
Article https://doi.org/10.1038/s41467-023-43971-z

Evidence for increased parallel information
transmission in human brain networks
compared to macaques and male mice

Alessandra Griffa 1,2,3 , Mathieu Mach2, Julien Dedelley2,
Daniel Gutierrez-Barragan4, Alessandro Gozzi 4, Gilles Allali1,
Joanes Grandjean5,6, Dimitri Van De Ville 2,3 & Enrico Amico 2,3

Brain communication, defined as information transmission through white-
matter connections, is at the foundation of the brain’s computational capa-
cities that subtend almost all aspects of behavior: from sensory perception
shared across mammalian species, to complex cognitive functions in humans.
How did communication strategies inmacroscale brain networks adapt across
evolution to accomplish increasingly complex functions? By applying a graph-
and information-theory approach to assess information-related pathways in
malemouse,macaque and human brains, we show a brain communication gap
between selective information transmission in non-human mammals, where
brain regions share information through single polysynaptic pathways, and
parallel information transmission in humans, where regions share information
through multiple parallel pathways. In humans, parallel transmission acts as a
major connector between unimodal and transmodal systems. The layout of
information-related pathways is unique to individuals across different mam-
malian species, pointing at the individual-level specificity of information
routing architecture. Our work provides evidence that different communica-
tion patterns are tied to the evolution of mammalian brain networks.

Understanding how brain function can be supported by patterns of
neural signaling through its structural backbone is one of the enduring
challenges of network and cognitive neuroscience1. The brain is
effectively a complex system, a network of neural units interacting at
multiple spatial and temporal scales through the white-matter
wiring2,3. Information transmission through structural connections,
which can be defined as brain communication1, gives rise to macro-
scale patterns of synchronous activity –or functional connectivity–
between remote areas of the brain. Communication processes are at
the foundation of the brain’s computational capacities that subtend
almost all aspects of behavior, from sensory perception and motor

functions shared across mammalian species, to complex human
functions including higher-level cognition4. From an evolutionary
perspective, high communication efficiency at minimal structural
wiring cost has long been recognized as a fundamental attribute
constraining the evolution of neural systems5–7. Yet, quantitative and
comparative assessments of macroscale communication processes
in mammalian brain networks at different phylogenetic leaves are
lacking1,8.

Systems-level neuroscience has made different attempts to map
brain communication as interrelated patterns ofmacroscale structural
and functional brain connectivity, highlighting strikingly complex
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structure-function interdependencies9. Structurally connected region
pairs tend to have stronger functional connectivity than disconnected
pairs10,11, indicating the presence of monosynaptic interactions12.
Nonetheless, direct structural connections alone are not able to
explain most of the dynamic functional repertoire observed in a
functioning brain13. Beyond monosynaptic interactions, functional
connectivity between remote brain areas is likely to emerge frommore
complex, higher-order communication mechanisms that involve
larger groups of neural elements and their structural interconnections,
possibly through polysynaptic (multi-step) routing of neural
information1,14,15. Brain networks of several mammalian and simpler
species have short structural path length16,17 at the price of a relatively
high wiring cost5, suggesting that polysynaptic shortest paths con-
tribute to efficient communication in brain networks and have been
selected throughout evolution despite their high wiring cost. Yet,
models of selective communication through shortest paths only
explain a limited portion of functional connectivity10 and exclude a
large fraction of brain network connections and near-optimal alter-
native paths from the communication process18, pointing out the
relevance of multiple paths to brain communication models1,19,20.
Indeed, in many real-world systems, information transmission unfolds
through numerous alternative pathways according to parallel com-
munication schemes21. In the brain, parallel communication may
increase transmission fidelity, robustness and resilience to brain
damage1 while achieving a reasonable trade-off between communica-
tion efficiency and metabolic expenditure22. Moreover, multiple com-
munication channels may be used together or separately at different
moments in time to support changing internal and external repre-
sentations and complex functions including higher-order cognition23.
In this sense, a compelling hypothesis is that parallel communication
may have evolved across mammalian evolution to support cognitive
tasks of increasing complexity. Nonetheless, the information trans-
mission mechanisms implemented inmammalian brain networks and,
particularly, the relative contribution of single-pathway (‘selective’)
versus multiple-pathway (‘parallel’) information transmission are, to
date, largely unknown.

Comparative neuroimaging provides instruments to understand
the emergence of function across evolution17,24. Evidenceof similarities
between neural systems in different species are assumed to reflect
common organizational principles and functions that may be evolu-
tionarily preserved. In contrast, regions showing the greatest changes
between humans and other species may account for features of cog-
nition unique to humans. It has been shown that the overall topology
of the structural and functional brain networks is preserved across
evolution16,17 despite large variations in brain size and cortical
expansion25. However, differences in local connectivity patterns and
functional dynamics exist26–28. Functional patterns extending beyond
pairwise-connected regions, possibly supported by polysynaptic
paths, have been identified across different mammals29. Moreover,
functional patterns untethered from structure are dominant in cortical
areas that underwent larger evolutionary expansion across primates,
suggesting a relation between local information transmission
mechanisms and evolution25,30,31. These considerations question whe-
ther macroscale polysynaptic communication mechanisms are pre-
served across species or, contrarily, differ between phylogenetic
leaves. In particular,was therea shift fromsingle-pathway (selective) to
multiple-pathway (parallel) communication across evolution to sup-
port increasingly complex brain functions? This question does not
have trivial answers and demands for new ways of assessing brain
communication across different species.

Here we propose an approach, rooted in graph and information
theory, to model polysynaptic information transmission in macro-
scale brain networks. Taking advantage of structural and functional
connectivity information extracted frommultimodal brain data (i.e.,
functional MRI, diffusion MRI, tract tracing), we explore the intricate

architecture of information-related pathways in the mouse, monkey
and human connectomes. We employ information-theoretical
principles22,32,33 to identify the structural paths supporting informa-
tion transmission in different neural systems, and measure the level
of selective and parallel communication across the different species.
We report a brain communication gap between humans and non-
humanmammals, with predominant selective information routing in
mice and macaques, morphing into more complex communication
patterns in human brains. Parallel communication strategies appear
to have acted as amajor connector of unimodal (sensory, attentional)
and transmodal (fronto-parietal, default mode) areas in the human
brain, possibly contributing to the evolution of more complex cog-
nitive functions in humans. Notably, we also found that information-
related pathways are highly specific to individuals across the differ-
ent mammalian species. Our results link the complexity of macro-
scale brain communication dynamics inferred from in vivo data to
the gap between human and non-human mammalian lineages. These
findings pave the way to a deeper understanding of how brain com-
munication and its relationship to function have evolved across
species.

Results
We introduce a graph- and information-theory framework to model
information-related pathways in brain networks and investigate their
evolution in three mammalian species: mice, monkeys, and humans
(Fig. 1). These species represent distinct mammalian lineages and
include animal models (mice, monkeys) often used in translational
research. We aimed to investigate two general aspects of brain com-
munication dynamics. First, due to the noisy nature of neural signaling
and under a relay information transmission model, neural messages
transmitted through the structural brain network can keep atmost the
same amount of information present at the source region22,32. This
holds true for many communication systems where the information
content tends to decay as one moves away from the information
source34. Second, in an information transmission process, messages
are typically relayed through a set of statistically independent steps35;
i.e., neural messages do not contain memory of the transmission
process itself and communication happens in a Markovian fashion36.
These two dimensions –information decay and memoryless trans-
mission– are formally summarized by a fundamental principle of
information theory, the data processing inequality (DPI)33, which we
here apply to cross-species structural data and fMRI recordings
(Methods). Our model answers the following research question:
assuming that a source brain region is transmitting information to a
destination region, is this exchange of information compatible with a
relay communication channel (in the DPI-sense)? To answer this
question, we first identify sets of short polysynaptic paths connecting
regions pairs in the structural network representing the white matter
wiring of the brain (Fig. 1a). These structural paths aremade of several
hops from cortical region to neighborhood cortical region in the
structural connectome.We note that the structural connectomes were
estimated with different modalities in the three species (diffusion
tractography and/or tract tracing) to cope with the difficulties in
estimating diffusion-based connectomes in smaller brains (Methods).
Next, we estimate which and how many of those structural paths are
truly compatible with Markovian neural information transmission. To
this aim, we quantify fMRI-derivedmutual informationmeasures along
the structural paths (Fig. 1b) to assess the DPI on those paths (Fig. 1c).
Fromhere, a parallel communication score can be computed for every
pair of brain regions, by counting the number of paths that respect the
DPI (Fig. 1d). Parallel communication scores portray a spectrum of
communication strategies from selective information transmission,
where brain regions selectively exchange information through a single
pathway, to parallel information transmission, where regions com-
municate through multiple, parallel pathways (Fig. 1e). We assessed
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parallel communication scores at the individual and group levels, and
summarized them for distinct brain systems and single brain regions in
comparison to appropriate null models. Finally, we compared the
distribution of selective and parallel information transmission across
the three different mammalian species.

