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Abstract. Over the past few years, a diverse range of auto-
matic real-time instruments has been developed to respond
to the needs of end users in terms of information about atmo-
spheric bioaerosols. One of them, the SwisensPoleno Jupiter,
is an airflow cytometer used for operational automatic
bioaerosol monitoring. The instrument records holographic
images and fluorescence information for single aerosol par-
ticles, which can be used for identification of several aerosol
types, in particular different pollen taxa. To improve the
pollen identification algorithm applied to the SwisensPoleno
Jupiter and currently based only on the holography data, we
explore the impact of merging fluorescence spectra measure-
ments with holographic images. We demonstrate, using mea-
surements of aerosolised pollen, that combining information
from these two sources results in a considerable improve-
ment in the classification performance compared to using
only a single source (balanced accuracy of 0.992 vs. 0.968
and 0.878). This increase in performance can be ascribed to
the fact that often classes which are difficult to resolve using
holography alone can be well identified using fluorescence
and vice versa. We also present a detailed statistical analy-
sis of the features of the pollen grains that are measured and
provide a robust, physically based insight into the algorithm’s
identification process. The results are expected to have a di-
rect impact on operational pollen identification models, par-
ticularly improving the recognition of taxa responsible for
respiratory allergies.

1 Introduction

Over the past decades a considerable increase in
aeroallergen-related diseases such as asthma or allergic
rhinitis has been observed (Ring et al., 2001; Woolcock et
al., 2001; Woolcock et Peat, 2007). This has resulted in a
rise in associated direct and indirect health costs in terms
of hospitalisation, medication costs, and absence from work
(Zuberbier et al., 2014; Greiner et al., 2011). Currently, the
prevalence of pollen allergies ranges between 10 % to 30 %
of the population in westernised countries and up to 40 % of
children in high-income countries (Pawankar et al., 2011).
In future, the relevance of pollen as an allergen may increase
further as a result of climate change, which perturbs the
life cycle of plants through drier environmental conditions
and increased temperatures. Stressed plants tend to have an
earlier and/or longer blooming season (Ziello et al., 2012)
and produce more pollen with higher concentrations of
allergens (Damialis et al., 2019; Beggs, 2016; D’Amato et
al., 2016), possibly further contributing to the increase and
severity of allergic diseases. For these reasons, systems to
measure airborne pollen concentrations are essential to meet
public health challenges associated with respiratory aller-
gies. Through real-time measurements and the development
of forecast models (Chappuis et al., 2020), they can help
reduce health costs with better diagnosis and prevention,
thus helping patients to better manage their symptoms.
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Most European countries started monitoring pollen in the
second half of the 20th century using Hirst-type instruments
(Hirst, 1952) with manual identification and counting part
of the process (Clot, 2003; Spieksma, 1990). However, this
method provides data at low time resolution, typically daily
mean values, after a processing time of up to 10 d. The
spread of pollen grains on the collection band and the lim-
ited sampling (Oteros et al., 2017) mean that data at higher
temporal resolutions or at low concentrations (below 10
pollen grains m−3) have considerably increased uncertainty
(Adamov et al., 2021). Although few data are available to
study atmospheric pollen phenomena at high temporal res-
olutions, it is widely expected that pollen production and
dispersal processes take place at sub-daily scales since they
are highly influenced by local meteorological environmen-
tal conditions (Rojo et al., 2015; Rantio-Lehtimäki, 1994).
Provision of real-time pollen data is also crucial for fore-
casting purposes, since models can then integrate these real-
time data to deliver considerably improved forecasts (Sofiev,
2019).

Over the past few years, several instruments designed
for real-time pollen monitoring have come onto the market
(Crouzy et al., 2016; Oteros et al., 2015), as comprehensively
reviewed in previous work (Huffman et al., 2020; Buters
et al., 2022; Maya-Manzano et al., 2023). Among the most
promising instruments are airflow cytometers, which allow
the characterisation of particles almost in real time as they
pass through the instrument and enable continuous monitor-
ing with high temporal resolution (10 min as for weather pa-
rameters or below) over a whole season. In particular, the
SwisensPoleno Jupiter (developed by Swisens AG, Switzer-
land) is an instrument for bioaerosol identification which
can take in-flight holographic images of particles and mea-
sure their fluorescence (FL hereafter) (Sauvageat et al., 2020;
Tummon et al., 2021; Lieberherr et al., 2021). Coupled with a
machine learning (ML) algorithm, it has been shown to per-
form well for pollen monitoring even if the algorithm uses
just the holographic data (Sauvageat et al., 2020; Crouzy et
al., 2022; Maya-Manzano et al., 2023).

The FL data have to date not been used for pollen
identification with the SwisensPoleno Jupiter. Sauvageat et
al. (2020) reached an accuracy above 96 % for eight of
the main allergenic pollen species in central Europe (Am-
brosia artemisiifolia, Corylus avellana, Dactylis glomerata,
Fagus sylvatica, Fraxinus excelsior, Pinus sylvestris, Quer-
cus robur, and Urtica dioica) using only holographic im-
ages. However, some species have similar morphologies,
which can cause misclassifications and thus lower the al-
gorithm performance, as previously identified in Sauvageat
et al. (2020). In this paper, we investigate whether FL helps
discriminate single pollen grains between different allergenic
taxa based on their chemical compositions to reduce the level
of confusion resulting from their similar shapes. Moreover,
we also verify whether the FL measurements are consistent
for each species when using different SwisensPoleno units.

