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Toward universal cell embeddings: 
integrating single-cell RNA-seq datasets 
across species with SATURN

Yanay Rosen    1,5, Maria Brbić    2,5, Yusuf Roohani    3,5, Kyle Swanson    1, 
Ziang Li4 & Jure Leskovec    1 

Analysis of single-cell datasets generated from diverse organisms offers 
unprecedented opportunities to unravel fundamental evolutionary 
processes of conservation and diversification of cell types. However, 
interspecies genomic differences limit the joint analysis of cross-species 
datasets to homologous genes. Here we present SATURN, a deep learning 
method for learning universal cell embeddings that encodes genes’ 
biological properties using protein language models. By coupling 
protein embeddings from language models with RNA expression, 
SATURN integrates datasets profiled from different species regardless 
of their genomic similarity. SATURN can detect functionally related 
genes coexpressed across species, redefining differential expression for 
cross-species analysis. Applying SATURN to three species whole-organism 
atlases and frog and zebrafish embryogenesis datasets, we show that 
SATURN can effectively transfer annotations across species, even when they 
are evolutionarily remote. We also demonstrate that SATURN can be used 
to find potentially divergent gene functions between glaucoma-associated 
genes in humans and four other species.

Cell mapping consortia efforts have generated large-scale single-cell 
datasets comprising hundreds of thousands of cells with the goal of 
uncovering underlying cellular processes. In-depth analysis of diverse 
datasets generated across different species through global efforts 
such as the Human Cell Atlas1,2, the Mouse Cell Atlas3 and the Fly Cell 
Atlas4,5 has broadened our understanding of cell biology character-
izing many cell types for the first time. However, current analyses 
remain limited in their ability to jointly analyze datasets generated 
across different species. Such joint analysis offers great potential for 
understanding fundamental evolutionary processes such as identify-
ing cell types that are conserved across species and identifying the 
corresponding gene programs that drive similarities and differences 
of such cell types.

A variety of linear6,7 and, more recently, deep learning 
approaches8–10 have been developed to learn low-dimensional rep-
resentations of single-cell RNA expression data (cell embeddings). 
However, existing methods represent genes only as columns of an RNA 
expression matrix and thus do not account for the biological properties 
of genes. This severely limits their usability when analyzing datasets 
generated from different species in which only a subset of genes can be 
matched as one-to-one homologs. While sequence alignment methods 
have been explored to incorporate weighted relationships between 
genes across species11, they are dependent on arbitrary alignment 
thresholds and do not capture remote homology. Recent advances 
in protein language models trained on hundreds of millions protein 
sequences12–14 suggest strong potential in addressing these issues by 
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based on the similarity of their protein embeddings. The importance 
of a gene to a macrogene is defined by a neural network weight—the 
stronger the importance, the higher the value of the weight that con-
nects the gene to the macrogene.

Given the shared macrogene expression space across different 
species, SATURN then learns to represent cells across multiple species 
as nonlinear combinations of macrogenes. The neural network in SAT-
URN is first pretrained with an autoencoder with zero inflated negative 
binomial (ZINB) loss, regularized to reconstruct protein embedding 
similarities using gene-to-macrogene weights (Methods). Using the 
pretrained network as initialization, SATURN then learns a mapping 
of all cells to the shared embedding space with a weakly supervised 
metric learning objective. This allows SATURN to calibrate distances 
in the embedding space to reflect cell label similarity. In particular, 
the objective function in SATURN consists of two main components: 
(i) forcing different cells within the same dataset far apart using weak 
supervision; and (ii) forcing similar cells across datasets close to each 
other in an unsupervised manner (Methods). This objective enables 
SATURN to integrate cells across different species, while preserving 
cell-type information within each species’ dataset.

SATURN creates multispecies cell atlases
We applied SATURN to integrate large-scale single-cell atlas datasets 
generated from human (Tabula Sapiens), mouse lemur (Tabula Micro-
cebus) and mouse (Tabula Muris), creating the mammalian cell atlas of 
335,000 cells (Fig. 1b and Supplementary Fig. 1a). We found that major 
cell types aligned well across three species such as T cells, B cells and 
muscle cells, and then we analyzed the alignment on a per-tissue level. 
For example, in muscle, we found a small subcluster of cells labeled 
as mouse macrophages that grouped with human and lemur granu-
locytes, while the rest of cells labeled as mouse macrophages aligned 
with human and lemur macrophages (Extended Data Figs. 1 and 2). To 
investigate whether this alignment is indeed correct, we checked the 
expression of known granulocyte marker Cd55 (refs. 19,20) and known 
macrophage marker Cd74 (refs. 19,20). Interestingly, we found that 
this small subcluster labeled as mouse macrophages indeed expresses 
Cd55 and does not express Cd74, indicating that this small cluster was 
wrongly annotated as macrophages, while it should be annotated as 
granulocytes (Extended Data Fig. 2).

In spleen, SATURN separated out human naive B cells from human 
memory B cells, but aligned human memory B cells with cells annotated 
as B cells in mouse and lemur (Extended Data Figs. 3 and 4). To inves-
tigate whether this alignment is meaningful, we checked the marker 
genes and found that indeed mouse and lemur B cells express Cd19, a 
B cell marker known to be preferentially expressed in memory B cells, 
which was only weakly expressed in human naive B cells (Extended 
Data Fig. 4)21. This indicates that mouse and lemur B cells are correctly 
clustered with human memory B cells, which is additionally confirmed 
by strong expression of Cd19. Thus, SATURN can be used to obtain 
fine-grained-level annotations when cell atlases have been annotated 
with different granularity levels. Additionally, we found that SATURN 
correctly identified cell types specific to a single species within the 
integrated datasets. For instance, in muscle tissue, SATURN sepa-
rated human epithelial and mesothelial cells from all other cell types 
(Extended Data Fig. 1). These cell types are indeed absent in mouse 
and lemur datasets. In spleen, SATURN separated human erythrocytes 
(Extended Data Fig. 3).

We next applied SATURN to a multispecies dataset of frog (97,000 
cells) and zebrafish (63,000 cells) embryogenesis17. SATURN aligned 
evolutionarily related cell types between these two remote species  
(Fig. 1c and Supplementary Fig. 1b). We further inspected small clusters 
that are aligned by SATURN, but their ground-truth cell-type annota-
tions differ. We find that these clusters indeed correspond to related 
cell types. For example, SATURN integrated zebrafish early-stage mac-
rophages and frog myeloid progenitors, which can differentiate into 

learning informative representations of the proteins a gene encodes. 
This is evidenced through the remarkable ability of protein represen-
tations to encode protein structure, function, molecular properties12 
and homology15. However, so far, the representational power of these  
models has not been exploited to learn cell representations that  
capture functional similarity of genes.

