement and a substantial
stiffness reduction due to the accumulated damage with an increasing number of cycles.

6. The enhanced bearing stiffness formulation to be used in Winkler’s model gives good
predictions when compared to tests with respect to shear force-transverse displacement

response (Vdow - δ⊥) and the peak longitudinal stress σs,flex due to bending measured in

the monotonic and low-stress cyclic tests presented in another work by the authors
[Pej22].
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Appendix 4.A: Solution of Winkler’s model for an 
asymmetric case with different bearing stiffness on 
opposite sides of the crack 

In the case of the different concrete bearing stiffness on opposite sides of the crack, Winkler’s 
model can be adapted by considering two different bearing stiffnesses kc

* and kc, where 

kc
*≤ kc (Fig. 4.18), to be used in the parameters  * *4 4sc s sk EØ I   and  4 4c s ssk EØ I   , 

respectively. The ratio between the two parameters is denoted as k    . In this case, the 

local relative transverse displacement δ෨⊥ is described by (Fig. 4.18): 

 1 2cos sinxe C x C x  
  

    for x ≤ 0 (4.31) 

 3 4cos sinxe C x C x   
    for x ≥ 0 (4.32) 

The constants C1 to C4 are calculated based on the four conditions: 

 the relative transverse displacement: 3 1C C    

 the continuity of the bar rotation at x = 0:  1 2 3 4k C C C C    

 the continuity of the bending moment at x = 0: 2
2 4Ck C    

 the continuity of the shear force at x = 0:  3
1 2 3 4C Ck C C      

Solving this system of equations upon the unknown constants C1 to C4, one obtains: 

2 2
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 
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     
 (4.33) 

Consequently, the bar rotation ψ, the bending moment M and the shear force V in the bar, 
assuming the elastic behaviour, can be calculated as: 
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It must be noted that if the concrete bearing stiffness is the same on both sides of the crack 
(kβ = 1), the solution becomes symmetric. 

 

Figure 4.18: Deformed shape of the bar with the different bearing stiffness on opposite 

crack sides. 

For comparison, Figure. 4.19 shows the Winkler’s model solution for both identical (dashed 
curves) and different bearing stiffness (solid curves) on opposite sides of the crack. The values 
on the ordinates are normalised with respect to the maximum values of the case with identical 
bearing stiffness on both sides of the crack. The ratio of the stiffness parameters is assumed 
kβ = 0.6. One can observe that the solution with the different stiffnesses yield smaller peak values 
of the bar rotation (Fig. 4.19c), bending moment (Fig. 4.19b) and shear force (Fig. 4.19d) in the 

bar for the same transverse displacement δ⊥ compared to the case with the identical stiffness. 

This is due to the fact that on one side of the crack, the bearing stiffness is reduced compared to 
the symmetric case. 
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Figure 4.19: Comparison between the Winkler’s model solution with the identical 

(dashed curves) and different bearing stiffness (solid curves) on opposite 

crack sides of the bar: (a) relative transverse displacement; (b) bending 

moment; (c) rotation and (d) shear force (normalised values). 
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Nomenclature 

Latin characters: lower case 
c concrete cover 

cx, y concrete cover in two orthogonal directions 

fc uniaxial compressive concrete strength 

fy yield strength of the rebar 

ck   = kc Øs / Ec 

kc, kc
* bearing concrete stiffness under the rebar 

kβ ratio between two stiffness parameters 

p internal pressure 

q / Øs contact pressure between concrete and the rebar 

x length of the loaded area under the bar 

xmax position of the critical cross-section in the rebar 
  

Latin characters: upper case 
C1 - C4 constants 

Ec elastic modulus of concrete 

Es elastic modulus of the rebar 

Is moment of inertia of the rebar 

M bending moment in the rebar 

Mmax maximum bending moment in the bar 

N axial force in the rebar; number of cyclic loads 

Nmin / max minimum / maximum axial force within a cyclic combination 

V shear force in the rebar 

Vdow dowel force 

Vdow I,u first-order dowel resistance  

Vdow, min / max minimum / maximum shear force within a cyclic combination 
  

Greek characters: lower case 

β, β* stiffness parameter in Winkler's model 

δ measured displacement  

δ|| crack opening component in the direction of the rebar 

δ⊥ transverse displacement 

 δ෨⊥ local transverse displacement 

Δδ⊥ variation of the transverse displacement 

Δσs,flex 
variation of the longitudinal stress in the rebar due to bending at the critical 
cross-section 