2 Material and methods

In this work we investigate the impact of including the set
of FL measurements, constituting the particle FL spectra,
as input for pollen identification using artificial neural net-
works. We trained and assessed the performance of three
neural networks with the same dataset but using different in-
puts: only holographic images (holo), only FL spectra (FL),
or both (combined). The performance of each model is eval-
uated using classical metrics, here the balanced accuracy, the
F1 score, and Matthew’s correlation coefficient (MCC) as
defined in Chicco et al. (2020), as well as the (relative) error
rate derived from the accuracy.

2.1 Pollen holography and fluorescence dataset

The SwisensPoleno Jupiter measures particles in flight, in the
size range from 0.5 to 300 µm, as they pass through the in-
strument. When a particle triggers the detector, holographic
images are taken by two cameras, which are both orthogo-
nal to the direction of flight and at 90◦ to each other. These
images are greyscale with a resolution of 200 by 200 pix-
els after numerical reconstruction and cropping, with each
pixel representing a square of 0.595× 0.595 µm in the phys-
ical domain. Right after the holographic images, FL is mea-
sured using the laser-induced fluorescence (LIF) method. FL
is then sequentially induced by three excitation sources and
captured in five different wavelength channels, for a total of
15 measured FL intensities. For each source, the FL is in-
duced by shooting at the particle at the moment it passes the
detector, and the FL subsequently emitted by the particle is
captured by silicon photomultipliers (SiPMs). The FL life-
time is also measured but is not used in the present work.
The three different excitation wavelengths are 280, 365, and
405 nm, while the reception wavebands are 333–381, 411–
459, 465–501, 539–585, and 658–694 nm. In the following,
we refer to each waveband by its central wavelength, i.e. 357,
435, 483, 562, and 676 nm. Note that the first measurement
channel is saturated by scattered light when the 365 nm ex-
citation source is activated. Also, for single-photon excita-
tion, we expect to measure no signal in the first measurement
channel when the 405 nm source is active. This effectively re-
duces the useful intensity measurements to 13. The FL data
require additional pre-processing to simplify their usability
and improve robustness. More details on these steps are pro-
vided in Sect. 2.2. Finally, the SwisensPoleno Jupiter also
performs polarised-scattered-light measurements, which are
however not used in the present work. We therefore limit
the analysis to characterisation of particle morphology us-
ing digital holography and chemical composition with FL
intensity measurements. From hereon, we refer to the set of
holographic images and FL measurements for each individ-
ual particle as “an event”. A more extensive description of the
data collection process is provided in Sauvageat et al. (2020).
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This study is based on a pollen dataset created by
aerosolising freshly collected pollen at the Swiss Federal Of-
fice of Meteorology and Climatology MeteoSwiss (hereafter
MeteoSwiss) station in Payerne, Switzerland. In total, the
dataset consists of measurements from 57 300 pollen grains
distributed among 7 different wind-pollinated and allergy-
relevant plant taxa, as reported in Table 1. For simplicity, we
also refer to these taxa as “classes”, and only the genus name
is used to refer to each of them. In Fig. 1, we present exam-
ples of reconstructed images for the different classes consid-
ered in this work. To compare results across different instru-
ments (of the same type), all measurements were performed
using two SwisensPoleno Jupiter systems denoted, P4 and
P5. The counts for each pollen taxon and SwisensPoleno are
also given in Table 1.

The pollen samples were collected from a single tree for
Alnus, Betula, Corylus, Fagus, and Quercus; from two dif-
ferent trees for Fraxinus; and from a few neighbouring stems
for the grass Cynosurus. After collection, pollen was brought
to the outdoor measurement site and aerosolised. This was
achieved using a SwisensAtomizer, which disperses parti-
cles using a vibrating membrane and an airstream. Samples
are thus scattered in a chamber and drawn into the instru-
ment, producing a regular flow of pollen grains. To pre-
vent the pollen from drying out, plants that were not more
than 15 km away from the MeteoSwiss station were selected,
which means it was possible to aerosolise samples soon after
collection (usually within 1 h). Pollen samples were analysed
using two instruments one after another, implying a time
lag between the data for P4 and P5, which ranges from just
35 min for Alnus to 80 min for Quercus (the mean time lag
is 60 min). For Fraxinus there is no such lag since the data
come from two different samples that were measured on dif-
ferent days. Datasets for all the considered pollen taxa were
created in 2020, except Alnus and Corylus, which are from
early 2021.

2.2 Data pre-processing

The datasets required to train the algorithms were generated
as follows. First, the holographic data for each class were
cleaned to eliminate any non-pollen events or events asso-
ciated with other pollen taxa. This was achieved with addi-
tional filters on shape properties (image features computed
after binarisation as described in Sauvageat et al., 2020),
which were appropriately selected for every class by heuris-
tic visual inspection of the holographic images. Thereafter,
for each event the background signal caused by scattered
light was subtracted from the raw FL measurement. This
background especially disturbs the low-FL-intensity mea-
surements where the scattered light dominates relative to the
particle signal. The background signal was obtained by con-
ducting measurements with no particles present in the mea-
surement chamber, leaving just the scattered light induced by
the excitation source. If the subtraction caused the final sig-

Figure 1. Holographic images of pollen after numerical reconstruc-
tion: (a) Alnus glutinosa, (b) Betula pendula, (c) Corylus avellana,
(d) Cynosurus cristatus, (e) Fagus sylvatica, (f) Fraxinus excelsior,
(g) Quercus robur.

nal to be negative due to noise, the resulting value was set
to zero to avoid numerical instabilities that our ML model
would not be able to deal with. Finally, since the absolute FL
compensated by the scattered light is still dependent on the
measuring system, the particle size, and the particle position
within the measurement volume, we transformed it into rel-
ative FL. Namely, the relative fluorescence intensity rij for
measurement channel i and excitation source j is obtained
by dividing the absolute FL intensity aij by the sum of the FL
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Table 1. Distribution of pollen counts per taxon and SwisensPoleno.