We present SATURN (Species Alignment Through Unification 
of Rna and proteiNs), a deep learning approach that integrates 
cross-species single-cell RNA-sequencing (scRNA-seq) datasets by 
coupling gene expression with protein embeddings generated by large 
protein language models. SATURN introduces a concept of macrogenes 
defined as groups of genes that share similar protein embeddings. The 
strength of associations of genes to macrogenes is learned to reflect 
this similarity, thereby allowing functionally related genes as captured 
by the protein embeddings to group together.

SATURN is uniquely able to perform multispecies differential 
expression analysis revealing functionally related groups of genes 
coexpressed across species. By mapping single-cell datasets gener-
ated with different genes to a joint embedding space, SATURN takes 
important steps toward universal cell embeddings.

We apply these embeddings to diverse tasks such as integration of 
cross-species cell atlas datasets, discovery of species-specific cell types, 
reannotation and cross-species label transfer, as well as identification 
of protein differences across species. In particular, we apply SATURN 
to integrate Tabula Sapiens2, Tabula Microcebus16 and Tabula Muris3 
cell atlas datasets, creating a mammalian cell atlas of 335,000 cells 
across nine common tissues. We further apply SATURN to integrate 
frog and zebrafish embryogenesis datasets17. Our results show that 
SATURN successfully transfers annotations even across evolutionarily 
remote species and finds homologous and species-specific cell types, 
outperforming existing cross-species integration methods. Finally, we 
apply SATURN to reannotate the five species of the Cell Atlas of Human 
Trabecular Meshwork and Aqueous Outflow Structures (AH atlas)18. 
We find that SATURN identifies glaucoma-associated macrogenes that 
have potentially divergent functions across species.

Results
Overview of SATURN
The major challenge of cross-species integration is that different 
datasets have different genes that may not have common one-to-one 
homologs. Subsetting each species’ set of genes to the common set 
of one-to-one homologs leads to losing a large portion of biologically 
relevant genes. Increasing the number of species exacerbates this 
problem, as a gene must have a homolog in each species to be con-
sidered for integration. SATURN overcomes this problem by using 
large protein language models to learn cell embeddings that encode 
the biological meaning of genes. SATURN maps cross-species data-
sets in the space of functionally related genes determined by protein 
embeddings. SATURN’s use of protein language models allows it to 
represent functional similarities even between remotely homologous 
genes that are missed by integration methods that rely on sequence- 
based similarity11.

In particular, SATURN integrates scRNA-seq datasets generated 
from different species with different genes by mapping them to a joint 
low-dimensional embedding space using gene expression and protein 
representations. SATURN takes as input: (i) scRNA-seq count data from 
one or multiple species, (ii) protein embeddings generated by a large 
protein embedding language model like ESM2 (ref. 14), and (iii) initial 
within-species cell annotations (from cell-type assignments if available 
or obtained by running a clustering algorithm). The language model 
takes a sequence of amino acids and produces a protein representa-
tion vector (Fig. 1a). Given gene expression and protein embeddings, 
SATURN learns an interpretable feature space shared between multiple 
species. We refer to this space as a macrogene space and it represents 
a joint space composed of genes inferred to be functionally related 
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macrophages. Terminal differentiation in both cell types involves 
activation of a number of conserved master regulatory genes, such 
as Cybb, Cyba, Spib and Cepba17. These cell types are embedded close 
to blood cells, which further demonstrates that local distances in  
SATURN’s embedding space are meaningful.

SATURN performs differential expression on macrogenes
SATURN extends differential expression analysis to a multispecies  
setting. Instead of performing differential expression analysis on indi-
vidual genes, which is highly limited when datasets do not share genes,  
SATURN performs differential expression on macrogenes, which enables 
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Fig. 1 | SATURN incorporates protein sequences and gene expression to 
embed single cells. a, Overview of SATURN. SATURN takes as input scRNA-seq 
datasets generated from one or more species and the amino acid sequences of 
proteins present in these species. SATURN then maps each species’ genes to 
a joint feature space by learning ‘macrogenes’, that is, groups of functionally 
related intraspecies and interspecies genes. Finally, in the shared macrogene 
space, SATURN integrates datasets across species by learning a joint cell 
embedding space in which cell types conserved across species are aligned 
with each other. b, UMAP visualization of a joint embedding space across 
three distinct species. We applied SATURN to integrate cell atlas datasets of 
335,000 cells from Tabula Sapiens (human), Tabula Microcebus (mouse lemur) 
and Tabula Muris (mouse), creating a mammalian cell atlas. Colors denote 
coarse-grained cell-type annotations (top) and species annotations (bottom). 

Only cell types with more than 350 cells were included. c, UMAP visualization 
of SATURN’s integration of datasets from frog (97,000 cells) and zebrafish 
(63,000 cells) embryogenesis. Colors denote different major cell types (top) 
and different species (bottom). In SATURN’s embedding space, cell types 
conserved across species aligned well (for example, frog/zebrafish neural 
crest), while species-specific cell types formed separate single-species clusters 
(for example, frog goblet cells). Cell types not directly mapped between both 
species shared similar ontology, for example, the zebrafish dorsal organizer 
and frog Spemann organizer (inset 1). Epidermal cell types including periderm, 
epidermal progenitor and rare epidermal cell types were also aligned, as were 
specialized epithelial cells such as goblet cells and ionocytes (inset 2). Finally, 
myeloid cell types including macrophages and myeloid progenitors clustered 
together (inset 3).
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characterization of cell-type-specific macrogenes across different data-
sets. To perform differential expression on macrogenes, SATURN first 
aggregates the contributions of individual genes to macrogenes using 
gene–macrogene neural network weights (Fig. 2a). The aggregated val-
ues can be seen as macrogene expression for each individual cell. Like in 
conventional differential expression analysis, SATURN then performs 
differential expression on cell clusters, such as those determined by 
cell-type label. The difference compared to conventional differential 
expression is that in SATURN the statistical test is performed on the 
macrogenes. Finally, to interpret the biological meaning of a macrogene, 
SATURN considers genes with the highest weight to the macrogene. 
We note that mean expression of a gene does not affect its macrogene 
weight. In particular, in the frog and zebrafish embryogenesis datasets, 
the correlation between a gene’s expression and its maximum weight is 
0.08 and 0.05 in the frog and zebrafish datasets, respectively.

By performing macrogene differential expression SATURN has  
two major advantages over existing integration methods. First, SATURN  
can identify differentially expressed genes that lack a one-to-one 
homolog. This is in contrast to existing methods that rely on one-to-one 
homologs and, therefore, ignore unmapped genes. Second, differen-
tially expressed macrogenes provide natural gene modules that aid 
in interpretation, as they rely on groups of related genes instead of 
individual genes. This can lead to the identification of shared gene 
programs across species.

We conduct macrogene differential expression analysis in frog 
and zebrafish embryogenesis datasets. We demonstrate examples 
for the macrophage/myeloid progenitor cluster (Fig. 2b) and for the 
ionocytes cluster (Fig. 2b). In particular, we show the top five differen-
tially expressed macrogenes and their corresponding highly weighted 
genes that characterize them, and we name each macrogene according 
to the gene with the highest weight to that macrogene. We focus on 
genes with known annotations. Gene-to-macrogene weights are listed 
in Supplementary Table 1.