Steel stresses and shear forces in reinforcing bars due to dowel action 

112 

εfibre / a / b strains measured by optical fibres on both sides of the rebar 

ηbond coefficient accounting for secondary cracks due to the axial force 

ηc coefficient accounting for the thickness of the concrete cover 

ηcast coefficient accounting for the casting conditions 

ηcyc coefficient accounting for the number of cyclic loads 

ηfc coefficient accounting for the concrete strength 

ηδ 
coefficient accounting for the bearing stiffness reduction due to the transverse 
displacement 

ηθ coefficient accounting for the angle between the bar and the crack 

θ angle between the crack and the rebar 
λ coefficient accounting for the spring length 

σs,flex longitudinal stress in the rebar due to bending at the critical cross-section 

χ curvature of the rebar 
ψ rotation of the rebar 
  

Others  

Øs diameter of the dowel bar 
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Chapter 5 

A contribution to predicting the 
dowel resistance 

This chapter contributes to predicting the dowel resistance by extending Rasmussen's model to 
cases where the angle between the bar and the concrete interface is smaller than 90°. 
Additionally, it demonstrates the application of the upper bound approach of limit analysis for 
estimating the dowel resistance. No publication related to this chapter has been produced. 

This work was conducted by Marko Pejatović under the supervision of Prof. Aurelio Muttoni 
who consistently offered the constructive feedback, proofreading and manuscript revisions. 

The main contributions of Marko Pejatović to this chapter are the following: 

 Collection of the database with 142 dowel tests. 

 Calibration of the concrete confinement factor based on optical fibre measurements and 
the collected dowel tests.  

 Elaboration of the figures included in the chapter. 

 Manuscript preparation of the chapter.  
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5.1 Rasmussen’s model 

5.1.1 Solution of Rasmussen’s model 

Rasmussen’s model [Ras62] was developed based on limit analysis to predict the dowel 
resistance Vdow I,u as follows: 

32

,
3

c y

dow I e su Ø
f f

V


   (5.1) 

where η3 is a confinement factor accounting for the increase of concrete strength under the bar 
due to the triaxial stress state, fc is the uniaxial compressive concrete strength, Øs is the bar 
diameter, fy is the yield strength of the bar and αe is a coefficient accounting for the distance 
between the point of contraflexure in the bar and the crack interface (eccentricity e, position of 
the applied force). The coefficient αe is given by: 

2 3 31
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where ce is calculated as: 
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For the case of a reinforcing bar crossed by a crack or an interface between concrete cast at 
different times, the eccentricity e can be neglected so that the coefficient αe becomes 1.  

The original Rasmussen's model assumed the full bending resistance Mp in the bar without any 
axial force N applied (Fig. 5.1a). To account for the reduction of the bending resistance due to 
the axial force, the model can be adapted [Sor86, FIB13] according to the plastic domain of the 
reinforcing bar (Fig. 5.1b), so that the Eq. 5.2 becomes: 

2
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3 3
e e e

p

N
c c

N

 
       (5.4) 

where Np = π Øs
2 /4 fy is the axial resistance accounting for the yield strength of the bar fy. 

Figure 5.1c,d compare the predictions of both the original and the adapted Rasmussen’s model 
to account for the axial force with the dowel tests including an axial force applied and a 90°-
angle between the crack interface and the bar (series DP from [Pej24], and 
Millard et al. [Mil84]). The confinement factor is assumed as η3 = 3.0. The results are presented 
as a function of the axial force N relative to the axial resistance Np = π Øs

2 /4 fy. The original 
model, according to Eq. 5.1 and 5.2, shows relatively good predictions with a tendency to 
overestimate the resistance for large axial forces applied for tests considered. In this case, an 
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average value of the measured-to-predicted resistance ratio of 1.04 with a scatter of 
CoV = 22.6%. This result can be improved using the adapted model (Eq. 5.1 and 5.4) accounting 
for the axial force, yielding the statistical values of avg = 1.30 and CoV = 17.1%. It must be 
noted that the resistance, for the test with the largest axial force (Fig. 5.1b), is calculated using 
the tensile strength fu (Nu = π Øs

2 /4 fu, accounting for the stress increase due to strain hardening). 
For comparison, Figure 5.1e shows the comparison between the tests and the prediction of the 
adapted model where the yield strength fy is replaced by the tensile strength fu in Eq. 5.4. In this 
case, the statistical values are slightly improved: avg = 1.25 and CoV = 16.7%.  