Class (common name) Latin scientific name Number of events Number of events
for P4 for P5

Alder Alnus glutinosa 8416 2643
Birch Betula pendula 6128 5458
Hazel Corylus avellana 4714 4444
Crested dog’s-tail (grass) Cynosurus cristatus 5895 2117
Beech Fagus sylvatica 2178 2827
Ash Fraxinus excelsior 2557 4837
Oak Quercus robur 3036 2050

TOTAL 32 924 24 376

intensities on all channels k for the same excitation source j :

rij =
aij∑
kakj

.

Using relative FL, although we lose the absolute FL inten-
sities, allows measurement systems to be compared without
specific data modification. The inter-compatibility aspect is
especially important when considering a measurement net-
work. Thanks to this standardisation, the same algorithm can
be used for all systems in the network rather than adjusting
the classification algorithm individually for each measure-
ment system.

2.3 Data exploration

Before applying any ML algorithm, it is important to explore
the data to better understand their characteristics. In the fol-
lowing, the distributions of the various holographic image
features as well as typical relative FL spectra for the different
pollen types are investigated. We also explore the structure of
the data using dimension reduction.

To get other characteristic features from the reconstructed
holographic images, further image processing steps are con-
ducted using the Python package “scikit-image” (Van der
Walt et al., 2014). Physically based particle features, such
as the minor and major axes, the area, the eccentricity, and
the particle brightness (mean intensity of the pixels repro-
ducing the particle), are computed for each image separately.
Other statistics were calculated based on image features, e.g.
the equivalent area diameter defined as the diameter of a cir-
cle with the same area as the particle. The distributions of
these features for each pollen class and each measurement
system were analysed separately and are presented in the Re-
sults section.

As previously discussed, alongside the holography im-
ages, relative FL spectra are used for enhanced characteri-
sation of the pollen grains. During data exploration, we ob-
served inconsistent results for the 405 nm laser excitation,
which upon further inspection revealed a misalignment of
this laser in one of the measurement systems. For this rea-
son, we only use the 280 and 365 nm excitation throughout

the rest of the present work. The distributions of the valid FL
spectra are presented and discussed in the Results section.

As a way to explore all the features of the dataset at once,
we performed dimensionality reduction. We used the Uni-
form Manifold Approximation and Projection (McInnes et
al., 2018), called UMAP, on the input data of each model
(holo, FL, and combined). This technique allows us to plot
multidimensional data as points on a plane; therefore it gives
an insight on how similar/different data points are depending
on how far from another they are in the plane.

2.4 Machine learning model

To handle the classification task, we randomly split the data
into training (75 %) and test (25 %) sets and chose a multi-
layer “deep” artificial neural network to learn how to iden-
tify pollen grains based on the training set. This network
maps input data from the holographic images and relative
FL spectra to the different pollen classes. The full network,
built using the ML framework Keras (Chollet et al., 2015),
is shown in Fig. 2. To handle the image input, an Efficient-
Net B0 model pre-trained on ImageNet is used (Tan and Le,
2019). It achieves state-of-the-art performance for classifi-
cation tasks. For treating the spectral information, a single
fully connected (denoted FC hereafter) hidden layer with
255 neurons is used. As a pre-trained model, the parameters
of EfficientNet B0 are frozen and therefore not modified in
the training on the pollen dataset. However, the parameters
of the layers after it are optimised according to the training
data. The results of the two feature extraction networks are
concatenated, then dropout is added, and finally the result
is passed to the decision layer. The width of this FC deci-
sion layer matches the number of classes (seven in this case).
Lastly, the output is normalised by a softmax layer to obtain
a probability distribution. To compute the loss, we used the
cross-entropy function between the predicted and reference
classes. To ensure a fair comparison, each model was trained
for exactly 200 epochs. In training runs where only images
or only relative FL spectra were used, the path not used was
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removed from the model graph (Fig. 2). The figure shows the
model with both features active.

The models were evaluated using a test set consisting of
25 % of the data from both instruments, sampled randomly.
We used balanced accuracy, F1 score, and Matthew’s corre-
lation coefficient (MCC) as metrics to assess the model per-
formance. For accuracy, the corresponding confidence inter-
vals were calculated via normal approximation, as explained
in Raschka (2020). It is important to note that the model used
here is a baseline and has not undergone hyper-parameter op-
timisation; therefore no validation set has been defined in
order to keep a maximum of data for training. This means
that a degradation of scores is possible when applying the
model to operational data as all sorts of pollen taxa can be
encountered considering that other particles are filtered out
before the classification. Nonetheless, the present study does
not aim to provide an operational model but simply to investi-
gate the potential of using FL as a complement to holography
for single-particle identification.