Data for this study consisted of open-source whole-brain struc-
tural connectivity matrices and individual resting-state functional
MRI recordings of 100 healthy human subjects, 9 macaquemonkeys,
and 10 male wild-type mice, all in their young adulthood (Methods,
Supplementary Table 1; see below for replication datasets). All main
functional data were recorded from non-anesthetized experimental
subjects. Group-representative structural connectivity matrices with
comparable number of brain regions were derived from diffusion
MRI and/or tract tracing data, and weighted by the Euclidean
distance between connected regions since, from a neurobiological
perspective, neural signal transmission through physically shorter
axons is less costly in terms of metabolic resources and may
be preferred to longer connections6 (Supplementary Fig. 1).
Individual-level mutual information matrices were computed from
fMRI recordings of comparable duration and temporal resolution
across species.

Parallel information transmission in brain networks shows a gap
between humans and non-human mammals
Using our approach we found that, in mammalian brains, polysynaptic
structural paths are used to relay information in a “Markovian”-spe-
cific, sequential processing fashion. For all the three considered spe-
cies, the whole-brain density of relay information-related pathways
(i.e., the percentage of structural paths respecting the DPI) was higher
than in a strict null model preserving the structural connectivity
architecture and the multivariate statistics of fMRI time series (Meth-
ods; two-sided Mann-Whitney U test, p < 10−5 for all species). This held
true when considering either the first shortest path connecting region
pairs (mean± standard deviation across individuals: humans = 39.5 ±
3.8%; macaques = 37.9 ± 5.8%; mice = 40.1 ± 2.4%), or longer paths
(humans = 33.0 ± 5.6%; macaques = 29.8 ± 6.3%; mice = 30.4 ± 6.2%),
showing that relay information transmission is not limited to the
shortest path only (Fig. 2a). Specifically, the communication density
levels were comparable for the first and second shortest paths and
decreased for longer paths in all the three species. Next, we assessed
the amount of parallel information transmission between all brain
region pairs. We found that, on average, the parallel communication
score (PCS) was larger in humans compared to animals (median [5-,

Fig. 1 | Identifying information-relatedpathways inmacroscalebrainnetworks.
a A weighted and symmetric structural connectivity matrix summarizes the white
matter wiring of the brain for each species. For every pair of brain regions (i, j), the
5 shortest structural paths (light blue) connecting the two regions are identified
using the k-shortest path algorithm18. b For every (human or non-human) subject,
the mutual information between region pairs is computed from z-scored regional
time series obtained from fMRI recordings. c By analyzing the mutual information
values along each structural path, the data processing inequality (DPI) is used to
assess whether the specific structural path represents an information-related
pathwaybetween regions i and j. Left panel: twobrain regions i, j are connectedby a
structural path crossing regions x1, x2; green lines represent direct structural con-
nections (white matter fibers). Each region is associated with a neural activity-
related time series; the amount of information shared by two regions is quantified
by their mutual information I (darker and thicker arcs indicate stronger I). Right

panel: a structural path (i, x1, x2, j) is labeled as relay information-relatedpathways if
the pairwisemutual information values donot increase along the (undirected) path
(first row, red shading); it is not an information-related pathway otherwise (second
row, gray shading: Ij,i > Ix2,i).dA parallel communication score (PCS) is computed at
the individual level (i.e., for every subjectn) and for every pair of brain regions i, jby
counting the numberof structural paths that serve as information-relatedpathways
between the two regions. e Parallel communication scores are investigated across
mammalian species, highlighting a spectrum of communication strategies from
selective information transmission (light yellow; low PCS), to parallel information
transmission (dark brown; high PCS). Particularly, our work highlights a parallel
relay communication gap between humans and non-human mammals (macaques,
male mice), with humans’ brain network communication tailored towards parallel
transmission, and macaques and mice towards selective transmission. Brain sche-
matic from scidraw.io97–99.
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95-percentile] across region pairs: humans = 1.52 [0.11, 3.02]; maca-
ques = 1.33 [0.33, 2.44]; mice = 1.40 [0.30, 2.60]). This is particularly
evident when considering the long-tailed distribution of human
PCSs as compared to the non-human mammals (Fig. 2b). The three
species’ PCS distributions were pairwise statistically different (two-
sample Kolmogorov-Smirnov tests human-macaque:D4950,3321 = 0.180,
p < 10−55; human-mouse: D4950,2145 = 0.144, p < 10−27; macaque-mouse:
D3321,2145 = 0.076, p < 10−6) and the brain information transmission gap
between humans and non-human mammals was consistent when
considering replication datasets (two-sided Mann-Whitney U tests,
Supplementary Fig. 2). These results indicate that, as the brain evolved
from mice and macaques to humans, interareal communication is
subserved by parallel transmission (Fig. 2).

Information transmission architecture is species-dependent and
relates to the functional organization of mammalian brains
When evaluating the spatial localization of the relay information-
related pathways, we found that it followed the characteristics of each
species’ functional cortical architecture (Fig. 3). In lower species the
relay (mostly sequential) pathways mainly encompassed unimodal/
multimodal regions spanning the barrel and auditory cortices in mice,
and the visual cortices in macaques (Fig. 3a). These patterns were
preserved in anesthetized animals (replication datasets, Supplemen-
tary Figs. 16, 17). In humans we found similar evidence of relay

sequential transmission in unimodal and multimodal areas, but also a
high concentration of parallel information-related pathways in trans-
modal regions including association cortices of the executive-control
network and the precuneus of the default mode network (Fig. 3a; note
the different color scales across species).

Next, we investigated the communication patterns at the level of
region pairs within and between different brain functional systems
(Methods; Supplementary Figs. 3, 4). In mice and macaques, the relay
pathways mainly connected brain nodes belonging to unimodal sys-
tems, particularly barrel and auditory cortices in mice, and visual with
somatomotor and attention regions in macaques (Fig. 3b). In humans,
stronger (parallel) relay information transmission mainly connected
somatosensory and attention regions with executive-control and
default mode systems, forming cross-modal parallel streams between
unimodal and transmodal regions (outside-diagonal entries in Fig. 3b).
Notably, these patterns were stable at the individual subject level. We
report in Fig. 3c the amount of relay information transmission (average
PCSs) within unimodal systems, within transmodal systems, and
between unimodal and transmodal (“cross-modal”) systems for each
experimental subject and each species. The amount of relay informa-
tion transmission strongly varied between systems in humans, with
cross-modal region pairs presenting the highest amount of relay
transmission and transmodal regions the lowest amount (Kruskal-
Wallis test, p < 10−44), and moderately varied in macaques and mice,

Fig. 2 | Parallel information transmission gap across mammalian species. Left:
schematic of human, macaque, and mouse brains from scidraw.io97–99. Each row in
the figure corresponds to one species. a Box plots representing the percentage of
short structural paths in individual brain networks respecting the data processing
inequality (DPI) (communication density). Each colored dot represents an indivi-
dual (humans: n = 100 biologically independent subjects; macaques: n = 9 biologi-
cally independent subjects; mice: n = 10 biologically independent subjects); gray
dots represent species-specific null distributions obtained from random shuffling
of fMRI time series (Methods); circles and vertical bars indicate mean± one stan-
dard deviation across individuals or randomizations. Paths are grouped according
to the 1st up to the 5th shortest path between region pairs, showing that relay
communication is not limited to the 1st shortest path only. * indicate p < 10−5 for
two-sided Mann-Whitney U test between subject and null distributions. b Group-

average parallel communication score (PCS) matrices representing PCSs between
every pair of brain regions, averaged across individuals. The color scale unit is the
number of information-related pathways. For each species, brain regions are
organized according to meaningful functional circuits which are highlighted by
black squares along thematrices’ diagonals and by color-codedbars (Methods). On
the right, the histograms of the average PCS scores across region pairs highlight a
brain information transmission gap between humans, with higher PCSs and pre-
sence of parallel information transmission, and macaques and mice, with lower
PCSs andmainly selective information transmission. Median [5-, 95-percentile] PCS
values for each species are reported atop each histogram. VIS visual, SM somato-
motor, DA dorsal attention, VA ventral attention, L limbic, CN control, DMNdefault
mode, BR barrel, AD auditory networks. Source data are provided as a Source
Data file.
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with transmodal networks consistently presenting the lowest amount
of relay transmission (Kruskal-Wallis test, p = 0.00017) (Fig. 3c). Across
species, relay information transmission within unimodal systems and
between unimodal and transmodal systems differed across species
(Kruskal-Wallis tests, H(2) = 20.17, p =0.000042 and H(2) = 44.36,

p < 10−9, respectively), with humans presenting 30% larger PCSs in
cross-modal regions thanmacaques andmice, independently from the
presence of anesthesia in animals (Supplementary Fig. 5). Relay
transmission within transmodal systems was relatively stable across
species (H(2) = 6.47, p = 0.039). Taken together, these findings show