 

Figure 5.1: (a) Dowel bar with the axial force in the bar with θ = 90°; (b) plastic domain 

of the reinforcing bar; (c) comparison between the measured and predicted 

dowel resistance using the original Rasmussen’s model; (d) using the 

adapted Rasmussen’s model accounting for the axial force, assuming that 

the axial resistance of the bar is calculated using the yield strength fy and 

(e) using the tensile strength fu. Note that for all comparisons, the 

confinement factor is assumed as η3 = 3.0. 
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5.1.2 Enhancement of Rasmussen’s model and validation 

Rasmussen’s model was originally derived for θ = 90°. For this case, several values of the 
confinement factor η3 were proposed, η3 = 5.1 according to Rasmussen [Ras62], η3 = 3.0 
according to Tanaka et al. [Tan11], etc. If angles θ < 90°, the concrete confinement under the 
bar reduces. To account for this reduction, the factor η3 can be calculated using two different 
approaches. 

In the first approach, the factor η3 is calculated by integrating the contact pressure between the 
concrete and the bar (Fig. 5.2a) measured by optical fibres presented in [Pej24]. This way, the 
equivalent stress over the length xmax is calculated with the pressure equal to η3 fc (Fig. 5.2a).  

In the second approach, the factor η3 is calculated using Rasmussen’s model (Eq. 5.1) and the 
measured dowel resistances Vdow I,u,test as follows: 
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V

f f Ø
    (5.5) 

The calculated factor η3 is shown in Fig. 5.2b,c as a function of the angle θ. One can observe 
that η3 increases with the angle θ in the studied range. Based on these results, the expression for 
η3 is proposed: 

 2

3 45 3      (5.6) 

Due to the lack of experiments for θ > 90°, the upper limit of η3 = 3 is adopted.  

Figure 5.2d compares the prediction with the proposed factor η3 with 16 dowel tests with θ < 90° 
without axial force. The results are in good agreement, with an average of measured-to predicted 
resistance of 1.12 and a coefficient of variation of 14.0%. For comparison, Figure 5.2e shows 
that Dulacska’s model [Dul72] yielding similar results with the statistical values avg = 1.0 and 
CoV = 15.8%.  
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Figure 5.2: (a) Dowel action and pressure between the bar and the concrete at ultimate 

load; (b) concrete confinement factor η3: proposed and derived values from 

optical fibre measurements [Pej24] assuming the uniform stress between 

the crack and the plastic hinge; (c) from Rasmussen’s model as a function 

of the angle θ; (d) prediction of enhanced Rasmussen’s model accounting 

for the proposed η3 and (e) prediction of Dulacska’s expression as a 

function of the angle θ. 

Finally, Figure 5.3 shows a comparison between Rasmussen’s model accounting for both the 
axial force and the proposed confinement factor η3, and 142 dowel tests. The results give an 
average value of measured-to-predicted resistance of 1.15 and a coefficient of variation of 
CoV = 16.3%.  
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Figure 5.3: Comparison between dowel tests and the prediction by Rasmussen’s model 

accounting for the axial force and the proposed confinement factor η3 as a 

function of (a) the angle θ and (b) the bar diameter. 

5.2 Conclusions 

This chapter presents the extension of Rasmussen’s model to cases when the angle between the 
bar and the crack is smaller than 90°. It also verifies the existing adaptation of the model in case 
of the axial force applied. The main conclusions are: 

1. The existing adaptation of the Rasmussen’s model to account for the axial force in the 
bar shows satisfactory predictions of the dowel resistance when compared to considered 
dowel tests.  

2. The dowel resistance reduces with the decreasing angle between the crack and the bar θ. 

3. The confinement factor η3 accounting for the tri-axial stress state in concrete under a 
reinforcing bar is calculated based on the optical fibre measurements and measured 
dowel resistances using Rasmussen’s model. Both approaches yield similar results, 
indicating the reduction of the confinement factor with the decreasing angle θ. 