3 Results

3.1 Feature observations

Important observations can already be made by looking at
basic geometrical features derived from holographic images.
As an example, we consider the distributions of equivalent
area diameter and eccentricity in Fig. 3a and b. Note that for
geometrical features, the value associated with each particle
is the largest result obtained for the pair of holographic im-
ages. Regarding the equivalent area diameter, its distribution
provides information about the size of the pollen grains for
a given class. As illustrated in Fig. 3a, Fagus pollen grains
are typically large, with a maximum equivalent area diameter
of 45–55 µm, which corresponds to the literature (Halbritter
et al., 2021) and is clearly larger than all other classes we
considered in our study. Conversely, the distribution of the
eccentricity gives an insight on how round the pollen grains
are. In that case, Cynosurus pollen grains have the roundest
shape, with a maximal eccentricity between 0.4 and 0.55 (0
representing a circle and 1 an ellipse), whereas Quercus’ val-
ues are in the range 0.8–0.9 due to its more elliptical shape.
These characteristics can also be observed on the holographic
images in Fig. 1. While the eccentricity is used to give a hint
of the symmetry of the pollen grain, further metrics could be
introduced to further quantify symmetry. This was not im-
plemented in the present study as feature extraction is done
automatically by the convolutional neural network.

The distributions of the relative FL spectra allow us to
identify some classes that have distinct FL signatures. Fig-
ure 3c and d show the distribution of the relative FL for
the two excitation–emission combinations where the differ-
ences between taxa are the largest. The excitation sources
are at 280 and 365 nm, with emission channels at 357 and

435 nm respectively. In Fig. 3, we observe, for both plot c
and d, clear differences in relative FL for Cynosurus, which
presents considerably higher values compared to the other
taxa. In addition, differences between instruments show that
P4 and P5 have similar measurements at 280/357 nm, but P5
has significantly lower measurements for Corylus and Cyno-
surus at 365/435 nm. Overall, all combinations of excitation
sources and emission channels provide relevant information
for pollen characterisation, and the ones presented in Fig. 3c
and d represent the type of patterns that can be observed well.

Finally, the UMAP plots, given in the left column of Fig. 4,
show how different or similar the image and FL features of
each taxon are. We observe a clear distinction based on mor-
phology (Fig. 4a) for Fagus and Quercus, with Cynosurus
also having only little overlap with Corylus. However, the
latter and especially Betula and Alnus are clearly mixed up.
In Fig. 4b, the UMAP on FL spectra does not exhibit the
same group structure as for morphology. Here, Fagus and
Cynosurus are plainly detached from the remaining groups,
which are themselves imbricated. Ultimately, all groups are
fully separated when building the UMAP on both morphol-
ogy and FL features. We observe a correspondence between
the separation of groups on the UMAPs and the capacity of
the ML model to classify those classes correctly.

3.2 Classification performance

The classification results for each model are given as confu-
sion matrices in Fig. 4 and summarised in Table 2. We ob-
serve in these results that the holo model globally performs
better than the FL model when training on a single modality.
The FL model indeed encounters difficulties distinguishing
some classes such as Quercus and Fraxinus or Betula and
Corylus (Fig. 4b), which exhibit similar relative FL spectra.
When considering the morphology of Quercus and Fraxi-
nus (Fig. 3a and b), it is not surprising that the holography
model performs better at differentiating these classes as they
present significantly distinct shapes. As the performance for
the single-input models here is already (very) high, minor
dips in performance can make a notable difference. Com-
bining holography and FL improves the performance com-
pared to the single-input models for every taxon considered,
except for Fagus and Cynosurus, which already obtain per-
fect scores with single-input models. The performance gain
is noteworthy as the combined model achieves an overall
balanced accuracy of 99.2 % compared to either 96.8 % or
87.8 % for the individual holography or FL models respec-
tively. As a complement, the confidence intervals associated
with the accuracy of each model for each taxon are displayed
in Fig. 5. The non-overlapping of the confidence intervals in-
dicates a statistical difference between accuracies. The com-
bined model outperforms both single-input models for five of
the seven taxa, namely, Alnus, Betula, Corylus, Fraxinus, and
Quercus. Thus, logically, the balanced accuracies of the holo
and FL models are significantly lower than that of the com-
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Figure 2. ML model structure used to classify the pollen data. The top path handles the holographic image data, while the bottom path
processes the relative FL spectra data. The numbers on the connecting lines denote the dimensions of the data.

bined model (see Table 2). It follows that the absolute error
rates, defined as 1 minus the accuracy, of the holo- (3.2 %)
and FL-only (12.2 %) models are respectively 4 and 15 times
higher than that of the combined model (0.8 %). This indi-
cates that mistakes in particle identification occur for roughly
3 particles over 100 for the holo model, 12 particles over 100
for the FL model, and less than 1 particle over 100 for the
combined model.

4 Discussion

The results, based on measurements of aerosolised pollen
grains, show that combining FL with holography leads to a
substantial identification performance gain. The differences
between the combined model accuracy and both single-input
models confirm the findings from the UMAPs. This demon-
strates that by combining the two inputs, the complementary
morphological and biochemical properties of pollen grains
can be used for a better classification. Although it seems
small, the gain in accuracy is important for the field of aerobi-
ology and specifically pollen monitoring since pollen grains
only represent a minor part of all the particles in the air.
Since pollen concentrations typically range from a few grains
(<10) to a few hundred grains per cubic metre, and the
thresholds for allergy symptoms are usually around tens of
grains per cubic metre (Gehrig et al., 2017; Pollen.lu, 2003),
misclassifications can have an impact on the information pro-
vided to allergic people. Above all, high identification ac-
curacy is particularly important for plants with highly aller-
genic pollen such as Ambrosia artemisiifolia (common rag-
weed) as a few grains are sufficient to cause allergy symp-
toms.