Fig. 3 | Relay information transmission strategies reflect the functional orga-
nization of mammalian brains. a Cortical distributions of relay information-
related pathways, quantified as the average PCSof eachbrain regionwith the rest of
the brain network (first row: human, fsaverage6 cortical surface; second row:
macaque, F99 template; third row:mouse,ABI template). For each species, the light
yellow-to-brown colormap is scaled between the 5th and 95th percentiles of the
cortical values, with the color scale unit indicating the average number of
information-related pathways. On the right, the average nodal PCS scores per brain
system are represented in the bar plots. b Average PCSs within and between brain
systems, for humans, macaques and mice. Brain systems have been organized into
unimodal/multimodal regions (upper-left black square) and transmodal regions
(lower-right black square). c Average PCSs between unimodal systems, between
transmodal systems, and between unimodal and transmodal systems (cross-modal

communication) for individual experimental subjects. In the box plots, each dot
represents a subject (humans: n = 100 biologically independent subjects; maca-
ques:n = 9biologically independent subjects;mice: n = 10biologically independent
subjects); vertical bars indicate mean ± standard deviation; notch bars indicate
median and 1st–3rd quartiles; shaded areas indicate 1st-99th percentiles. Kruskal
Wallis p-values for within-species comparisons are reported, testing the null
hypothesis that unimodal, transmodal and cross-modal PCS scores originate from
the same distribution (humans: p < 10–44; macaques: p =0.057; mice: p =0.00017).
Values from the nullmodel are reported in the same panels as gray box plots. Brain
schematic from scidraw.io97–99. Control=executive-control, dorsal attn.=dorsal
attention, ventral attn.=ventral attention, uni=unimodal/multimodal, trans=trans-
modal systems. Source data are provided as a Source Data file.
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that communication strategies are highly heterogeneous across the
brain network and are partially preserved across evolution. However,
non-human mammals demonstrate more developed selective com-
munication for lower-order processing between unimodal and multi-
modal regions. Conversely, the human brain is characterized by
stronger parallel communication that serves as the main neural com-
munication stream between unimodal and transmodal areas37,38.

The layout of information-related pathways is unique to
individuals
Our results revealed a link between relay information transmission and
the phylogenetic level of mammalian brains. Are the observed com-
munication patterns specific to individual subjects within single spe-
cies? We addressed this question by exploring the identifiability
properties39,40 of the parallel communication matrices reported in
Fig. 2b, across the three different species. To this aim, the fMRI
recording of each subject was split into two sections of equal duration.
From these, test and retest parallel communication matrices were
computed. Note that, at the individual level, thematrices’ entries (PCSs)
can take integer values between 0 and 5, with 0 indicating no relay
communication, 1 indicating perfectly selective information transmis-
sion, and5 stronglyparallel information transmission.Wequantified the
similarity between test and retest data as the percentage of brain
regions’ pairs with exactly the same PCS (Jaccard similarity index). The
individual identifiability through relay communication patterns was
then quantified as the success rate (SR), i.e., the percentage of subjects

whose identity was correctly predicted out of the total number of
subjects for each species40. We found that parallel communication
scores allow to identify individual mammals in all the three species, at a
level that exceeds chance-level (humans: SR = 87.0%, null = 0.9 ± 1.0%;
macaques: SR =66.7%, null = 10.2 ± 10.0%; mice: SR = 40.0%, null = 10.7
± 9.8%) (Fig. 4a, b). However, individual identifiability decreased from
humans, to macaques, to mice. Intriguingly, the major contribution to
individual identifiability was given by brain regions pairs that, on aver-
age, tends to communicate through multiple parallel rather than
selective pathways. When splitting region pairs into two groups (“low-
PCS”, “high-PCS”) according to group-average parallel communication
scores, the success rate obtained from high-PCS values was higher than
the one obtained from low-PCS values for humans; no differences
were found in macaques and mice (PCS threshold = 1.3; humans:
SRlow-PCS = 73.0%, SRhigh-PCS = 85.0%; macaques: SRlow-PCS = 66.7%,
SRhigh-PCS = 66.7%; mice: SRlow-PCS = 40.0%, SRhigh-PCS = 40.0%; see Sup-
plementary Table 3 for alternative PCS thresholds) (Fig. 4c, d). Taken
together, these data suggest that, within the inherent constraints of
each species, individual subjects may be characterized by distinct
communication patterns to relay neural information through the brain
network, particularly when considering higher-order communication
mechanisms such as parallel communication in humans.

Robustness, sensitivity, and replication analyses
To ensure the validity of our results, we asked whether parallel com-
munication scores and their cross-species gap could be explained by

Fig. 4 | Information-related pathways are unique to individuals. Left: schematic
of human, macaque, and mouse brains from scidraw.io97–99. Each row in the figure
corresponds to one species. a Identifiability matrices for the three species,
reporting subjects’ similarities between test (rows) and retest (columns) parallel
communication score (PCS) data. Humans: n = 100 biologically independent sub-
jects; macaques: n = 9 biologically independent animals; mice: n = 10 biologically
independent animals. Test-retest similarity was quantified with the Jaccard simi-
larity index. b Box plots representing self-similarity (Iself, diagonal entries of the
identifiability matrix) and others-similarity (Iothers, out-diagonal entries of the

identifiability matrix) values. c Self- and others-similarity values when considering
only region pairs with low parallel communication scores (PCS ≤ 1.3 on average).
d Self- and others-similarity values when considering only region pairs with high
parallel communication scores (PCS> 1.3 on average). Test–retest datasets were
obtained by splitting into two sections the fMRI recording of each subject. The
success rate (SR) for subjects’ identification is reported for eachpair of boxplots. In
the box plots, vertical bars indicate mean± standard deviation; notch bars indicate
median and 1st–3rd quartiles; shaded areas indicate 1st–99th percentiles. Source
data are provided as a Source Data file.
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the signal-to-noise ratio (SNR) andmultivariate statistical properties of
fMRI recordings alone. To this aim, we constructed null distributions
of parallel communication scores for each species, by randomly
shuffling the fMRI time series across brain regions and computing
surrogate PCSs on the original structural connectome architecture
(n = 3000) (Methods, Supplementary Fig. 6). By z-scoring the real PCS
scores with respect to the null distributions and applying appropriate
statistical thresholds, we show that our findings do not trivially derive
from structural connectivity and fMRI time series’ SNR or statistical
properties alone. In particular, the gap of increasing parallel commu-
nication from mice and macaques to humans (Fig. 2, Supplementary
Figs. 7, 8, 9) and the cortical topographies of parallel communication
density across species (Fig. 3, Supplementary Fig. 10) remained sig-
nificantly different from the null ones. In addition, we did not find
correlations between individual nodal SNR of fMRI time series and
nodal PCS scores (Supplementary Fig. 11), suggesting that differences
in scanning protocols do not drive cross-species parallel communica-
tion gap and individual identifiability results.

Parallel communication scores and unimodal-transmodal varia-
tions in parallel communication were not explained by the different
structural architectures and brain spatial embedding of the investi-
gated species, nor by the spatial autocorrelation of the mutual infor-
mation values with respect to the underlying distance-weighted
structural connectivity matrix. To test these aspects, we constructed
two additional null models. In the first one we populated the network
nodes with iid Gaussian noise with mean 0, variance 1, and the same
number of time points as in experimental data. This scenario repre-
sents the case of absent communication between brain regions inter-
connected through the real structural connectome. In the second
model we randomly permuted the mutual information values of indi-
vidual subjects while preserving their spatial autocorrelation with
respect to the underlying distance-weighted structural connectivity
matrix, similarly to the method proposed in ref. 41 (see Methods).
Parallel communication densities and PCS scores (group-average and
individual-level PCSs of unimodal, transmodal and cross-modal com-
munication streams) were larger than expected based on the two null
models (Supplementary Figs. 19, 20).