For both macrophage/myeloid progenitors and ionocyte cell 
types, we find that highly expressed macrogenes indeed capture groups 
of related genes that are known to have the function associated with 
these cell types. In particular, for macrophage/myeloid progenitors, 
the top differentially expressed macrogenes include Arhgdi, Cebp, 
Ptp, Cybb and Lcp1 (Fig. 2b). All these macrogenes contain genes asso-
ciated with functions in blood cells. For example, the Arhgdi mac-
rogene contains frog and zebrafish homologs of Arhgdig, as well as 
frog-specific paralogs such as Arhgdib and Arhgdia, which encode 
proteins involved in Rho protein signal transduction and RacGTPase 
binding activity22,23. RhoGTPases play an important role in hematopoi-
etic stem cell functions24. Similarly, the Cebp macrogene contains frog 
and zebrafish homologs of Cebpd, Cebpb and Cebpa. Cebpa is associ-
ated with zebrafish hemopoiesis, and Cebpb is known to be expressed 
in zebrafish macrophages22,23.

For ionocytes, SATURN ranks Foxi, Dmrt2, Cldn, Ubp1 and Atp6v0 
as the top five differentially expressed macrogenes (Fig. 2b). Indeed, 
we find that all these macrogenes contain genes that are known to be 
associated with ionocytes. Foxi consists of Fox transcription factors 
that are known ionocyte markers25. The Dmrt2 macrogene contains 
Dmrt2 and Dmrt2a. Dmrt2 is a known ionocyte marker in human pulmo-
nary ionocytes26. The Cldn macrogene contains various claudins, which 
are found in gill ionocytes of teleost fish like zebrafish27. SATURN’s 
identification of a claudin marker macrogene for ionocytes is notable 
because the set of genes that can be mapped as one-to-one homologs 
does not contain any of these genes. Additionally, claudins that can be 
mapped as one-to-one homologs (Cldn1, Cldn12, Cldn18, Cldn19 and 
Cldn2) are not differentially expressed within the top 200 differentially 
expressed ionocyte genes in the individual datasets, nor in the shared 
one-to-one homolog space.

Moreover, macrogene differential expression can also be used 
to find species-level differences between cell types conserved across 

species. For example, when comparing zebrafish and frog ionocytes, 
a macrogene represented by Gnpda1, Apip and Paics and a macro-
gene represented by Ppp1r14b and Fosab are specific to zebrafish, 
while a macrogene represented by Gadd45g, Aen, and Msgn1 is highly 
expressed in frog ionocytes but not in zebrafish (Fig. 2c). To analyze 
the proportion of macrogenes in a single species versus the proportion 
of shared macrogenes accross species, we found the top 20 differen-
tially expressed macrogenes and then calculated the proportion of 
macrogenes that only had weights above 0.5 to genes in one species. 
Across all cell types, 35% of macrogenes were represented by genes in 
a single species.

Macrogenes capture homology
We find that macrogenes generated by SATURN recapture 
sequence-based gene homologs. In particular, we computed the pro-
portion of macrogenes with a homologous gene pair between zebrafish 
and frog among their top-ranked genes. To assess gene homology, we 
use BLASTP, which determines gene homologs based on protein amino 
acid sequence similarity28. We find that even with only the top-ranked 
genes of each species, 56% of macrogenes in SATURN recapture gene 
homology information, while by considering ten top-ranked genes 
from each species, 91.2% of macrogenes recapture gene homology 
information (Fig. 2d). In comparison, random assignment of genes to 
macrogenes results in homologous pairs in only 0.25% of macrogenes 
when considering two top-ranked genes and in only 18.8% macrogenes 
when considering ten top-ranked genes. Altogether, these results 
indicate not only that macrogenes in SATURN recapture homology 
information, but also that they can also be used to reveal functional 
similarities between genes even when these genes are not considered 
as homologs by sequence-based similarity tools such as BLASTP. To 
further demonstrate that macrogenes capture functional similarities 
of genes, we performed Gene Ontology (GO)29 analysis between the 
human and mouse genes in the mammalian cell atlas datasets. The 
analysis revealed significantly enriched GO terms within the gene sets 
of the same macrogene (Supplementary Note 5).

SATURN outperforms other methods by a large margin
We quantitatively assess the performance of SATURN on the align-
ment of frog and zebrafish embryogenesis datasets. We evaluate 
performance by measuring how well labels can be transferred from 
zebrafish to frog. In particular, we first integrated the datasets using 
SATURN and then used the cell-type annotations of cells from a refer-
ence species, zebrafish, to train a logistic classifier to predict cell types30  
(Supplementary Note 3). The classifier’s performance was then tested 
on the embeddings of the query species, frog (Fig. 3a). Predictions are 
assessed as correct if they match the known frog cell type, based on a 
predetermined mapping of cell types between species (Supplementary 
Table 2). Because not all frog cells can be mapped to zebrafish cells, the 
maximum possible accuracy of such a model is 93%.

We compare the performance of SATURN to another single-cell 
multispecies integration method, SAMap11, and unsupervised inte-
gration methods Harmony6, scVI8 and Scanorama7. SAMap is run in a 
weakly supervised mode in which cell neighborhoods are determined 
by cell type, which involves using the prior cell-type label information 
within each species but not across species, which is the same setting 
we used for running SATURN. SAMap is initialized with a gene graph 
based on protein sequence similarity as determined by BLASTP. For 
the unsupervised methods, the input genes for each species are taken 
as the one-to-one homologs as determined by ENSEMBL31. We found 
that SATURN achieves 85.8% median accuracy in cell label transfer from 
zebrafish to frog, achieving remarkable 119% performance gain over the 
next best-performing method, SAMap (Fig. 3b). We obtained similar 
performance gains when transferring labels from frog to zebrafish 
(Extended Data Fig. 5). Performance gains of SATURN are retained 
using other evaluation metrics, such as F1-score, precision and recall 
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(Extended Data Fig. 6), as well as data integration metrics32 (Extended 
Data Fig. 7). We additionally visualized embeddings obtained by using 
the dimensionality reduction techniques principal component analysis 
and uniform manifold approximation and projection (UMAP)33 on the 

one-to-one homolog expression space, demonstrating the gap between 
the species (Supplementary Fig. 2).