Not only is the combined model’s accuracy superior to
the other models’, but this gain is specifically important for
some key pollen taxa. Indeed, the group of Alnus, Betula, and
Corylus, all from the Betulaceae family, is known to be dif-
ficult to classify accurately and presents a very high allergic
potency with possible cross-reactivity in central and north-
ern Europe (Puc and Kasprzyk, 2013). Thus, the excellent
classification performance obtained here opens the door to
better monitoring by using holography together with fluores-
cence data. In addition, the consistent FL signal in between

instruments and the available excitation sources and mea-
surement channels characterise single pollen grains precisely
even though the 405 nm excitation source was set aside. Also,
the combinations of excitation and emission wavelengths
used in the SwisensPoleno correspond to the most promi-
nent fluorescence modes for a variety of dry pollen studied in
Pöhlker et al. (2013). The coherence between our results and
those from Pöhlker et al. (2013) brings confidence into our
measurements and the stability of the SwisensPoleno. In fu-
ture work, the 405 nm excitation source needs to be included
to verify its potential for improvement.

When working with images, choosing neural networks for
classification is the obvious solution to be sure not to lose in-
formation by using the image itself as input. However, the
discrimination of pollen taxa using the UMAP dimension
reduction method shows that working with features derived
from the holographic images is also a possibility for pollen
classification. Future work testing other machine learning
methods on image features and fluorescence spectra needs
to be conducted as other classifiers may perform similarly
while being cheaper in terms of computational resources.
In addition, the main limitation of this study, focusing on
a reduced number of pollen taxa and manually aerosolised
pollen, should be overcome in following work by gathering
more data to train a broader model and test it on operational
data.

In the end, we expect the benefit of combining hologra-
phy with FL measurements for pollen classification to have
a positive impact on the capacity of models to discriminate
different pollen taxa. Moreover, in an operational set-up, the
benefit of using FL in addition to holography could be even
higher as it would allow for an easy distinction between bio-
logical and non-biological particles (e.g. water droplets, sand
particles, or dust) assuming that they do not fluoresce. Yet,
the extent of the gain in the real case scenario remains to
be quantified as the dataset used in this study probably does
not catch all the environmental variability. For example, in
ambient air, pollen can break into fragments, also impacting
allergy sufferers but not currently monitored.
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Figure 3. Distribution of holographic image features (a, b) and relative FL (c, d) for each pollen class and measurement system. (a) Maximum
equivalent area diameter in micrometres, defined as the diameter of a circle with the same area as the particle. (b) Maximum eccentricity,
defined as the deviation of the ellipse fitted to the particle from a perfect circle, ranging from 0 for a circle to close to 1 for an ellipse. (c)
Measured relative FL intensity with 280 nm excitation source and detector with a centre wavelength of 357 nm and (d) with 365 nm excitation
source and detector with a centre wavelength of 562 nm.

5 Conclusion

The present study demonstrates the potential of using FL
measurements as a complementary input to holographic
images for single-grain pollen identification using the

SwisensPoleno and ML algorithms for the most important
allergy-causing pollen taxa in central Europe. The capacity
of the ML model to identify pollen grains depends on both
inputs, and they compensate each other when one does not
provide enough information for accurate identification. As a
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Figure 4. Left side: Uniform Manifold Approximation and Projection (UMAP) of particle features (morphology or/and FL features) of all
the data. Right side: confusion matrices indicating the performance of each model on the test set. (a) Holography only, (b) relative FL only,
(c) combined relative FL and holography. UMAP settings: neighbours= 15, minimum distance= 0.001, random state= 42.
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Table 2. Classification performance of each model. The balanced accuracy, with its associated 95 % confidence interval, represents the
average of the recalls (ratio of correct prediction over total count for each class), ranging from 0 to 1. The F1 score is the harmonic mean of
the precision and recall, ranging from 0 to 1, and MCC stands for Matthew’s correlation coefficient and is a robust metric for classification
performance, ranging from −1 to 1.

Model Balanced accuracy F1 score MCC

Holography only 0.968, [0.965; 0.970] 0.964 0.958
FL only 0.878, [0.874; 0.882] 0.890 0.874
Combined 0.992, [0.991; 0.993] 0.992 0.991

Figure 5. Accuracy of each model for each taxon. The error bars represent the 95 % confidence intervals.

result, the performance of the combined model is systemat-
ically higher than that of either of the models trained with a
single input. The restricted and artificially aerosolised pollen
dataset used in this study has several limitations but still pro-
vides strong evidence for the complementary role of FL and
holography.

In conclusion, we recommend the use of relative FL as a
secondary input for automatic pollen identification using the
SwisensPoleno Jupiter. In this study, we tested its contribu-
tion on a restricted dataset, showing that the contribution of
FL is of great value for operational networks where similar
pollen taxa can be encountered. Finally, the use of relative FL
for automatic pollen identification further opens the door to
a larger and more precise monitoring of bioaerosols. For ex-
ample, objects which are challenging to identify using holo-
graphic imaging only, such as fungal spores, could be added
to the panel of particles.

Code availability. The algorithms presented in this paper are ex-
perimental and subject to further development. They are available
for research purposes on request to the authors of the paper. Work
is in progress to further improve and stabilise them in order to make
them public.

Data availability. The data presented in this paper are involved in
further algorithm development. They are available for research pur-
poses on request to the authors of the paper.

Author contributions. SE, EG, and YZ conducted the study and
contributed equally as main authors. SL guided the machine learn-
ing aspects and supervised PW in his work on the relative fluores-
cence. AB, BCl, GL, and FT contributed to writing, and BCr super-
vised the study and contributed to writing.