4. Based on these results, the confinement factor to be used in Rasmussen’s model is 
proposed as a function of the angle θ, yielding relatively good predictions of the dowel 
resistance compared to tests. 
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Nomenclature 

 Latin characters: lower case 
e distance between the shear force and the crack 

fc uniaxial compressive concrete strength 

fy yield strength of the rebar 

fu tensile strength of the rebar 
  

 Latin characters: upper case 

Es elastic modulus of the rebar 

Mp bending resistance of the rebar 

N axial force 

Np plastic resistance of the reinforcing bar 

Vdow I,u first-order dowel resistance 
  

 Greek characters: lower case 

αe coefficient accounting for the eccentricity of the dowel force 

η3 concrete confinement factor 

θ angle between the crack and the rebar 
  

 Others 

Øs diameter of the dowel bar 
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Chapter 6 

Conclusions and Outlook 

This chapter summarises the conclusions of all the chapters of this thesis. Additionally, a 
research outlook addressing recommendations for the future work is included. 

6.1 Conclusions 

Codes of practice can be too conservative, particularly for the shear resistance of shear reinforced 
concrete members with considerable direct strutting, due to large loads applied near supports. 
This thesis introduces a design approach for reinforced concrete members with shear 
reinforcement based on the stress field method, aiming at providing accurate values for the 
design or verification of both slender and squat members. Subsequently, the thesis presents a 
model to better understand the behaviour of steel and concrete due to dowel action in reinforcing 
bars. 

The models based on stress fields, as for example the Variable-Angle Truss models, can be used 
for the design of slender members with shear reinforcement, as proposed by EN 1992-1-1:2004 
or Model Code 2010. However, this approach neglects the direct strut action and thereby 
underestimates the shear resistance. To account for the direct strut, this type of approach has 
been empirically adjusted. This thesis presents the design approach of members with shear 
reinforcement based on stress field which provide a smooth transition between slender and squat 
members, accounting for direct strutting conditions. 

Reinforcing bars are commonly designed to carry axial forces, neglecting their ability to resist 
transverse forces by dowel action, which can be beneficial for the shear resistance, but 
detrimental for the fatigue life. To contribute to a better understanding of dowel action, this 
thesis presents two test series: dowel tests under monotonic or low stress-level cyclic actions 
with optical fibre and digital image correlation measurements, and tests of the behaviour of 
concrete underneath the bar.  
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With respect to the stress prediction in reinforcing bars due to dowel action, this thesis presents 
a new formulation for the bearing stiffness of concrete under the bar to be used in Winkler’s 
model as a function of the transverse displacement. 

The key conclusions of this work, categorized by chapter, are outlined below. 

Chapter 2: Design of slender and squat reinforced concrete members with shear 
reinforcement 

1. The design of squat members using empirical corrections of the shear resistance of 
slender members, as proposed by several codes of practice (as EN 1992-1-1:2004 or 
Model Code 2010) lacks the mechanical background and yields predictions with a larger 
scatter.  

2. The stress field method can be developed for the shear response of squat and slender 
members resulting in simple and mechanically-sound formulae. This method yields safe 
results for the design of new structures (lower-bound of the resistance). More refined 
models are possible to use for the assessment of existing structures, by optimization of 
the failure load. Such a method can be formulated with increasing level of refinement 
following a Levels-of-Approximation approach. 

3. A method named Stress Fields with a concentrated strut (CSSF) are presented to be used 
for various shear slenderness, allowing for a smooth transition between members with 
and without direct strutting conditions. It consists of the combination of an inclined 
direct strut and two fan regions, and can be interpreted as a simplification of the Elastic-
Plastic Stress Field (EPSF) method. The CSSF is simple to use yielding accurate 
estimates of the shear resistance. This model enables to calculate the efficiency factor ν 
accounting for cracking in concrete, the inclination of the compression field θ and the 
tensile strains in the shear reinforcement accounting for compatibility of deformations 
at a control point (located at centre of the clear shear span).  

4. CSSF can be considered using two levels of refinement. The first (LoA I) is intended 
for simple design of new structures, assuming a constant value of the efficiency factor 
of concrete (ν = 0.5) and limiting the angle of the compression field as performed for 
slender members. The second is a more refined approach (LoA II) intended for detailed 
design or for the assessment of existing structures. It enables to calculate the ν values 
based on the strain state in the web, without limiting the angle of the compression field.  

5. Both the simplified and the refined CSSF method yield more accurate predictions of the 
shear resistance than those of EN 1992-1-1:2004. This is particularly the case of the 
refined method. Both of them are implemented in the second generation of Eurocode 2 
and in MC2020. 
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Chapter 3: Experimental investigation of dowel action in reinforcing bars using refined 
measurements 

1. The observed dowel response shows a strong dependency on the angle between the bar 
and the crack, the bar diameter and the applied crack kinematics. Larger angles between 
the bar and the crack and larger bar diameters lead to a stiffer dowel response and a 
larger first-order ultimate load. The linear and non-linear regime of the dowel response 
are governed by the imposed crack kinematics.  