Even though white matter volume increases from mice, to maca-
ques, to humans, which may increase structural paths’ count and thus
opportunities for parallel processing, there was no meaningful cross-
species difference in structural connectivity density, i.e., relative
number of white matter connections (Supplementary Fig. 1; note that
connectivity density and paths’ count depend on the methodological
choices for white matter connectivity mapping). Moreover, individual
PCS scores did not depend on connectivity density (Supplementary
Fig. 12). There was no difference between human andmacaques in the
k-shortest path length as quantified by the number of hops along the
structural paths (mean (standard deviation) over all region pairs,
human: 2.43 (0.58); macaque: 2.43 (0.59); two-sided Mann-Whitney U
test, p = 0.98). However, the mouse had on average slightly longer
k-shortest paths (2.48 (0.60)) than both the human (p < 10−3) and the
macaque (p < 10−3). Considering the gap in parallel communication
between humans and non-human mammals (both macaques and
mice), we can rule out that cross-species differences in parallel com-
munication are driven by k-shortest path lengths.

Next, we investigated whether results were sensitive to some
methodological choices, including number of brain regions (brain
parcellation), fMRI time series length, and number of subjects. We
found that our results are robust to these factors. In humans, PCS
scores, their cortical topographies and unimodal-transmodal differ-
ences were comparable when subdividing the cortex into 100 or 200
regions of interest (Supplementary Figs. 13, 14, 18). However, we
observed lower PCS scores when using a finer-grain parcellation with
400 regions (Supplementary Fig. 13). This is expected since structural
connectivity and structure-function relationship have been shown to

vary with the number of brain regions42. PCS scores tended to increase
for longer fMRI time series, but this effect did not impact the corss-
species parallel communication gap nor the PCS cortical topographies
(Supplementary Figs. 13, 14), and it could relate to the improved
reliability of functional connectivity estimation for longer scan
lengths43. Whenever possible, data from the three species were mat-
ched both in the number of brain regions and fMRI scan duration. The
effect of the number of subjects on PCS scores was minor (Supple-
mentary Figs. 14, 15, 18).

We assessed the replicability of our findings by analyzing a total of
six distinct datasets (Methods). We found that the 2, 15 PCS cortical
topographies (Fig. 3, Supplementary Figs. 16, 17), the cross-species
parallel communication gap (Supplementary Fig. 2), and the parallel
communication differences between unimodal and transmodal
regions across species (Fig. 3, Supplementary Fig. 5) were consistent
when considering alternative datasets andwhen comparing awake and
anesthetized macaques or mice (Supplementary Figs. 5, 16, 17). How-
ever, the overall amount of relay communication was slightly larger in
non-anesthetized mice compared to one of the two anesthetized
datasets (m-AD3) in both transmodal and cross-modal systems (Sup-
plementary Fig. 5, central and bottom rows). These state-dependent
differences were smaller than the ones observed between mice or
macaques, and humans.

Finally, we investigated the relationship between parallel com-
munication scores and brain structural and functional connectivity, as
assessed with tractography and tract tracing data weighted by the
Euclidean distance between regions pairs, and with mutual informa-
tion values between fMRI time series. The relationship between the
PCS and (i) the number of structural connections (structural degree),
(ii) the average length of structural connections, and (iii) the overall
functional connectivity (functional strength) of individual brain
regions were assessed with a multiple regression model including the
PCS as dependent variable, and the species and the three nodal con-
nectivity measures as independent variables. There was a significant
effect of the species, confirming that PCSs in macaques and mice are
smaller than in humans.We found that all three connectivitymeasures
explained significant variance of parallel communication scores
(Bonferroni-corrected p values < 10−7; Supplementary Table 2; pro-
portion of explained PCS variance (model’s R-squared) = 0.42). These
results indicate that multiple aspects of the connectome architecture
shape (but do not completely determine) communication patterns.
Mirroring Fig. 3c, we determined unimodal, transmodal and cross-
modal connectome features (density of structural connections, aver-
age length of structural connections, and individual-level functional
connectivity within the different brain systems) for each species. The
observed distributions indicate that the cross-species gap, with strong
parallel communication streams between unimodal and transmodal
(“cross-modal“) areas in humans (Fig. 3c), cannot be explained by
structural and functional connectivity features alone (Supplemen-
tary Fig. 21).

Discussion
How networked neural elements intercommunicate at the systems
level, ultimately giving rise to brain function, stands as one of themost
intriguing and unsolved questions of modern neurosciences. In vivo
measurements of brain structure and activity are providing us with
windows of opportunities for modeling communication in brain net-
works, across different animal species. We propose here to bring a
piece to this puzzle, by investigating the link between a relay com-
munication model in large-scale brain networks, on the one side, and
the phylogenetic level of mammals’ brain functions, on the other. By
introducing a graph- and information-theory approach to approximate
relay information-related pathways in brain networks, we provide
compelling evidence that this link exists, and that different commu-
nication patterns are tied to thephylogenetic level ofmammalianbrain
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networks along two main organizational principles. The first principle
is the parallel communication gap between humans and non-human
mammals, with predominantly parallel information transmission in
humans and selective information transmission inmacaques andmice.
The second principle involves the development of cross-system com-
munication through parallel pathways that connect together func-
tionally specialized brain regions (i.e., somatomotor, visual) with
transmodal ones (i.e., fronto-parietal, default mode).

Specialized, unimodal brain systems are organized as serial,
hierarchical streamswhere raw sensory information is relayed through
stepwise progressive circuits to guide attention and direct actions25,37.
Consistent with this hierarchical polarity, we found that unimodal
regions aremainly characterizedby selective information transmission
through single pathways, as quantified by low parallel communication
scores. This held true for all the investigated mammalian species,
suggesting that unimodal selective information transmission is phy-
logenetically preserved. On the other hand, transmodal regions pre-
sent a more complex and less understood organization. Back in 1998,
Mesulam hypothesized that “the flow of information for intermediary
[transmodal] processing displays patterns consistent with parallel and
re-entrant processing”37. Our findings consolidate this view by show-
ing that information transmission between unimodal and transmodal
regions evolved from selective to parallel streams from non-human
mammals to humans, who display more advanced cognitive abilities.
Parallel communication could therefore represent a more complex
form of information transmission beyond hierarchical processing,
which might support integration of perceptual modalities into more
complex textures of cognition. Yet, it is important to remark that
macaques and mice do not occupy the same part of the mammalian
evolutionary tree and that future work, eventually including advanced
models of brain communication beyond relay information transmis-
sion, should delve deeper into cross-species variations of commu-
nication patterns.

Which evolutionary mechanisms may have promoted a higher
involvement of parallel communication in humans? According to the
tethering hypothesis proposed by Buckner and Krienen25, the fast
cortical expansion of transmodal regions in humans led to the unte-
thering of these regions fromdevelopmental anchor points. Inparallel,
humans exhibit a protracted development of white matter connec-
tions over childhood and a progressive structure-function untethering
in transmodal regions compared to other primates31. Cortical expan-
sion and developmental trajectories in humans may have therefore
allowed transmodal regions to develop unique cytoarchitectonic44 and
connectional26 fingerprints, unbounded from the more rigid hier-
archical architecture of unimodal systems38. The same processes may
have also favored the development of new information transmission
pathways (parallel communication) to bridge hierarchical unimodal
and distributed transmodal regions. Indeed, in humans we observed
the largest parallel communication scores in regions that underwent
the largest cortical expansion across evolution and the largest changes
of structure-function coupling across development, including fronto-
parietal association cortices and precunei35. Consistently, it has been
shown that the level of structure-function coupling in humans is highly
heterogeneous across the cortical mantle and reaches a minimum in
transmodal regions at adulthood, which may be critical for the
maturation of complex cognitive functions31,45. In addition, parallel
information transmission may be functional to specific processing
needs of unimodal-transmodal communication. Recent computational
studies suggest that brain regions with largest allometric scaling pri-
vilege fidelity rather than compression of incoming signals from
unimodal areas22. High-fidelity information transmission may be
achieved through parallel streaming of redundant signals, expression
of a more resilient communication process.