Competing interests. Elias Graf and Yanick Zeder are employees
of Swisens AG. At least one of the (co-)authors is a member of the
editorial board of Atmospheric Measurement Techniques. The peer-
review process was guided by an independent editor. The investi-
gations were carried out in compliance with good scientific prac-
tices, and the declared relationships have no effect on the results
presented.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-

https://doi.org/10.5194/amt-17-441-2024 Atmos. Meas. Tech., 17, 441–451, 2024



450 S. Erb et al.: Pollen identification using images and FL

ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We would like to thank all the co-authors for
their support, advice, and help in the various aspects of this study.
We are grateful for such collaborations. We would also like to thank
the Swiss National Science Foundation for their financial support.

Financial support. This research has been supported by
the Schweizerischer Nationalfonds zur Förderung der Wis-
senschaftlichen Forschung (grant no. IZCOZ0_198117).

Review statement. This paper was edited by Rebecca Washenfelder
and reviewed by two anonymous referees.

References

Adamov, S., Lemonis, N., Clot, B., Crouzy, B., Gehrig, R., Graber,
M. J., Sallin, C., and Tummon, F.: On the measurement un-
certainty of Hirst-type volumetric pollen and spore samplers,
Aerobiologia, 1–15, https://doi.org/10.1007/s10453-021-09724-
5, 2021.

Beggs, P. J.: Impacts of climate change on allergens
and allergic diseases, Cambridge University Press,
https://doi.org/10.1017/CBO9781107272859, 2016.

Buters, J., Clot, B., Galán, C., Gehrig, R., Gilge, S., Hentges, F.,
O’Connor, D., Sikoparija, B., Skjoth, C., Tummon, F., Adams-
Groom, B., Antunes, C. M., Bruffaerts, N., Çelenk, S., Crouzy,
B., Guillaud, G., Hajkova, L., Kofol Seliger, A., Oliver, G.,
Ribeiro, E., Rodinkova, V., Saarto, A., Sauliene, I., Sozinova, O.,
and Stjepanovic B.: Automatic detection of airborne pollen: an
overview, Aerobiologia, 1–25, https://doi.org/10.1007/s10453-
022-09750-x, 2022.

Chappuis, C., Tummon, F., Clot, B., Konzelmann, T., Calpini,
B., and Crouzy, B.: Automatic pollen monitoring: first
insights from hourly data, Aerobiologia, 36, 159–170,
https://doi.org/10.1007/s10453-019-09619-6, 2020.

Chollet, F.: Keras, GitHub [code], https://github.com/fchollet/keras
(last access: 22 April 2023), 2015.

Chicco, D. and Jurman, G.: The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy
in binary classification evaluation, BMC Genomics, 21, 6,
https://doi.org/10.1186/s12864-019-6413-7, 2020.

Clot, B.: Trends in airborne pollen: an overview of 21 years of
data in Neuchâtel (Switzerland), Aerobiologia, 19, 227–234,
https://doi.org/10.1023/B:AERO.0000006572.53105.17, 2003.

Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., and
Clot, B.: All-optical automatic pollen identification: to-
wards an operational system, Atmos. Environ., 140, 202–212,
https://doi.org/10.1016/j.atmosenv.2016.05.062, 2016.

Crouzy, B., Lieberherr, G., Tummon, F., and Clot, B.: False posi-
tives: handling them operationally for automatic pollen monitor-
ing, Aerobiologia, 38, 429–432, https://doi.org/10.1007/s10453-
022-09757-4, 2022.

D’Amato, G., Pawankar, R., Vitale, C., Lanza, M., Molino,
A., Stanziola, A., Sanduzzi, A., Vatrella, A., and D’Amato,
M.: Climate change and air pollution: effects on res-
piratory allergy, Allergy Asthma Immun., 8, 391–95,
https://doi.org/10.4168/aair.2016.8.5.391, 2016.

Damialis, A., Traidl-Hoffmann, C., and Treudler, R.: Climate
change and pollen allergies, in: Biodiversity and Health in the
Face of Climate Change, 47–66, https://doi.org/10.1007/978-3-
030-02318-8_3, 2019.

Gehrig, R., Maurer, F., and Schwierz, C.: Regionale
Pollenkalender der Schweiz – MeteoSchweiz, Fach-
bericht Nr. 264, https://www.meteosuisse.admin.ch/
services-et-publications/publications/rapports-et-bulletins/
2017/regionale-pollenkalender-der-schweiz.html (last access:
22 April 2023), 2017.

Greiner, A. N., Hellings, P. W., Rotiroti, G., and Scadding,
G. K.: Allergic Rhinitis, The Lancet, 378, 2112–2122,
https://doi.org/10.1016/S0140-6736(11)60130-X, 2011.

Halbritter, H., Bouchal, J., and Heigl, H.: Fagus syl-
vatica, PalDat – A palynological database, https:
//www.paldat.org/pub/Fagus_sylvatica/304830;jsessionid=
05C006636E5F5ED57525EEC2BFCC162F (last access: 22
April 2023), 2021.

Hirst, J. M.: An automatic volumetric spore trap, Ann.
Appl. Biol., 39, 257–265, https://doi.org/10.1111/j.1744-
7348.1952.tb00904.x, 1952.

Huffman, J. A., Perring, A. E., Savage, N. J., Clot, B.,
Crouzy, B., Tummon F., Shoshanim, O., Damit, B., Schnei-
der, J., Sivaprakasam, V., Zawadowicz, M. A., Crawford,
I., Gallagher, M., Topping, D., Doughty, D. C., Hill, S.
C., and Pan, Y.: Real-time sensing of bioaerosols: review
and current perspectives, Aerosol Sci. Tech., 54, 465–495,
https://doi.org/10.1080/02786826.2019.1664724, 2020.