2. Large shear forces in the bar associated to large imposed transverse displacements lead 
to concrete crushing under the bar near the crack. The combination of bending and axial 
force in the bar cause yielding of the bar. 

3. The dowel resistance due to large transverse displacements consists of two 
contributions: the first-order ultimate dowel force associated with a shear force in the 
bar and the second-order catenary force associated with the axial force and the rotation 
of the bar in the crack region.  

4. As observed from the optical fibre measurements, the largest bending stress in the bar 
is located approximately 1.5 times the bar diameter Øs from the crack.  

5. The dowel behaviour is strongly influenced by the angle between the crack and the bar.  

6. A considerable degradation of the concrete stiffness under the bar occurs at 
approximately 40% to 60% of the first-order ultimate load (shear resistance before 
activating the catenary action). The degradation rate remains approximately constant 
across all specimen configurations with respect to the normalized transverse 
displacement.  

7. Monotonic and low-stress amplitude cyclic tests show similar dowel responses within 
the studied service-load domain. Furthermore, several low-stress cycles do not reduce 
significantly the stiffness.  

8. The existing models considered yield reasonably accurate predictions of the concrete 
stiffness under the bar, the first-order dowel resistance and the dowel plastic response. 
Several aspects deserve to be improved, particularly regarding the influence of the angle 
between the crack and the bar as well as the influence of the axial force. 

Chapter 4: Steel stresses and shear forces in reinforcing bars due to dowel action 

1. The new formulation for the concrete bearing stiffness under the bar to be used in 
Winkler’s model is proposed to account for various effects: angle between the 
reinforcing bar and the crack, concrete strength, casting conditions, concrete cover and 
reduction of the stiffness due to a large number of cycles, as well as due to secondary 
cracks caused by bond.  
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2. The bearing stiffness under a ribbed bar in case of an imposed crack sliding (transverse 
displacement) was observed to reduce compared to a smooth bar. This reduction is likely 
due to the secondary cracks which develop near ribs due to bond mobilized by the 
imposed crack opening. 

3. Similar to bond (top bar effect), casting conditions affect the bearing stiffness of 
concrete. Poor casting conditions lead to more than 50% smaller bearing stiffness than 
good casting conditions, resulting in smaller steel stresses due to local bending and 
smaller dowel forces activated for a given imposed transverse displacement.  

4. In case of bars near a free surface, the bearing stiffness increases with the cover-to-bar 
diameter ratio c / Øs. The stiffness reaches its peak value for approximately c / Øs = 3. 

5. The analysed tests under cyclic loading show an increased shear displacement and a 
considerable stiffness degradation due to the accumulated damage with an increasing 
number of cycles.  

6. The proposed bearing stiffness formulation to be used in Winkler’s model gives good 
predictions when compared to tests in terms of the shear force-transverse displacement 

response (Vdow - δ⊥) and the peak longitudinal stress σs,flex due to bending measured in 

the monotonic and low-stress cyclic tests. 

Chapter 5: A contribution to predicting the dowel resistance 

1. The adaptation of the Rasmussen’s model to account for the axial force in the bar, 
proposed by other authors, shows satisfactory predictions of the dowel resistance when 
compared to considered dowel tests.  

2. The dowel resistance reduces with the decreasing angle between the crack and the bar θ. 

3. The confinement factor η3 of concrete under a bar is calculated based on the optical fibre 
measurements and measured dowel resistances using Rasmussen’s model. Both 
approaches give similar results, indicating the reduction of the confinement factor with 
the decreasing angle θ. 

4. Based on these results, the confinement factor to be used in Rasmussen’s model is 
proposed as a function of the angle θ, showing relatively good predictions of the dowel 
resistance compared to tests. 
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6.2 Outlook and future works 

Several questions regarding the topics in this thesis still remain open. In the following, some 
aspects that could be further studied are outlined: 

Chapter 2: Design of slender and squat reinforced concrete members with shear 
reinforcement 

1. The influence of flanges on the load-carrying capacity of non-rectangular reinforced 
concrete beams could be investigated using stress fields. This could allow refining the 
design, accounting for beneficial effect of flanges.  