Our results show that parallel communication also contributes to
the individual specificity of communication strategies in brain

networks. Selective and parallel information transmission allowed
identifying subjects in a group with significant accuracy, across dif-
ferent mammalian species. This indicates that the individual layout of
relay information-related pathways constitutes an important finger-
print of brain organization, and that this fingerprint is present even in
non-human mammals. In humans, brain regions that tend to commu-
nicate through parallel rather than selective streams, including trans-
modal regions, provided the largest contribution to subject
identifiability. Consistently, fMRI activity of association and default
mode cortices displays larger inter-individual variability in human and
non-human primates compared to lower-order regions40,46,47. The role
of transmodal cortices in individual identifiability is consistent with
their protracted neurodevelopment and role in higher-order cogni-
tion, and it could partially explain the identifiability gradient observed
from humans to macaques, to mice, with mice displaying lower iden-
tifiability. However, the identifiability gradients may also be explained
by a larger homogeneity among laboratory animals compared to
human samples in terms of genetic pedigree and environmental con-
ditions. Subject specificity of communicationpatternswas assessed on
relatively short time series (250–300 time points). Recent studies have
shown that one does not need long fMRI scans to achieve high test-
retest reliability39,48. Based on this recent evidence, it appears that ~100
fMRI volumes would be enough to achieve good success rates and
identifiability scores in humans. Furthermore, one common problem
in cross-species studies is that it is usually very difficult to acquire test/
retest sessions in the different cohorts. One potential workaround to
this issue might be to cut the resting state time series in half (as ori-
ginally proposed in39). This has the benefit of removing the scanner
and acquisition noise, which is usually a major confound in con-
nectome identification49. It is quite established that between-scanner
or multi-site acquisitions and their subsequent analyses include the
scanner-dependent variability that can mask true underlying changes
in brain structure and function. In fact, it is known that even when
using identical (let alone “comparable”) imaging sequences and para-
meters, potential site-dependent differences might arise due to a
range of physical variables, including field inhomogeneities, transmit
and receive coil configurations, system stability, system maintenance,
scanner drift over time and many other50–52. However, it comes at the
cost of looking at within-session fingerprinting, hence focusing more
on the temporal stability aspect of the communication pattern, rather
than on standard between-session identification. Nonetheless, it is
noteworthy that humans could be better identified than non-human
mammals solely on the basis of their (within-scan) parallel commu-
nication profiles. Future studies should explorehow the results change
when consideringmultiple and longer sessions, whenever available, to
estimate cross-species communication fingerprints. Finally, the ana-
lyses reported in Fig. 4 showed that the parallel communication score
is specific to individuals: This is particularly interesting considering
that the PCS, which can take integer values between 0 and 5, is a highly
compressedmeasurewith respect to functional connectomes. Yet, our
analyses do not allow us to draw any conclusions on which brain
dimension (structural connectivity, functional connectivity, parallel
communication among others) is the most subject-specific or most
appropriate for a fingerprinting analysis per se.

Importantly, the brain communication gap from selective to
parallel information transmission and the cortical topographies of
parallel communication patterns were not explained by cross-species
differences of structural connectivity architecture, statistical proper-
ties of fMRI data, or conscious (i.e., awake vs anesthetized) state. In
keeping with previous studies16, we found that the overall distribution
of short structural path lengths was similar between species, with
comparable amounts of 2-step, 3-step, and4-steppaths. Relative cross-
species differences of parallel communication were unchanged when
contrasting data with respect to different species-specific null models
which preserve multivariate fMRI statistics, spatial autocorrelation of
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mutual information with respect to the underlying distance-weighted
structural connectivity matrix, and/or the structural connectome
architecture. Moreover, parallel communication scores did not
depend on structural connectome density or SNR of fMRI time series.
In line with previous work1,19, both structural and functional con-
nectome features contributed to shape communication patterns.
Nonetheless, parallel communication differences between unimodal
and transmodal areas were not explained by the structural and func-
tional connectome architecture alone. When considering fMRI data
from awake and anesthetized animals, we found similar cortical dis-
tributions of parallel communication patterns, with unimodal regions
dominated by selective information processing. This finding is in line
with the observation that resting state networks are globally preserved
in conscious and unconscious states29,53. In general, non-anesthetized
animals seem to have a larger amount of relay communication than
anesthetized ones. A shift of the communication regime toward more
abundant and (partially) parallelized polysynaptic information trans-
mission may support functional integration, inter-network cross-talk,
and rich functional repertoires departing from the underlying mono-
synaptic connectivity constraints, which have been repeatedly
observed in awake primates and mice compared to the anesthetized
ones29,53,54. Nevertheless, the minor anesthesia effects found in this
work may be affected by other factors including differences in acqui-
sition protocols and type of anesthesia. For example, different anes-
thetics have been shown to have different modulatory effects on fMRI
brain activity55. Our results do not allow us to draw major conclusions
on the effect of anesthesia on brain communication processes and
further investigation is therefore needed. Particularly, it will be inter-
esting to investigate functional recordings from the same experi-
mental subjects, assessed before and under the effect of anesthesia.

Several higher-order communicationmodels have been proposed
to explain integration of information between multiple brain network
elements1. Nonetheless, the exact polysynaptic communication stra-
tegies underlying macroscale neural signaling remain unclear. Intri-
guingly, brain communication models mostly rely on the assumption
of memoryless (Markovian) information transmission56. This hypoth-
esis is pervasive in networkneuroscience36 but has never been formally
probed in the brain. Our work adds to the field by introducing a fra-
mework that explicitly models relay information-related pathways
frommultimodal brain data, in a way that is grounded in fundamental
information-theoretic principles. The framework models memoryless
information transmission in brain networks by introducing an
empirical way to assess deviations from Markovity through the data
processing inequality32. Our results show that Markovian commu-
nication is consistent with brain data of different mammalian species,
is not limited to the shortest structural path, but involves multiple and
less optimal structural paths in a way that is species-dependent and
consistent with the phylogenetic level of the investigated species.

Polysynaptic memoryless information transmission is a simple
model of communication. There is no reason to assume thatmacroscale
neural communication is limited to such a particular form. Brain net-
work hierarchies may confer neural signals a memory of the regions
previously visited along a path, thus modifying neural communication
pathways in a context-dependentmanner56. This processwould result in
non-Markovian communication regimes. The brain may also be mod-
eled through complex multi-object interactions not attributable to
information transmission alone, such as synergistic or modulatory
behaviors between multiple brain regions; feedback loops; local trans-
formation (non-linear processing) of information23,36,57,58. Biologically,
these more complex communication patterns may shape important
features of the mammalian brain, such as cortical temporal
hierarchies59,60 or receptive time windows for attentional processes61,
and areworthy to investigate in future studies. Previouswork showing a
strong spatial heterogeneity of structure-function coupling across the
cortical mantle has suggested that brain communication mechanisms

may bemultiplexed, withmultiple protocols operating in parallel45. The
framework proposed in the present work only models Markovian
information transmission and does not inform us about other com-
plementary brain communication mechanisms. Moreover, we used an
undirected measure of information exchange between regions pairs,
the mutual information, which is well adapted to the spatial and tem-
poral resolution of fMRI recordings. Therefore, our framework cannot
resolve ‘star’ relay information motifs with a central node being the
source of information in the communication process, which is one of its
limitations. Different measures of directed information exchange have
beenproposed in literature62,63 and shouldbe explored in futurework in
relation to the structural connectome architecture and communication
mechanisms. It will be particularly interesting to test directed andmore
complex communication models on data with rich spatio-temporal
information, such as intracranial EEG (see19 for an example) and calcium
imaging. By nomeans the proposedmodel aims at explaining the entire
spectrum of communication mechanisms in brain networks. As such,
absence of relay communication (i.e., violation of the data processing
inequality) may indicate absence of any communication between those
particular brain regions; communication limited to one single, direct
structural connection (no parallel multi-step pathways); or commu-
nication through more complex information encoding mechanisms.
Notwithstanding the evidence that selective and parallel Markovian
pathways serve as important information streams for multimodal inte-
gration between unimodal and transmodal systems37,38, we speculate
that low parallel communication scores between transmodal regions
may indicate predominance of more complex communication regimes
in these areas. In addition, sensory input decoding within the highly
clustered unimodal systems (diagonal entries of the parallel commu-
nication matrices, Fig. 3b) may be supported by synergistic processes
within dense structuralmotifs64. How thesemacroscale communication
mechanisms may have adapted to changing environments over the
evolution of mammalian brains remains an exciting open field of
research, to which the present work adds a perspective.

Methods
Human data
We used Magnetic Resonance Imaging (MRI) data of the Human
Connectome Project (HCP), U100 dataset (HCP900 data release),
which includes 100 unrelated healthy adults (“h-HCP” dataset, 36
females; mean age = 29.1 ± 3.7 years)65. All experiments were reviewed
and approved by the local institutional ethical committee (Swiss Ethics
Committee on research involving humans). Informed consent forms,
including consent to share de-identified data, were collected for all
subjects (within the HCP) and approved by the Washington University
InstitutionalReviewBoard. Allmethodswere carried out in accordance
with relevant guidelines and regulations.MRI scanswereperformedon
a 3 T Siemens Prisma scanner and included the following sequences:
Structural MRI: 3D Magnetization Prepared Rapid Acquisition with
Gradient Echoes (MPRAGE) T1-weighted, TR = 2400ms, TE = 2.14ms,
TI = 1000ms, flip angle = 8°, FOV = 224 × 224, voxel size = 0.7mm iso-
tropic. Diffusion-weighted MRI: spin-echo Echo-Planar Imaging (EPI),
TR = 5520ms, TE = 89.5ms,flip angle = 78°, FOV = 208 × 180, 3 shells of
b value = 1000, 2000, 3000 s/mm2 with 90 directions plus 6 b
value = 0 s/mm2 acquisitions. One session of 15min resting-state
functional MRI (fMRI): gradient-echo EPI, TR= 720ms, TE = 33.1ms,
flip angle = 52°, FOV = 208 × 180, voxel size = 2mm isotropic, recorded
with two phase-encoding directions (right-left and left-right). HCP
minimally preprocessed data66 were used for all acquisitions.