Lieberherr, G., Auderset, K., Calpini, B., Clot, B., Crouzy, B.,
Gysel-Beer, M., Konzelmann, T., Manzano, J., Mihajlovic, A.,
Moallemi, A., O’Connor, D., Sikoparija, B., Sauvageat, E., Tum-
mon, F., and Vasilatou, K.: Assessment of real-time bioaerosol
particle counters using reference chamber experiments, Atmos.
Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-
7693-2021, 2021.

Maya-Manzano, J. M., Tummon, F., Abt, R., Allan, N., Bunder-
son, L., Clot, B., Crouzy, B., Daunys, G., Erb, S., Gonzalez-
Alonzo, M., Graf, E., Grewling, L., Haus, J., Kadantsev, E.,
Kawashima, S., Martinez-Bracero, M., Matavulj, P., Mills, S.,
Niederberger, E., Lieberherr, G., Lucas, R. W., O’Connor, D.,
Oteros, J., Palamarchuk, J., Pope, F. D., Rojo, J., Sauliene, I.,
Schäfer, S., Schmidt-Weber, C. B., Schnitzler, M., Sikoparija, B.,
Skjoth, C. A., Sofiev, M., Stemmler, T., Trivino, M., Zeder, Y.,
and Buters, J.: Towards European automatic bioaerosol monitor-
ing: comparison of 9 automatic pollen observational instruments
with classic Hirst-type traps, Sci. Total Environ., 866, 161–220,
https://doi.org/10.1016/j.scitotenv.2022.161220, 2023.

McInnes, L., Healy, J., and Melville, J.: UMAP: Uniform Manifold
Approximation and Projection for dimension reduction, arXiv
[preprint], https://doi.org/10.48550/arXiv.1802.03426, 2018.

Oteros, J., Pusch, G., Weichenmeier, I., Heimann, U., Möller,
R., Röseler, S., Traidl-Hoffmann, C., Schmidt-Weber,
C., and Buters, J. T. M.: Automatic and online pollen

Atmos. Meas. Tech., 17, 441–451, 2024 https://doi.org/10.5194/amt-17-441-2024

https://doi.org/10.1007/s10453-021-09724-5
https://doi.org/10.1007/s10453-021-09724-5
https://doi.org/10.1017/CBO9781107272859
https://doi.org/10.1007/s10453-022-09750-x
https://doi.org/10.1007/s10453-022-09750-x
https://doi.org/10.1007/s10453-019-09619-6
https://github.com/fchollet/keras
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1023/B:AERO.0000006572.53105.17
https://doi.org/10.1016/j.atmosenv.2016.05.062
https://doi.org/10.1007/s10453-022-09757-4
https://doi.org/10.1007/s10453-022-09757-4
https://doi.org/10.4168/aair.2016.8.5.391
https://doi.org/10.1007/978-3-030-02318-8_3
https://doi.org/10.1007/978-3-030-02318-8_3
https://www.meteosuisse.admin.ch/services-et-publications/publications/rapports-et-bulletins/2017/regionale-pollenkalender-der-schweiz.html
https://www.meteosuisse.admin.ch/services-et-publications/publications/rapports-et-bulletins/2017/regionale-pollenkalender-der-schweiz.html
https://www.meteosuisse.admin.ch/services-et-publications/publications/rapports-et-bulletins/2017/regionale-pollenkalender-der-schweiz.html
https://doi.org/10.1016/S0140-6736(11)60130-X
https://www.paldat.org/pub/Fagus_sylvatica/304830;jsessionid=05C006636E5F5ED57525EEC2BFCC162F
https://www.paldat.org/pub/Fagus_sylvatica/304830;jsessionid=05C006636E5F5ED57525EEC2BFCC162F
https://www.paldat.org/pub/Fagus_sylvatica/304830;jsessionid=05C006636E5F5ED57525EEC2BFCC162F
https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
https://doi.org/10.1080/02786826.2019.1664724
https://doi.org/10.5194/amt-14-7693-2021
https://doi.org/10.5194/amt-14-7693-2021
https://doi.org/10.1016/j.scitotenv.2022.161220
https://doi.org/10.48550/arXiv.1802.03426


S. Erb et al.: Pollen identification using images and FL 451

monitoring, Int. Arch. Allergy Imm., 167, 158–166,
https://doi.org/10.1159/000436968, 2015.

Oteros, J., Buters, J., Laven, G., Röseler, S., Wachter, R., Schmidt-
Weber, C., and Hofmann, F.: Errors in determining the flow
rate of Hirst-Type Pollen Traps, Aerobiologia, 33, 201–210,
https://doi.org/10.1007/s10453-016-9467-x, 2017.

Pawankar, R., Canonica, G., Holgate, S., Lockey, R. F.,
and Blaiss, M.: World Allergy Organisation (WAO)
white book on allergy, World Allergy Organisation,
https://doi.org/10.3388/jspaci.25.341, 2011.

Pöhlker, C., Huffman, J. A., Förster, J.-D., and Pöschl, U.: Autoflu-
orescence of atmospheric bioaerosols: spectral fingerprints and
taxonomic trends of pollen, Atmos. Meas. Tech., 6, 3369–3392,
https://doi.org/10.5194/amt-6-3369-2013, 2013.

Pollen.lu: Seuils critiques – Pollens, Ministère de la Santé,
CHL, http://www.pollen.lu/?qsPage=allergysteps&qsLanguage=
Fra (last access: 22 April 2023), 2003.