To test whether choice of protein language model for obtaining 
protein embeddings affects SATURN’s performance, we compared 

a

b

c d Macrogenes recapture homology

Pr
op

or
tio

n 
of

 m
ac

ro
ge

ne
s

w
ith

 a
 h

om
ol

og
ou

s 
ge

ne
 p

ai
r

Ionocyte
differential expression

Macrophage/myeloid progenitor
differential expression

Frog vs. zebrafish ionocyte differential expression

Number of top-ranked genes from both species

SATURN
Null model

U
M

AP
2

UMAP1

1.0

0.8

0.6

0.4

0.2

0
2 4 6 8 10

Low High

Cells

Gene 1

Gene 2

Gene 3

Gene 4

Macrogenes Cells Cell types

Macrogene weights

Gene 1

Gene 2

Gene 3

Gene 4

Interpret macrogenes
by gene membership

Aggregate with
weights

Differential
expression

Cell types

M
ac

ro
ge

ne
s

M
ac

ro
ge

ne
s

Interpret

Frog gene
Zebrafish gene

Both-species gene

Macrogene Genes
Arhgdi Arhgdib, Arhgdig, Arhgdia
Cebp        Cebpd, Cebpb, Cebpa
Ptp        Ptprc, Iqcd, Ptpn6, Ptpreb, Ptpn22
Cybb        Cybb, Nox4, Nox1
Lcp1        Lcp1, Parvg, Parvb, Parva, Parvab

Macrogene
Foxi Foxi1, Foxi3a, Foxg1a, Foxg1
Dmrt2        Dmrt2, Dmrt2a, Kank1
Cldn Cldna, Cldnh, Cldn4, Cldnb, Cldne
Ubp1 Ubp1, Grhl3, Grhl1, Grlh2a, Tp63
Atp6v0 Atp6v0c, Atp6v0ca, Atp6v0b

Arhgdi Cebp  Ptp  Cybb Lcp

Macrogene: Gadd45g

Macrogene: Ppp1r14bMacrogene: Gnpda1

Species

Periderm

Pluripotent

Endothelial

Blood

Macrophage

Myeloid progenitors

Endothelial

Goblet cell

Ionocyte

Small secretory cells

Rare epidermal subtypes

Secretory epidermal

Foxi Dmrt2 Cldn Ubp1 Atp6v

Fraction expressing
macrogene (%)

Mean expression
in group

20 40 60 80 100

0 0.25 0.50

Frog Zebrafish

Genes

Fig. 2 | SATURN enables multispecies differential expression analysis in the 
macrogene space. a, Overview of SATURN’s differential expression analysis 
on macrogenes. Every gene is connected to a macrogene with a corresponding 
weight that represents the importance of that gene to the given macrogene. 
Thus, each cell has corresponding macrogene values calculated as the weighted 
and normalized sum of its gene expression values. Because SATURN operates in 
the macrogene space, differential expression for resulting cell clusters gives the 
set of differentially expressed macrogenes of a given cell type. Finally, the genes 
with the highest weights to a macrogene are used to interpret the macrogene. 
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ESM2 embeddings14 to ESM1b12 and ProtXL13. The results show that  
SATURN is highly robust to the choice of protein language model 
(Extended Data Fig. 8), as well as to the number of macrogenes 
(Extended Data Fig. 9). SATURN also outperforms the best baseline 
approach on the mammalian cell atlas dataset (Supplementary Fig. 3).

We further compare SATURN’s ability to generate cell clusters 
that reflect conserved cell types across species, to the best baseline 
approach (SAMap). For each frog cell type, we analyzed its cross-species 
neighborhood by computing the cell-type frequency of its nearest 
cross-species neighbors in the embedding space. We found that  

SATURN generates cell clusters that are both species heterogeneous 
and cell-type homogeneous (Fig. 3c). For the most commonly occur-
ring cell types, SATURN’s neighborhoods were consistently highly 
homogeneous. On the other hand, this was not the case for SAMap 
where the neighborhoods were typically cell-type heterogeneous. For 
example, forebrain/midbrain, hindbrain, optic and eye primordium 
clusters were intermixed using SAMap but clearly distinguished using 
SATURN. SATURN aligned rare cell types such as notoplate, which only 
has 339 frog cells and 115 zebrafish cells. For a few very rare cell types, 
such as germline, which has only 33 frog cells and 53 zebrafish cells, 
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Fig. 3 | SATURN embeddings capture shared cell-type identity in frog and 
zebrafish embryogenesis. a, Explanation of how multispecies embeddings are 
scored. A joint embedding space, containing cells from multiple species, is split 
by species into a training set and a test set. A classification model to predict cell 
types is trained on a single-species training set, and evaluated on the test set of 
another species. The maximum test set accuracy achievable will be lower than 
100% if the test set species contains specific cell types that cannot be predicted 
by a classifier trained on the training species. Blue denotes frog, while orange 
denotes zebrafish. b, Median performance of SATURN compared to alternative 
methods. The performance is evaluated using the prediction accuracy of a 
logistic classifier model trained to differentiate zebrafish cell types and tested 
on predicting the cell-type annotations of frog cells. Higher values indicate 
better performance, and 0.93 is the maximum accuracy that can be reached by 
label transfer on this dataset. SAMap represents a version of the SAMap method 

in which cell-type annotations are used to integrate datasets. Vertical position 
of scatterplot points represents the median accuracy score across 30 runs for 
each method. Error bars represent standard error. For batch correction methods 
(Harmony, scVI and Scanorama), the input genes are selected as the one-to-one 
homologs determined by ENSEMBL. c, SATURN produces more homogeneous 
clusters than SAMap, and these clusters contain accurate multispecies cell types. 
Bars represent the percentage of cells from zebrafish that are nearest neighbors 
of frog cells of the given cell type conserved across these two species. Cell types 
are ordered by frequency. d, Comparison of UMAP visualizations of integrated 
frog and zebrafish embryogenesis datasets generated by SATURN and alternative 
methods. In SATURN’s embedding space, different cell types naturally form 
clusters and cells from different species align well. On the other hand, alternative 
baselines either do not preserve cell-type information (SAMap) or cannot 
integrate two species (Harmony, scVI and Scanorama).
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SATURN and SAMap both failed to align. SATURN and SAMap failed to 
directly align additional rare cell types such as olfactory placode and 
hatching gland. However, SATURN aligns these cell types to function-
ally related cell types: 77% of olfactory placode cells were mapped 

to placodal area for SATURN (37% for SAMap) and 66% of hatching 
gland cells were mapped to another component of the EVL, the peri-
derm, which was not case with SAMap (36% epidermal progenitor,  
33% blastula).
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Fig. 4 | SATURN discovers new cell types and facilitates the analysis of protein 
embeddings for the AH cell atlas. a, SATURN successfully aligned 50,000 cells 
from the AH cell atlas consisting of five species: human, cynomolgus macaque, 
rhesus macaque, mouse and pig. UMAP visualization of SATURN’s embeddings 
where colors denote cell types (left) and species (right). b,c, We applied 
SATURN to regroup cell types in a multispecies context. By clustering SATURN’s 
embeddings, we found five broad cell types. b, Heat map and dendrogram of 
reannotated cell types using SATURN. Labels on the right side show original 
cell-type annotations, while on the bottom we show reannotations obtained 
using SATURN. These clusters include cell types originally labeled as fibroblast 
and beam A/Y cells (cluster 1), beam A and uveal cells (cluster 2), JCT and beam 
cells (cluster 3 and cluster 4) and corneal endothelium cells (cluster 5). Across 30 
independent experiments, we regrouped cluster 1 as fibroblast cells, cluster 2 as 
beam A cells, clusters 3 and 4 as JCT cells, and cluster 5 as corneal endothelium 
cells. We specifically reannotated mouse beam A and beam Y cells, which have 