2. The research has shown that the strain conditions in slender members are different from 
those in squat members with considerable direct strutting. The transition between these 
two cases could be further investigated. To that aim, an experimental campaign should 
be conducted including shear tests of beams with the various shear slenderness with the 
detailed measurements on the web surface.  

3. The stress fields with the concentrated direct strut and the strut with full spreading could 
be combined in a single stress field. Such a stress field could allow for a transition 
between cases with the large and small activation of the web reinforcement.  

4. The stress fields accounting for the spread direct strut need to be improved for the cases 
of members with flanges. To that aim, one should consider a spreading of stresses 
through the flange which could change the strain conditions in the web.  

5. The applicability of the stress fields approach can be arguable in cases of the small 
amount of shear reinforcement or its small ductility, which could be the case in old 
structures. A further investigation of such cases could be conducted experimentally and 
theoretically. 

Chapter 3: Experimental investigation of dowel action in reinforcing bars using refined 
measurements 

1. This research has shown that the measurement technique using distributed optical fibres 
is very efficient in studying experimentally the dowel action in small specimens 
designed to investigate this effect. However, similar investigations could be conducted 
on large-scale concrete members. Such an investigation could include various 
parameters such as the bar diameter, the angle between the concrete and the bar, the 
crack kinematics, the casting conditions, and the concrete cover. 

2. Tests of the compressed concrete under the uniformly loaded reinforcing bar show a 
strong dependence on the concrete cover and casting conditions. However, these effects 
could be studied directly in dowel tests. This would allow further investigation of their 
influence on both the dowel resistance and stiffness.  
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3. The influence of the angle between the concrete and the bar could be further 
investigated. Additional dowel tests could also include the angles larger than 90°.  

4. Low-stress cyclic tests could be extended to large-stress cyclic tests. Refined 
measurements could provide the important information on the stiffness deterioration due 
to the non-linear behaviour of both concrete and the reinforcement. 

5. Cyclic tests could be performed with a large number of cycles to investigate the potential 
fatigue failure of dowels. This could cover a wide range of cyclic conditions. 

6. Additional dowel tests could be conducted, including visible crack faces for DIC 
measurements. This could enable the detailed investigation of the concrete behaviour 
underneath the bar.  

Chapter 4: Steel stresses and shear forces in reinforcing bars due to dowel action 

1. The influence of spalling cracks (also called delamination cracks) on the dowel 
behaviour due to sufficiently large dowel forces pushing against the concrete cover 
needs to be further studied. To that aim, an experimental campaign could be performed 
including the various thicknesses of the concrete cover. 

2. The impact of secondary cracks resulting from axial forces in ribbed bars on the bearing 
stiffness of concrete requires deeper investigation. For this purpose, an experimental 
campaign should be performed encompassing both smooth and ribbed bars of varying 
diameters, subject to different imposed crack openings. 

3. The influence of cyclic loading on the bearing stiffness needs to be further investigated. 
To that aim, an experimental campaign should be conducted including cyclic conditions 
in the range of service loads with a large number of cycles. Various material and 
geometrical properties could be considered. 

4. The influence of the concrete strength on the bearing stiffness needs to be further 
corroborated with additional tests. These tests could include concrete prisms with 
various concrete strengths in which short rebars are pressed to reproduce the dowel 
behaviour as well as dowel tests.  

5. Winkler’s assumption of the uniform bearing stiffness along the bar could be explored. 
By considering a non-uniform stiffness distribution, solving the beam equation might 
yield results that capture the local behaviour of the concrete near the crack.  

6. The influence of the casting conditions and the concrete cover on the bearing stiffness 
and on the dowel resistance need to be investigated more in detail and the case with 
corner reinforcing bars deserved to be investigated experimentally. 
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Chapter 5: A contribution to predicting the dowel resistance 

1. The influence of the large axial forces in the reinforcing bar on the dowel resistance 
should be further investigated. This is particularly the case for the axial forces close to 
the axial resistance.  

2. The dowel resistance is strongly influenced by concrete crushing and spalling, as well 
as splitting cracks under the bar. For this reason, these phenomena should be further 
investigated experimentally and numerically. 

3. An actual pressure between the reinforcing bar and concrete at dowel failure can be 
further investigated numerically. Such analyses would enable to analyse large number 
of parameters. This would enable to analyse the confinement conditions in concrete 
under the bar.  
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