Group-level structural connectivity. A group-representative struc-
tural connectome between 100 cortical regions of interest (Schafer
parcellation67) was obtained from the 100 unrelated HCP subjects.
Different cortical parcellation resolutions were explored in supple-
mentary analyses (200- and 400-region Schaefer parcellations67).
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Briefly, diffusion-weighted scans were analyzed using MRtrix368,
including the following steps: multi-shell multi-tissue response func-
tion estimation; constrained spherical deconvolution; tractogram
generation with 107 output streamlines. The Schaefer cortical atlas was
used to parcellate the cortex into 100 (200, 400) regions and generate
individual structural connectomes, fromwhich a group-representative
structural connectome was computed. The binary architecture of
the group-representative connectome was obtained by including only
the structural connections retrieved in 100% of the subjects. This step
is meant to minimize the number of false positives in the group-
representative network, and different consistency thresholds were
investigated (100% to 50%; Supplementary Fig. 12). The group-
representative connectome was then weighted by the Euclidean dis-
tance (inmillimeters) between region pairs’ centroids (Supplementary
Fig. 1a). This choice was motivated by the exigence of homogenizing
structural connections’weights across species (see alsoMapping relay
information-related pathways in brain networks).

Individual functional information. Resting-state fMRI data were pre-
processed according to a state-of-the-art pipeline30 including: general
linear model regression of nuisance signals (removal of linear and
quadratic trends; removal of motion regressors and their first deriva-
tives; removal of whitematter and cerebrospinal fluid signals and their
first derivatives). 100 (200, 400) regional time series were obtained by
averaging voxel-wise time series across all voxels belonging to each
region of interest. The mutual information between region pairs was
computed from the histograms of the z-scored time series, binned
with a step of 0.5. This bin size was chosen by comparing real and null
mutual information values, with null values obtained frommultivariate
gaussiandata, and by assessing the fingerprinting accuracy39 ofmutual
information across bin sizes (Supplementary Fig. 21).Only the first 800
time points (9.6min) were considered for mutual information com-
putation for consistency with other species data (Supplementary
Table 1; other time series lengths were explored in supplementary
analyses, Supplementary Fig. 13). Mutual information matrices
obtained from left-right and right-left phase-encoding acquisitions
were averaged to obtain a single 100 × 100 (200× 200, 400× 400)
mutual information matrix per subject (Supplementary Fig. 1c).

Replication datasets. Analyses were repeated considering sub-
samples of the whole U100 dataset (Supplementary Fig. 15).

Macaque data
We used structural and functional monkey data from 9 adult rhesus
macaquemonkeys (Macacamulatta; 2 females) aged between 5 and 14
years scanned on a vertical Bruker 4.7 T primate dedicated scanner at
Newcastle University69 (“q-NCS” dataset). Raw data were publicly
available through the Primate Data Exchange initiative70 and included
the following MRI sequences: Structural MRI: Modified Driven Equili-
brium Fourier Transform (MDEFT) T1-weighted, TR= 2000 ms, TE =
3.75ms, TI = 750ms, voxel size = 0.6 × 0.6 × 0.62mm3. Two runs of
6.5min resting-state fMRI: TR = 2600ms, TE = 17ms, voxel size = 1.2
mm isotropic. All animals were scanned awake. MRI data preproces-
sing included: T1-weighted volumes denoising71, skull-stripping (FSL72),
N4 bias field correction, spatial normalization to the F99 template
obtained from the SumDB database (http://brainvis.wustl.edu/
sumsdb/public_archive_index.html), and registration to fMRI native
space (ANTs73); fMRI volumes were coregistered (FSL74), corrected for
nuisance signals including six motion signals, average white matter
and cerebrospinal fluid signals, and band-pass filtered to the band
0.01–0.15 Hz. Z-scored regional time series (Regional Map parcella-
tion) of the two concatenated fMRI runs were used to compute indi-
vidual mutual information values (bin size = 0.5). The fMRI scans were
concatenated to reach a number of time points comparable with the
other datasets (500 time points, 13min).

Group-level structural connectivity. We used the whole-brain
macaque structural connectome provided by TheVirtualBrain75,
which summarizes the brain connectivity between 82 regions of
interest (Regional Map parcellation of Kötter and Wanke76) and
includes inter-hemispheric connections. Briefly, the structural con-
nectome was obtained by optimizing tractography-derived structural
connectivity matrices with respect to a reference tracer-derived con-
nectivity matrix and averaging across animals75. For cross-species
consistency reasons, we considered undirected structural connectivity
information. That is, in the final structural connectome, two regions
are connected if at least one unidirectional connection exists between
the two regions. Structural connections were weighted by the Eucli-
dean distance (in millimeters) between region pairs’ centroids (Sup-
plementary Fig. 1a).

Individual functional information. Resting-state fMRI data were pre-
processed by others, as previously described75. Briefly, the processing
pipeline included motion correction, high-pass filtering, regression of
whitematter and cerebrospinal fluid signals, spatial normalization and
smoothing. Z-scored regional time series (Regional Map parcellation)
including 600 time points (10min) were used to compute individual
mutual information matrices (bin size = 0.5, consistently with other
species) (Supplementary Fig. 1c).

Replication dataset. Analyses were repeated on an independent
dataset from TheVirtualBrain project75,77. The fMRI dataset included 9
adult male rhesus macaque monkeys (8 Macaca mulatta, 1 Macaca
fascicularis) agedbetween4 and8 years (“q-TVB”dataset). Allmethods
were carried out in accordance with relevant guidelines and regula-
tions and have been previously described75. Briefly, animals were
lightly anesthetized before their scanning session and anesthesia was
maintained using 1-1.5% isoflurane. The scanning was performed on a
7 T Siemens MAGNETOM head scanner included: Structural MRI:
3D MPRAGE T1-weighted sequence, 128 slices, voxel size = 0.5mm
isotropic. Diffusion-weighted MRI: EPI sequence, 24 slices, b value =
1000 s/mm2, 64 directions, recorded with two opposite phase-
encoding directions. One session of 10min resting-state functional
MRI (fMRI): 2D multiband EPI sequence, TR = 1000ms, 42 slices,
1 × 1 × 1.1mm3 voxel size.

Mouse data
We used fMRI data of 10 C57BI6/J adult male mice (“m-GG” dataset,
<6 months old) subject to surgery for headposts placement, MRI
habituation and awake fMRI acquisition, as previously described29.MRI
acquisitionswereperformed at the IIT laboratory inRovereto (Italy) on
a Bruker BioSpin 7 T scanner and included a 32-min resting-state fMRI
recording: single-shot EPI sequence, TR = 1000ms, TE= 15ms, flip
angle = 60°, voxels size = 0.23 × 0.23 × 0.6mm3. fMRI preprocessing
included exclusion of the first 2min of recording, time series despik-
ing, motion correction, nuisance signals regression (average cere-
brospinal fluid and motion signals plus their temporal derivative and
corresponding squared regressors), data censoring (Framewise Dis-
placement >0.075mm), band-pass filtering (0.01–0.1Hz), spatial
smoothing (FWHM=0.5mm) and spatial normalization28. Average
time series were computed for 66 regions of interest, which represents
a subset of the 78 Allen Brain Atlas regions (data for bilateral regions
CA1, CA2, CA3, dorsal and ventral piriform nucleus, and frontal pole
were not available). The first 600 time points (10min) were used for
the computation of individual mutual information matrices (z-scored
time series binning = 0.5).