high expression of fibroblast markers such as Pi16, Fbn1 and Mfap5 as originally 
noted18. We additionally regrouped human beam B cells, which were not found in 
other species, as JCT cells. Finally, we mapped beam X cells, which were unique 
to rhesus and cynomolgus macaque, to two JCT clusters. c, UMAP visualizations 
of reannotated cell types. Cells are colored according to annotations inferred by 
SATURN (left) and species information (right). d, SATURN facilitates the analysis 
of protein embeddings by creation of multispecies macrogenes. Human MYOC 
had the highest weight to a different macrogene than the other four species’ 
Myoc variants. The human gene A2M also had the highest weight to the human 
MYOC macrogene. We can investigate this discrepancy by visualizing the protein 
embeddings of Myoc and A2m from all five species using principal component 
analysis. This analysis offers potential to point to similar function in A2m as Myoc, 
which would otherwise not be identified by sequence-based homology, as well as 
potential differences in human MYOC and Myoc in the other four species.
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We visually inspected low-dimensional embeddings pro-
duced by SATURN and other baselines by projecting them into a 
two-dimensional UMAP space33. We found that in SATURN’s embed-
ding space different cell types formed separate clusters, while cell 
types conserved across species were mixed (Fig. 3d and Supplemen-
tary Fig. 1b). On the other hand, existing methods were not able to 
produce biologically meaningful cell embeddings that reflect evo-
lutionary signatures. In particular, Harmony, scVI and Scanorama 
failed to integrate datasets across remote species. While SAMap is 
able to integrate datasets across species, the cell-type information in 
its embedding space is no longer preserved and different cell types  
intermingle.

SATURN integrates five species from the AH atlas
SATURN scales to large datasets and it can handle multiple datasets 
at once. We applied SATURN to integrate five species of the AH atlas18. 
The AH atlas contains 50,000 cells from human, cynomolgus macaque, 
rhesus macaque, mouse and pig. SATURN jointly aligns different species 
in the embedding space, identifying many conserved cell types between 
these species (Fig. 4a and Supplementary Fig. 1c). SATURN embeddings 
suggest that cell types including melanocytes, macrophages and cili-
ary muscle align in all species, as do cell types that are present only in 
a subset of species like fibroblasts and collector channel.

SATURN can be used to reannotate cell types and correct for 
incomplete annotations by aligning datasets across multiple species. 
To demonstrate that, we use SATURN to regroup cell types from the 
original AH atlas in a multispecies context. We focus on beam cells 
(beam A/B/X/Y), fibroblasts, juxtacanalicular tissue ( JCT) cells and 
corneal endothelium cells, due to their differential conservation across 
the five species profiled in the atlas.

Among these 21 cell types, SATURN found five broad clusters  
(Fig. 4b,c). The first cluster contained mouse beam cells and fibroblasts 
from pig, human and cynomolgus macaque, which we relabeled as 
fibroblasts. The reannotated mouse beam cells are indeed character-
ized as having high expression of fibroblast marker genes (Extended 
Data Fig. 10 and Supplementary Table 3). The second cluster contained 
beam A cells from pig, human, macaque and a mouse uveal cluster, 
which we reannotated as beam A cells. The third and fourth clusters 
contained beam X, beam B and JCT cells, which we reannotated as 
JCT cells, as beam X cells were only found in the two macaque species 
and beam B cells were only found in human. The fifth cluster contained 
the human Schwalbe line cells, and pig and mouse corneal endothelium 
cells. Within these new cell-type groupings, we found differentially 
expressed macrogenes that recapture specific cell-type marker genes 
(Extended Data Fig. 10 and Supplementary Table 3).

SATURN predicts different function among homologous 
genes
We investigate the macrogenes corresponding to glaucoma-associated 
genes from each species in the AH atlas. While pig, mouse, cynomolgus 
and rhesus macaque Myoc gene were expectedly linked to the same mac-
rogene, we found that the human MYOC gene was not linked to that mac-
rogene. We next visualized protein embeddings of glaucoma-associated 
genes and found that the human MYOC gene is embedded further away 
from the Myoc genes of the other species (Fig. 4d). Interestingly, the 
human MYOC gene has the highest weight to a macrogene containing 
human A2M, which is a nonhomologous gene that has also been associ-
ated with glaucoma34, and a number of different nonhuman species’ 
genes such as mouse Folr1, mouse Fbln2, mouse Srgn and pig SCP2D1. 
A2m genes from nonhuman species had the highest weights to the same 
macrogene. This analysis demonstrates that protein embeddings in 
SATURN and their association to macrogenes can be used to search for 
sequence-based gene homologs with potentially different functions 
across species and that SATURN can facilitate the analysis of protein 
embeddings through the creation of macrogenes.

Discussion
SATURN combines protein embeddings generated using large protein 
language models with gene expression from scRNA-seq datasets. By 
coupling protein embeddings with gene expression, SATURN learns 
universal cell embeddings that bridge differences between individual 
single-cell experiments even when they have different genes.

SATURN has a unique ability to map heterogeneous datasets 
to an interpretable space of macrogenes that can group together 
functionally related genes across species. In SATURN, every gene 
has a weight to a macrogene, which defines the importance of that 
gene to the macrogene. This enables SATURN to perform differen-
tial expression in the macrogene space and identify gene programs 
shared across different datasets. However, explicitly associating 
each macrogene with an interpretable function is not always pos-
sible due to the varied definitions of biological function across  
different contexts and scales, coupled with insufficient existing gene  
annotations.

SATURN represents cells as nonlinear combinations of macro-
genes. To integrate datasets, the objective function introduced in 
SATURN learns distance metrics from weakly supervised data, which 
forces cells to cluster according to their cell types. SATURN allows 
integration of datasets generated across multiple different species. 
SATURN is a scalable approach, making it applicable to large-scale 
cross-species cell atlas datasets. Our approach also has important 
implications for the creation of new multi-omic machine learning meth-
ods, including those that incorporate protein assay information (for 
example, CITE-seq35), genotype or those that assay a limited section of 
the transcriptome (for example, MERFISH36). For example, to improve 
machine learning methods that incorporate protein assay information, 
proteins could be represented using protein embeddings, rather than 
as indices. Protein embeddings could also be modified or personal-
ized using jointly measured genotype information. For integration of 
spatial datasets that profile only a subset of a transcriptome, SATURN 
does not require subsetting them to a set of common genes, which is 
required by current methods.