Puc, M. and Kasprzyk, I.: The patterns of Corylus and Alnus
pollen seasons and pollination periods in two Polish cities lo-
cated in different climatic regions, Aerobiologia, 29, 495–511,
https://doi.org/10.1007/s10453-013-9299-x, 2013.

Rantio-Lehtimäki, A.: Short, medium, and long range transported
airborne particles in viability and antigenicity analyses, Aerobi-
ologia, 10, 175–181, https://doi.org/10.1007/BF02459233, 1994.

Raschka, S.: Model evaluation, model selection, and al-
gorithm selection in machine learning, arXiv [preprint],
https://doi.org/10.48550/arXiv.1811.12808, 2020.

Ring, J., Krämer, U., Schäfer, T., and Behrendt, H.: Why are
allergies increasing?, Curr. Opin. Immunol., 13, 701–708,
https://doi.org/10.1016/S0952-7915(01)00282-5, 2001.

Rojo, J., Salido, P., and Pérez-Badia, R.: Flower and pollen produc-
tion in the “Cornicabra” olive (Olea europaea L.) cultivar and
the influence of environmental factors, Trees, 29, 1235–1245,
https://doi.org/10.1007/s00468-015-1203-6, 2015.

Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy,
B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou,
K.: Real-time pollen monitoring using digital holography, At-
mos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-
13-1539-2020, 2020.

Sofiev, M.: On possibilities of assimilation of near-real-time pollen
data by atmospheric composition models, Aerobiologia, 35, 523–
531, https://doi.org/10.1007/s10453-019-09583-1, 2019.

Spieksma, F. T. M.: Pollinosis in Europe: new observations
and developments, Rev. Palaeobot. Palynolo., 64, 35–40,
https://doi.org/10.1016/0034-6667(90)90114-X, 1990.

Tan, M. and Le, Q.: EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks, in: International conference
on machine learning, PMLR, Long Beach, CA, USA, 10–
15 June 2019, 97, 6105–6114, https://proceedings.mlr.press/v97/
tan19a.html (last access: 22 April 2023), 2019.

Tummon, F., Adamov, S., Clot, B., Crouzy, B., Gysel-Beer,
M., Kawashima, S., Lieberherr, G., Manzano, J., Markey, E.,
Moallemi A., and O’Connor, D.: A first evaluation of multiple
automatic pollen monitors run in parallel, Aerobiologia, 1–16,
https://doi.org/10.1007/s10453-021-09729-0, 2021.

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne,
F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: Scikit-
image: image processing in Python, PeerJ [code], 2, e453,
https://doi.org/10.7717/peerj.453, 2014.

Woolcock, A. J., Bastiampillai, S. A., Marks, G. B., and Keena, V.
A.: The burden of asthma in Australia, Med. J. Australia, 175,
141–145, https://doi.org/10.5694/j.1326-5377.2001.tb143062.x,
2001.

Woolcock, A. J. and Peat, J. K.: Evidence for the increase in
asthma worldwide, Ciba Foundation Symposium, 206, 122–139,
https://doi.org/10.1002/9780470515334.ch8, 2007.

Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann,
K. C., Bucher, E., Brighetti, M. A., Damialis, A., Detandt, M.,
Galán, C., Gehrig, R., Grewling, L., Guttiérrez Bustillo, A.
M., Hallsdóttir, M., Kockhans-Bieda, M. C., De Linares, C.,
Myszkowska, D., Pàldy, A., Sánchez, A., Smith, M., Thibaudon,
M., Travaglini, A., Uruska, A., Valencia-Barrera, R. M., Vokou,
D., Wachter, R., de Weger, L. A., and Menzel, A.: Changes
to airborne pollen counts across Europe, PloS One, 7, e34076,
https://doi.org/10.1371/journal.pone.0034076, 2012.

Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V., and
Church, M. K.: Economic burden of inadequate management of
allergic diseases in the European Union: a GA2LEN review, Al-
lergy, 69, 1275–1279, https://doi.org/10.1111/all.12470, 2014.

https://doi.org/10.5194/amt-17-441-2024 Atmos. Meas. Tech., 17, 441–451, 2024

https://doi.org/10.1159/000436968
https://doi.org/10.1007/s10453-016-9467-x
https://doi.org/10.3388/jspaci.25.341
https://doi.org/10.5194/amt-6-3369-2013
http://www.pollen.lu/?qsPage=allergysteps&qsLanguage=Fra
http://www.pollen.lu/?qsPage=allergysteps&qsLanguage=Fra
https://doi.org/10.1007/s10453-013-9299-x
https://doi.org/10.1007/BF02459233
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1016/S0952-7915(01)00282-5
https://doi.org/10.1007/s00468-015-1203-6
https://doi.org/10.5194/amt-13-1539-2020
https://doi.org/10.5194/amt-13-1539-2020
https://doi.org/10.1007/s10453-019-09583-1
https://doi.org/10.1016/0034-6667(90)90114-X
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1007/s10453-021-09729-0
https://doi.org/10.7717/peerj.453
https://doi.org/10.5694/j.1326-5377.2001.tb143062.x
https://doi.org/10.1002/9780470515334.ch8
https://doi.org/10.1371/journal.pone.0034076
https://doi.org/10.1111/all.12470

	Abstract
	Introduction
	Material and methods
	Pollen holography and fluorescence dataset
	Data pre-processing
	Data exploration
	Machine learning model

	Results
	Feature observations
	Classification performance

	Discussion
	Conclusion
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