Group-level structural connectivity. Amouse structural connectome
between 78 cortical regions covering the isocortex, cortical subplate,
and hippocampal formation, as defined in the Allen Brain Atlas, was
derived from published viral tracing data78. In more details, the binary
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architecture of the structural connectome was assessed according to
the following steps: (i) we considered the right-hemisphere ipsilateral
and contralateral connections reported by ref. 78; (ii) we symmetrized
the right-hemisphere ipsilateral connections (i.e., we considered a
connection between ipsilateral regions i and j to be present if at least
one of the two tracts (i ! j), (j ! i) was detected); (iii) we duplicated
the symmetrized ipsilateral connections to the left hemisphere
(in absence of more detailed information, we therefore assume equal
intra-hemispheric connectivity in the right and left hemispheres);
(iv) we transposed the contralateral connections of the right hemi-
sphere to the left hemisphere; (v) to minimize false positives due to
minor tissue segmentation artifacts, we excluded connections with
connectivity strength <10−3.5, as suggested in78, where the connectivity
strength was defined as the total volume of segmented pixels in the
target normalized by the injection site volume. The binary structural
connectome was then weighted by the Euclidean distance between
region pairs’ centroids obtained from the Allen Brain Atlas (CCF v3, ©
2004 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Avail-
able from: http://www.brain-map.org/) (Supplementary Fig. 1).

Individual functional information. Resting-state fMRI data were pre-
processed as previously described79. Briefly, the processing pipeline
included motion correction, automatic brain masking, spatial smooth-
ing (FWHM=0.45mm), high-pass filtering (0.01Hz cut-off), and auto-
mated nuisance removal based on independent component analysis.
Z-scored regional time series (78-region Allen Brain Atlas parcellation)
including 600 time points (10min) were used to compute individual
mutual information matrices (bin size =0.5) (Supplementary Fig. 1c).

Replication datasets. Analyses were repeated on two independent
datasets. The first one included ten male wild-type mice aged 6months
(“m-AD3” dataset), available at https://openneuro.org/datasets/
ds00189080. All methods were carried out in accordance with relevant
guidelines and regulations and have been previously described29,79.
Briefly, animals were anesthetized with 4% isoflurane before their scan-
ning session and maintained with 0.5% isoflurane and a 0.05mg/kg/h
medetomidine infusion55. The scanning was performed on a 11.75 T
Brucker BioSpin scanner and included: Structural MRI: spin-echo tur-
boRARE sequence, TR= 2750ms, TE = 30ms, FOV= 17 × 11mm2, matrix
dimension= 200× 100 voxels, slice thickness =0.35mm. One session of
10min resting-state functional MRI (fMRI): gradient-echo EPI sequence,
TR = 1000ms, TE = 15ms, matrix dimension= 90×60 voxels. The sec-
ond dataset included 51 male wild-type mice scanned at 3 months (“m-
CSD1” dataset)81. MRI acquisitions were performed on a 9.4 T Brucker
BioSpin system on anesthetized animals (3.5% isoflurane, maintained
with 0.5% isoflurane and a 0.05mg/kg/h medetomidine infusion) and
included a 6-min resting-state fMRI recording: gradient-echo EPI
sequence, TR= 1000ms, TE = 9.2ms, flip angle = 90°, field
of view= 20× 17.5mm2, matrix size = 90×70 voxels, slice
thickness =0.5 mm. FMRI volumes were preprocessed using the same
pipeline as them-AD3 dataset. The average time series of the 78 cortical
regions (360 time points, 6min) were z-scored and used to compute
individual mutual information matrices (bin size =0.5). Analyses
were repeated considering sub-samples of the whole m-CSD1 dataset
(Supplementary Fig. 15).

Assignment of cortical regions to resting state networks
For the human dataset, each cortical region was assigned to one the
seven resting state networks (RSNs) defined by Yeo et al. and accord-
ing to the Schaefer parcellation67,82. For the macaque dataset, each
cortical region was first associated with one or multiple Brodmann
areas according to the CoCoMac Regional Map of the macaque
cortex76,83–85. Each Brodmann area was then assigned to one of the
seven RSNs defined by Yeo and colleagues82 using a majority voting
procedure and published atlases in MNI space86. Finally, Regional Map

regions of the macaque cortex were assigned to Yeo RSNs with a
similar majority voting procedure (Supplementary Fig. 3). For the
mouse dataset, each cortical region was assigned to one out of 6 RSNs
as identified by Zerbi and colleagues using independent component
analysis of resting-state fMRI data87. The assignmentwasdone through
a majority voting procedure (Supplementary Fig. 4). Note that the
default mode network (DMN) has been consistently identified in
humans88, macaques89 and mice90,91, suggesting a conservation of this
network acrossmammalian species. In ourmouse cortex subdivision87,
the DMN includes bilateral hippocampal regions (CA1, CA2, CA3 hip-
pocampal fields, subiculum and dentate gyrus), and lateral (entorhinal
and temporal association areas) and prefrontal (infralimbic, prelimbic
and perirhinal areas) isocortices, while it excludes other regions which
have been reported by others, such as the retrosplenial cortex92. For all
species, RSNs were assigned to unimodal or transmodal systems
according to established cortical subdivisions38.

Mapping relay information-related pathways in brain networks
In this work we introduce an approach to probe relay information-
related pathways from multimodal neuroimaging data. The approach
builds upon and extends an information theoretical framework pro-
posed in previous work32 and aims at identifying polysynaptic (multi-
step) structural paths compatible with relay information transmission
in macroscale brain networks. Information theory is a branch of
mathematics that studies the transmission of information through
communication systems33 and has found several applications
in neuroscience93,94. It allows the analysis of noisy data, such as the
fMRI ones.

Structural brain network and structural paths. Let’s consider a
structural brain network as an undirected graph G � V ,Wf g formed by
a set of N nodes V = v1,v2,:::,vN

� �
and a connectivity matrix W = ½wi,j�,

withwi,j >0 distance between directly connected region pairs vi,vj and
wi,j =1 otherwise. In this work we assignedwi,j equal to the Euclidean
distance (in millimeters) between the centroids of regions vi, vj . This
choice has two motivations. First, the distance between region cen-
troids can be easily computed across different datasets, thus allowing
to select homogeneous structural connectivity weights across species.
Second, this choice conceptually links information transmission in
brain networks with the sender-channel-receiver schematics proposed
in electronic communication by Shannon32,95. A path between a source
node vi and a target node vj is a sequence of pairwise connected and
non-repeating nodes Ωi,j = fvi,va,vb,:::,vjg. The shortest path ΩSP

i,j
between regions vi, vj is the path of minimal length (i.e., minimal
Euclidean distance, in the case of this work) connecting the two
regions. The path length is computed as the sumof edgeweights along
the path. In this workwe identified the first k = 5 k-shortest pathsΩk�SP

i,j
connecting each region pair vi, vj

96. K-shortest path ensembles identify
meaningful trade-offs between efficiency and resiliency for putative
communication processes in brain networks18. The choice of k was
dictated by the fact that, for k = 5, all edges of the structural brain
network participate in at least one k-shortest path18. In fact, previous
results showed that, when investigating the fraction of network con-
nections participating in at least onemulti-step path as a function of k,
this fraction increases with k and rapidly converges to a plateau at
k ~ 518. This finding was confirmed in our study where, when con-
sidering the first 5-shortest paths between any pair of brain regions, we
found that 91%/87%/94% of network connections were used in at least
one multi-step path for humans/macaques/mice, respectively.

Functional information along structural paths. Each node vi is asso-

ciated with a neural activity-related fMRI time series Xi that can be
interpreted as the realization of a discrete random variable with prob-
abilitymass function piðxiÞ. The amount of shared information between
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two random variables can be quantified as their mutual information

IðXi,XjÞ= P
xi2Xi

P
xj2Xj pi,jðxi, xjÞlog2ðpi,jðxi, xjÞ=ðpiðxiÞpjðxjÞÞÞ, with

pi,j xi, xj
� �

joint probability distribution between Xi, Xj . The sequence of
pairwise mutual information values along a structural path Ωi,j with
respect to the source node vi is defined as

Φi,j = fIðXi,XaÞ, IðXi,XbÞ,:::, IðXi,XjÞg. We estimated the fMRI time series
probability mass functions from the z-scored time series’ histograms
with appropriate binning. Different bin sizes between 0.05 and 2.00
were explored and evaluated with respect to (i) corresponding mutual
information values for multivariate Gaussian processes @ 0,Ið Þ; (ii) indi-
vidual identifiability scores39.We selected the smallest bin size forwhich
(i) the mutual information values obtained from real data (h-HCP
dataset) were larger than expected for a multivariate Gaussian process
@ 0,Ið Þ, and (ii) the individual identifiability score reached a maximum
plateau (Supplementary Fig. 22).