On the other hand, the limitation of SATURN is the requirement 
of a reference proteome, which may be missing for some species of 
interest. Reference proteomes and genomes can under-represent 
the genetic diversity of species, even for well-studied species such 
as humans37. Moreover, to generate the protein embeddings used by 
SATURN, we averaged over the embeddings produced for each gene’s 
available protein products, ignoring various RNA splicing dynam-
ics that affect the final translational products of genes. SATURN also 
requires cell clusters as an input for each dataset. These cell clusters 
could be created at various resolutions, which could limit the trans-
ferability of labels. Finally, smaller cell clusters, such as the germline 
cells in frog and zebrafish embryogenesis, are difficult to faithfully  
integrate.

SATURN generates cell embeddings that can be used for many 
downstream tasks. These tasks include but are not limited to data-
set integration, discovery of conserved and species-specific cell 
types, differential macrogene expression analysis, cell-type reanno-
tation, signature set enrichment, gene module determination38 or 
trajectory inference39. As single-cell transcriptomics is applied to an 
increasing number of species, we expect SATURN will be an impor-
tant tool for comprehending conservation and diversification of 
cell types across species and revealing fundamental evolutionary  
processes.
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Methods
Overview of SATURN
SATURN takes multiple annotated single-cell RNA expression count 
datasets generated from S species Xs1 ,Xs2 …XsS  where Xsi ∈ ℕ+Csi𝒢|𝒢𝒢si |  
where Csi is the number of cells in species si and 𝒢𝒢si is the set of genes in 
species si. The initial cell annotations can be obtained either from 
cell-type assignments if available or by running a clustering algorithm. 
In all experiments in the paper, we run SATURN with initial cell-type 
assignments within the individual species but never matched across 
species. In addition to count matrices and cell-type labels, SATURN 
also takes as input p-dimensional protein embeddings P ∈ ℝ|𝒢𝒢|𝒢p gener-
ated from large protein language models where 𝒢𝒢 𝒢 𝒢Si=1𝒢𝒢si.

SATURN maps multispecies expression data to a joint 
low-dimensional macrogene expression space by learning a set of 
macrogenes ℳ  with weights W ∈ ℝ+|𝒢𝒢|𝒢ℳ  where Wg,m ∈ ℝ+ is a weight 
from a macrogene m ∈ ℳ  to a gene g ∈ 𝒢𝒢. SATURN generates final 
k-dimensional latent cell embeddings by combining macrogenes using 
an encoder neural network f ∶ ℝ|ℳ| → ℝk. SATURN consists of two main 
steps: (i) pretraining using an autoencoder, and (ii) fine-tuning using 
metric learning approach. Both steps are performed jointly on the 
datasets from all species.

Macrogene initialization
SATURN initializes macrogenes by soft-clustering protein embeddings. 
In particular, SATURN first clusters protein embeddings using the 
k-means algorithm40. Given a matrix that stores protein embeddings 
for all genes P ∈ ℝ|𝒢𝒢|𝒢p, SATURN applies k-means to learn a set of cen-
troids ℳ 𝒢 {mi ∈ ℝp}NMi=1  where NM defines the number of centroids/
macrogenes. k-means minimizes the within-cluster sum of squares 
given by equation (1):

∑
g∈𝒢𝒢

minm∈ℳ(||Pg −m||2), (1)

where Pg denotes a row protein embedding vector of matrix P. Here, 
each centroid m represents a different macrogene. SATURN then  

defines an initial set of weights {{Wg,m ∈ ℝ+}|𝒢𝒢|g=1}
|ℳ|

m=1
 from each gene g  

to each macrogene m as given by equation (2):

Wg,m 𝒢 2 × (log ( 1
rdm,g

+ 1))
2

, (2)

where rdm,g ∶ ℕ → ℕ  represents the ranked Euclidean distance from 
gene g to a macrogene m and rdm,g = 1 for the nearest gene to a macro-
gene. This initialization function is arbitrarily chosen so that genes 
have the highest weights to the macrogenes they are closest to. 
Gene-to-macrogene weights are strictly positive, differentiable and 
updated during pretraining. We also explore different weight initializa-
tion strategies and show robustness of SATURN to different initializa-
tion functions (Supplementary Fig. 4 and Supplementary Note 6). We 
multiply by two so that the highest weights are close to 1.

Pretraining with an autoencoder
Following macrogene initialization, SATURN pretrains a network using 
an autoencoder with ZINB loss8. The autoencoder is composed of 
encoder and decoder modules. The encoder module first aggregates 
expression values using macrogene weights. In particular, for a cell c 
from species s with count values Xsc ∈ ℕ+|𝒢𝒢s |, genes g ∈ 𝒢𝒢s and macro-
genes m ∈ ℳ, SATURN defines macrogene expression values ec ∈ ℝ+|ℳ| 
as given by equations (3) and (4):

ec 𝒢 ReLU(LayerNorm(WT
s log(Xsc + 1))) (3)

WT
s 𝒢

⎡
⎢
⎢
⎢
⎢
⎣

W1,1 … W1,|𝒢𝒢s |

… … ..

W|ℳ|,1 … W|ℳ|,|𝒢𝒢s |,

⎤
⎥
⎥
⎥
⎥
⎦

, (4)

where ReLU denotes the rectified linear unit used as the activation 
function and defined as ‘ReLU( ⋅ ) = max(0, ⋅ )’. Macrogene expression 
values are always positive to ensure that each gene positively contrib-
utes to a macrogene or does not contribute at all. LayerNorm is layer 
normalization41 defined according to equation (5):

LayerNorm(X) 𝒢 X − E[X]
√Var(X) + ϵ

× γ + β. (5)

The encoder module f consists of two fully connected neural net-
work layers with ReLU activation, layer normalization and dropout, 
and takes as an input ec ∈ ℝ+ and outputs a low-dimensional embed-
ding zc ∈ ℝk  given by equation (6):

zc 𝒢 f(ec). (6)

The decoding module outputs three distinct heads, parameter-
i z i n g  |𝒢𝒢|  ZINB distributions as given by equations (7–9): 
μμμc ∈ ℝ+|𝒢𝒢|,Oc ∈ ℝ|𝒢𝒢|,θθθ ∈ ℝ+|𝒢𝒢|.

μμμc 𝒢 Softmax(WsDμ(DS(zc)))∑Xsc (7)

Oc 𝒢 DO(DS(zc)) (8)

θθθ, (9)

where DS, Dμ and DO represent fully connected neural network layers. 
DS and Dμ have ReLU activation, dropout and layer normalization. 
θ is a differentiable parameter of the model. SATURN provides the 
ability to concatenate a one-hot representation of the species s to the 
embedding zc in equation (6) during pretraining of the autoencoder. 
However, we find that this does not improve the performance and set 
the species conditional variable to a constant value in all experiments 
(Supplementary Fig. 5). That including the species as a conditional 
variable does not improve performance may be of consideration for 
the development of other autoencoder-based methods for single-cell 
expression data. However, while performance was not helped in this 
case, for other settings, or datasets, a conditional autoencoder (CAE) 
might be the correct choice, and we include the ability to pretrain with 
a CAE in the SATURN codebase.

The autoencoder reconstruction loss ℒrc, is calculated as the nega-
tive log likelihood of a ZINB distribution8 parameterized according to 
equations (10) and (11):

ZINBc,g ≈
⎧⎪
⎨⎪
⎩

Poisson(gamma(θθθg,θθθg/μμμcg)), if Bernoulli ( expOcg

1+expOcg
) 𝒢 0

0, otherwise

(10)

ℒrc 𝒢 ∑
g∈𝒢𝒢s

− log(ℙ(ZINBc,g 𝒢 Xcg)), (11)

where ℙ denotes probability. To ensure that gene-to-macrogene 
weights reflect similarity in protein embedding space, we add an  
additional loss term ℒs defined according to equation (12):

ℒs 𝒢 MSE(sim(B,Bshuffled), sim(P,Pshuffled)), (12)

where B = Q(W) and Q ∶ ℕ+|ℳ| → ℕn is a fully connected neural network 
layer with ReLU activation, layer normalization and dropout, which 
encodes macrogene weights. MSE denotes mean squared error and 
sim is the cosine similarity. The encoded macrogene weights B ∈ ℝ|𝒢𝒢|𝒢n 
and protein embeddings P are jointly shuffled row-wise (gene-wise).
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The final pretraining loss ℒp that SATURN optimizes is defined 
according to equation (13):

ℒp 𝒢 τℒs +
1

|c ∈ mini − batch| ∑
c∈mini−batch

ℒrc, (13)

where τ is a regularization parameter and it is set to 1 in all experiments 
and mini-batch is a training mini-batch.

Metric learning across species
To automatically learn a distance metric across species, SATURN 
fine-tunes pretrained cell embeddings with a weakly supervised metric 
learning objective. In particular, SATURN relies on the triplet margin 
loss function given by equation (14):

ℒt 𝒢 max(D(za, zp) − D(za, zn) +m,0), (14)

where D is a cosine distance, a, p and n denote an anchor cell, a positive 
cell and a negative cell, respectively, and the margin m is a tunable 
hyperparameter that we set to 0.2 in all experiments. Triplets are mined 
using semihard online mining in a weakly supervised fashion. To mine 
triplets, SATURN iterates over the species-specific cell-type annotations, 
but no cross-species annotations are ever used. These within-species 
annotations can be predetermined or generated in an unsupervised 
manner with clustering techniques like Leiden clustering42. For each 
annotation, SATURN selects all cells with that annotation from the same 
species as candidate anchor cells. Then, for each anchor cell, SATURN 
selects candidate positive cells as mutual 1-nearest neighbors measured 
using cosine distance in the embedding space. Here, mutual means that 
if cell x from species s1 selected as its cross-species nearest neighbor 
cell y from species s2, SATURN finds the nearest neighbor x′ of cell y in 
species s1. If cells x and x′ from species s1 have the same annotation, then 
positive pairs are generated. The anchor cells and positive cells are 
pooled, and then matched such that each anchor cell candidate  
has a corresponding randomly selected positive cell candidate from  
a different species. Finally, negative cells are randomly selected such 
that they have a different label than either the anchor label or the posi-
tive label. Triplets are semihard filtered such that (equation (15)):

D(za, zp) < D(za, zn) < D(za, zp) +m. (15)

During the fine-tuning stage, macrogene weights are not updated.

Generation of protein embeddings
Protein embeddings are generated by applying a pretrained protein 
embedding language model on each species’ reference proteome. 
Protein embeddings generated by the ESM2 model14 were used for all 
experiments. The ESM2 protein embedding model accepts a sequence 
of amino acids as an input and outputs a p = 5120 dimensional vector 
representing the embedding of the protein. To obtain a protein embed-
ding for a gene, the protein embeddings of all proteins available for the 
gene are averaged. Any protein embedding model, or any model that 
outputs numerical representations of genes, can be used as an input 
to SATURN (Extended Data Fig. 8).

Differential macrogene expression
Differential expression on macrogene values is performed using a 
Wilcoxon rank-sum test as implemented in SCANPY43. For a cell-type 
annotation t, with cells c ∈ t (from any species), the test statistic Um 
for macrogene m is calculated according to equations (16) and (17):

Um 𝒢 Rm − |c ∈ t|(|c ∈ t| + 1)
2 (16)

Rm 𝒢 ∑
c∈t

Rank(m)[c], (17)

where R(m) is the rank sum of cells with label t for macrogene m.

Determining gene homologs
BLASTP (v2.9.0) with default settings was applied to publicly available 
reference proteomes from ENSEMBL. BLASTP homolog results were 
used to find homolog gene pairs within the genes with highest weight 
to each macrogene (Fig. 2d). BLASTP results are also used for SAMap 
alignment (Fig. 3). The ENSEMBL homology API was queried to deter-
mine one-to-one gene homologs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All analyzed datasets are publicly available. Tabula Sapiens is  
available at https://cellxgene.cziscience.com/collections/e5f58829-
1a66-40b5-a624-9046778e74f5. Tabula Microcebus is available at 
https://figshare.com/articles/dataset/Tabula_Microcebus_v1_0/1446 
8196?file=31777475. Tabula Muris is available at https://figshare. 
com/articles/dataset/Single-cell_RNA-seq_data_from_microfluidic_
emulsion_v2_/5968960/2. For embryogenesis datasets, frog is avail-
able under accession code GSE113074 and zebrafish is available in  
h5ad format at https://kleintools.hms.harvard.edu/paper_websites/
wagner_zebrafish_timecourse2018/WagnerScience2018.h5ad. The 
five species AH atlas datasets are available under accession code 
GSE146188.

Code availability
SATURN was written in Python using the PyTorch (v1.13.1) library. 
The source code is available on GitHub at https://github.com/
snap-stanford/saturn/. The repository used in the paper is deposited 
under https://doi.org/10.5281/zenodo.10258201 in Zenodo44.
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Cell Types Species

Extended Data Fig. 1 | SATURN integrates muscle cell types across three 
mammalian species. UMAP visualization of SATURN’s embeddings obtained 
by integrating muscle tissues from human, mouse and lemur. Cells are colored 
based on broad-level cell types (left) and based on the species they come from 
(right). Epithelial and mesothelial cells types, which were only found within 

human, form a unique cluster (circled). To create each dataset, the larger Tabula 
datasets were subsetted. The human subset included cells labeled as muscle and 
vasculature. For mouse, limb muscle was chosen. For lemur, limb muscle and 
diaphragm were chosen. Human mesothelial cells belong to the tissue labeled 
muscle, and epithelial cells belong to the tissue labeled vasculature.
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a
Macrophage/Granulocyte