Data Processing Inequality (DPI). The DPI, a fundamental principle of
information theory, states that the amount of information available at a
target node vj about a source node vi cannot be increased through
operations performed along the transmission path. Mathematically,
the DPI states that if Xi � Xa � Xj is a Markov chain, then
IðXi,XaÞ≥ IðXi,XjÞ, IðXa,XjÞ≥ IðXi,XjÞ, i.e., the mutual information does
not increase along the chain33. Note that thedouble inequality condition
derives from the fact that a Markov chain has no directionality infor-
mation, i.e., if Xi � Xa � Xj is aMarkov chain, then Xj � Xa � Xi is also a
Markov chain. TheDPI can be extended toMarkov chains of any length.
Conceptually, the DPI embeds two assumptions about the information
transmissionprocess: the first one is that (neural)messages transmitted
through the structural infrastructure (brain network) can keep at most
the same amount of information present at the source region (infor-
mation decay). The secondone is that (neural)messages do not contain
memory of the transmissionprocess itself and communication happens
in a Markovian fashion (memoryless transmission).

Identification of relay information-related pathways in brain net-
works. We used the DPI to test (deviation from) Markovian behavior.
Each k-shortest structural path was labeled a relay information-related
pathway if the DPIs along the paths were satisfied. Note that here we
use the wording relay pathways in Shannon’s sense. That is, we aim to
characterize the presence of memoryless information transmission
processes, with information decay along the path measured through
mutual information values. Note that the DPI framework concerns
multi-step paths only, since the data processing inequality cannot be
assessed on 1-step connections. Therefore, our results concern multi-
step paths only, which is in line with the concept of parallel commu-
nication. Note also that the considered structural networks, which
were built from diffusion MRI and track tracing data, do not include
multiple “parallel” 1-step connections. Eachpair of brain regions canbe
connected by at most one 1-step connection.

Parallel communication scores (PCSs). We define the parallel com-
munication score PCSni,j between a pair of brain regions vi, vj as the
number of k-shortest paths connecting the two regions which respect
the DPI, with n indicating the subject. Note that, given the choice of
k = 5, PCS scores can assume integer values between 0 and 5, and that
PCSni,j = PCS

n
j,i. A PCS score equal to 0 is interpreted as absence of

(Markovian) information transmission between two regions; a PCS
score equal to 1 is interpreted as presence of selective information
transmission througha single information-relatedpathway; PCS scores
larger than 1 are interpreted as presence of progressively increasing
parallel information transmission, with transmission through multiple
parallel pathways (Fig. 1). PCS scores were computed for every pair of
brain regions and every subject, for all investigated datasets. Parallel
communication information was summarized at the group-level by

computing a group-average parallel communicationmatrix PCSavg for
each dataset, and its corresponding histogram (Fig. 2). In addition,
node-average, RSN-average, and system-average (unimodal, transmo-
dal, cross-modal) PCS scores were computed by averaging the parallel
communication scores over the corresponding region pairs (Fig. 3).

Null models. Three null models were defined in this work. A first null
model was defined by randomly shuffling the raw fMRI time series
across brain regions while preserving the original structural con-
nectivity information (Supplementary Fig. 6). Note that with this ran-
domization we are preserving the statistical properties of both the
original functional and structural data, sincewe aremerely rearranging
spatially fMRI time series across the brain network. Parallel commu-
nication matrices were then computed for each randomization fol-
lowing the above-described procedure. For each dataset, the
randomization was repeated 3000 times per subject, which allowed to
build 3000 group-average parallel communication matrices (Supple-
mentary Fig. 7). Each region pair was therefore associated with a null
distribution of group-average PCS values including 3000 elements. To
assess whether group-average PCS scores observed in real data could
be trivially explained by the structural connectivity architecture and
the multivariate statistical properties of fMRI data, which are both
preserved in the null model, we adopted two strategies. The first one
consisted of PCS scores screening by z-scoring individual group-
average scores PCSavgi,j with respect to the corresponding null dis-
tribution; z-scored where thresholded at 1.96 (Supplementary Fig. 8).
The second strategy consisted of analyzing the PCS scores with false
discovery rate (FDR)-corrected p values < 0.05 (FDR <0.05), with
p values computed as the number of entries in the null distribution
exceeding the real PCS score (Supplementary Fig. 9).

A second null model was defined by populating the network
nodes with iid Gaussian noise with mean 0, variance 1, and the same
number of time points as in experimental data (100 simulations). This
scenario corresponds to the case of absent communication (Supple-
mentary Fig. 19).

A third null model was developed for mutual information (MI)-
based functional connectomes, which preserves their spatial auto-
correlation with respect to the underlying distance-weighted structural
connectivity matrix. Specifically, similarly to the BrainSMASH
algorithm41, we first quantified the level of spatial autocorrelation in the
original individual MI matrices with a variogram. This is the target var-
iogram for the output null MI matrices. Then, the original individual MI
matrix is randomly permuted. Spatial autocorrelation among the sam-
ples is reintroduced by smoothing the permuted map with a distance-
dependent kernel (similarly to BrainSMASH, here we employed an
exponentially decaying gaussian kernel). Afterwards, the smoothed MI
matrix’s variogram is computed and then regressed onto the variogram
for the original MI matrix. The goodness-of-fit is quantified by com-
puting the sum of squared error (SSE) in the null vs. original variogram
fit. Finally, for every individual,wepicked thenullMImatrixwith thebest
goodness-of-fit over 100 permutation runs (Supplementary Fig. 20).

Computation of fMRI time series’ signal-to-noise ratio (SNR)
From a technical viewpoint, scanners and protocols are significantly
different between species as they have been optimized for their
particular usage. It is therefore a reasonable concern that the ulti-
mate quality of the fMRI data in terms of SNR might be confounded
with the measure of interest, the PCS. To tackle this issue, we
investigated possible correlations between nodal SNR and average
PCS scores at the individual level (Supplementary Fig. 11). Our brain-
communication method takes preprocessed, regionally averaged,
and normalized (z-scored) fMRI time series as an input. The nodal
SNR was therefore quantified as the ratio of the time series’ low- to
high-frequency power contents, where the frequency cut-off is
taken as half of the Nyquist frequency. The rationale is that low-
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frequency content can be assumed to be dominated by hemody-
namic contributions, and high-frequency content by noise compo-
nents, respectively. As shown in Supplementary Fig. 11a, the SNR of
human (h-HCP) and macaque (q-NSC) data is comparable, being
slightly higher for macaque. The SNR for mouse data (m-GG) is
lower, which can be explained by the faster hemodynamic signals in
this species and thus less power to be expected in the low-frequency
part. Supplementary Fig. 11b shows that in none of the species a
relationship exists between the SNR of the fMRI time series and the
PCSs across brain regions. Therefore, both inter- and intra-species
measures of SNR and their lack of relation with PCS indicate that
basic scanning protocol differences can be excluded as a con-
founding factor of our results.

Subject identifiability analysis
For each investigated non-anesthetized dataset, fMRI time series
were split into two parts of equal duration and considered as test
and retest data. From these, test and retest parallel communication
matrices were computed for each subject. An identifiability matrix
summarizing test–retest subjects’ similarities was then obtained for
each dataset. Diagonal entries of the identifiability matrix represent
subjects’ self-similarity between test and retest data (“Iself”);
outside-diagonal entries represent inter-subject similarity
(“Iothers”) (Fig. 4)39. The similarity between test and retest parallel
communication matrices was assessed with the Jaccard index,
defined as the size of the intersection divided by the size of the
union of two label sets. For example, a Jaccard index equal to 0.3
indicates that 30% of brain region pairs have exactly the same PCS
score, which can take integer values between 0 and 5. The level of
individual identifiability was quantified with the success rate (SR)
defined as the percentage of test subjects whose identity was cor-
rectly predicted out of the total set of retest subjects40. The subject
identifiability analysis was repeated when considering only region
pairs with, on average, low (high) PCS scores for the computation of
test-retest similarities. Different thresholds defining low (high) PCS
scores were explored (Supplementary Table 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All dataused in this studyare available throughopen-source repositories.
The humanh-HCPdataset65 is available at https://db.humanconnectome.
org. The macaque q-NCS dataset69 is available through the Primate Data
Exchange (PRIME-DE) initiative70. The macaque q-TVB dataset75 is avail-
able at OpenNEURO77. The mouse m-GG dataset29 is available at https://
data.mendeley.com/datasets/np2fx99hn6/2. The mouse m-AD3 dataset
is available at OpenNEURO80. Themousem-CSD181 dataset is available at
the XNAT Data Repository https://central.xnat.org/ (Project_ID:
CSD_MRI_MOUSE). A sample dataset generated in this study from open-
source raw and processed data, including brain k-shortest paths and
mutual information matrices of the three species, is available at A.Gr.’s
GitHub repository (https://github.com/agriffa/BrainComm_mammalian_
evolution). Source data are provided with this paper.

Code availability
The code and sample brain data to reproduce the main results of this
study are available at A.Gr.’s GitHub repository (https://github.com/
agriffa/BrainComm_mammalian_evolution).
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