Subtypes

b
Cd55 Expression
in Mouse Cells

c
Cd74 Expression
in Mouse Cells

Extended Data Fig. 2 | Reannotation of cells labeled as mouse macrophage 
in mouse muscle. UMAP visualization of macrophage and granulocyte cell 
types obtained by integrating cells from human, mouse and lemur. (a) A small 
group of mouse macrophages cluster with granulocyte cell types from human 
(mast cells) and lemur (basophil) (circled), while other mouse macrophages 

cluster with human and lemur macrophages. These mouse cells (b) express Cd55, 
which has been shown to be preferentially expressed in granulocytes19,20, and 
(c) do not express Cd74, which has been shown to be preferentially expressed in 
macrophages and not expressed in granulocytes19,20. (b), (c) are colored by log-
normalized expression.
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Cell Types Species

Extended Data Fig. 3 | Saturn integrates spleen cell types across three 
mammalian species. UMAP visualization of SATURN’s embeddings obtained by 
integrating spleen tissues from the human, mouse and lemur. Cells are colored 

based on broad-level cell types (left) and based on the species they come from 
(right). Erythrocytes, which were only found within human, form a unique cluster 
(circled).
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a c

b

B Cell Subtypes

Cd19 Expression

Extended Data Fig. 4 | SATURN annotates B cells in mouse and lemur spleen 
on a fine-grained level. (a) UMAP visualization of SATURN’s embeddings 
obtained by integrating spleen cells from the human, mouse and lemur. B cells 
are shown in different colors based on ground-truth annotations while other cells 
are in grey. (b) UMAP visualization of expression of B cell marker Cd19.  

(c) Dotplot of Cd19 expression vs species and cell type. Cd19 is expressed in 
human memory B cells, mouse and lemur B cells, and only weakly in human naive 
B cells. This indicates that mouse and lemur B cells are correctly clustered with 
memory B cells.
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Extended Data Fig. 5 | Label transfer from from frog to zebrafish 
embryogenesis datasets. (a) Explanation of how multi-species embeddings 
are scored. A joint embedding space, containing cells from multiple species, is 
split by species into a training set and a test set. A classification model to predict 
cell types is trained on the frog training set cells, and evaluated on the zebrafish 
test set cells. The maximum test set accuracy achievable will be lower than 100% 
if the test set species contains specific cell types that can not be predicted by a 
classifier trained on the training species. Blue color denotes frog, while orange 
denotes zebrafish. (B) Median performance of SATURN compared to alternative 
methods. The performance is evaluated using the prediction accuracy of a 
logistic classifier model trained to differentiate frog cell types and tested on 
predicting the cell type annotations of zebrafish cells. Higher values indicate 

better performance, and 90% is the maximum accuracy that can be reached by 
label transfer on this dataset. SAMap represents a version of the SAMap method 
in which cell-type annotations are used to integrate datasets. Vertical position 
of scatter plot points represents the median accuracy score across 30 runs for 
each method. Error bars represent standard error. For batch correction methods 
(Harmony, scVI and Scanorama), the input genes are selected as the one to one 
homologs determined by ENSEMBL. (c) SATURN produces more homogeneous 
clusters than SAMap, and these clusters contain accurate multi species cell types. 
Bars represent the percentage of cells from frog that are nearest neighbors of 
zebrafish cells of the given cell type conserved across these two species. Cell 
types are ordered by frequency.
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Extended Data Fig. 6 | Performance comparison using different evaluation 
metrics. Median performance of SATURN and baseline methods on label 
transfer between frog and zebrafish embryogenesis datasets evaluated using 
(a) accuracy, (b) macro-F1-score, (c) macro-precision, and (d) macro-recall. 

Blue boxplots show zebrafish to frog label transfer performance, while orange 
boxplots show frog to zebrafish label transfer performance. Distribution is 
estimated with n = 30 runs of each method.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02191-z

a

b

c

SATURN SAMap Harmony scVI Scanorama

SATURN SAMap Harmony scVI Scanorama

SATURN SAMap Harmony scVI Scanorama

Sc
or

e
Sc

or
e

Sc
or

e

Overall Score
0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Average Batch Score

0.80

0.75

0.70

0.65

0.60

0.8

0.7

0.6

0.5

0.4

Average Bio Score

Extended Data Fig. 7 | Performance comparison using batch integration 
evaluation metrics. Median performance of SATURN and baseline methods 
evaluated using (a) weighted mean of the batch removal score (Avg Batch), (b) 
bio-conservation score (Avg Bio), and (c) overall score. Distribution is estimated 
with n = 30 runs of each method. Overall score is calculated as (0.6 * Avg Bio) + 
(0.4 * Avg Batch). Avg Bio is calculated as the average of NMI cell type score, ARI 

cell type score, and ASW cell type scores. Avg Batch is calculated as the average 
of ASW batch score, and graph connectivity scores, where species is taken as 
the batch variable. Neighbor calculation is done using default Scanpy settings, 
using each methods’ embeddings. Score calculation is done using default SCIB 
settings32.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02191-z

Ac
cu

ra
cy

SA
TU

R
N

(E
SM

2)

SA
TU

R
N

(E
SM

1b
)

SA
TU

R
N

(P
ro

tX
L)

zebrafish to frog

frog to zebrafish

Label Transfer Accuracy

0.85

0.80

0.75

0.70

0.65

Extended Data Fig. 8 | SATURN is robust to protein language model choice. 
Median performance of SATURN with different protein language model 
embeddings on label transfer between frog and zebrafish embryogenesis 
datasets evaluated using accuracy. Blue boxplots show zebrafish to frog label 

transfer performance, while orange boxplots show frog to zebrafish label 
transfer performance. Distribution is estimated with n = 30 runs. ESM2 refers 
to the esm2 t48 15B UR50D model14. ESM1b refers to the esm1b t33 650M UR50S 
model12. ProtXL refers to the ProtT5 XL U50 model13.
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Extended Data Fig. 9 | SATURN is robust to choice of number of macrogenes. 
Median performance of SATURN with different number of macrogenes on label 
transfer between frog and zebrafish embryogenesis datasets evaluated using 

accuracy. Blue boxplots show zebrafish to frog label transfer performance, while 
orange boxplots show frog to zebrafish label transfer performance. Distribution 
is estimated with n = 30 runs.
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Extended Data Fig. 10 | Differentially expressed macrogenes in regrouped 
AH Atlas cell types. Rows correspond to macrogene numbers, and columns 
correspond to cluster numbers. Genes composing each macrogene are listed 
in Supplementary Data Table 3. Cluster 1 expresses collagen genes like Col6a2 
(macrogene 1540) which are known fibroblast markers18. Cluster 2 expresses 
Nr2f1 (macrogene 197) which was identified as a trabecular meshwork marker18. 

Cluster 3 expresses Rspo genes (macrogene 583). Rspo4 was identified as a 
marker in human JCT18. Cluster 4 expresses Angptl7 (macrogene 479) which was 
identified as a JCT marker18. Cluster 5 expresses corneal endothelium markers 
including Ca3 (macrogene 1300). Additionally, Cluster 5 contains a macrogene 
composed of Slc4a genes. Another solute carrier family (SLC) gene45,46, Slc11a2 
was identified as differentially expressed in human corneal endothelium18.
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