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Abstract
High-entropy alloys (HEAs), containing several metallic elements in near-equimolar proportions,
have long been of interest for their unique mechanical properties. More recently, they have
emerged as a promising platform for the development of novel heterogeneous catalysts, because of
the large design space, and the synergistic effects between their components. In this work we use a
machine-learning potential that can model simultaneously up to 25 transition metals to study the
tendency of different elements to segregate at the surface of a HEA. We use as a starting point a
potential that was previously developed using exclusively crystalline bulk phases, and show that,
thanks to the physically-inspired functional form of the model, adding a much smaller number of
defective configurations makes it capable of describing surface phenomena. We then present
several computational studies of surface segregation, including both a simulation of a 25-element
alloy, that provides a rough estimate of the relative surface propensity of the various elements, and
targeted studies of CoCrFeMnNi and IrFeCoNiCu, which provide further validation of the model,
and insights to guide the modeling and design of alloys for heterogeneous catalysis.

1. Introduction

Catalysts are widely used in modern industrial chemistry processes to lower the barriers and thus enhance
the rates of a multitude of diverse chemical reactions. Among the many different classes of catalysts, a lot of
attention has been recently devoted to high-entropy alloys (HEAs). Initially introduced by Yeh et al [1] and
Cantor et al [2] for metallurgic and mechanical applications, HEAs were shown to exhibit promising
catalytic [3–7] and especially electrocatalytic [8–10] behavior. The range of HEAs applications for catalysis
includes decomposition of water for hydrogen production [11–22], oxygen reduction [15, 18, 23–26],
methanol oxidation [22, 23, 27–30], reduction of CO2 and CO molecules [22, 31], and decomposition of
ammonia [9]. The peculiar properties of HEAs are usually attributed to their multicomponent nature. It
leads to lattice distortion [32] and sluggish diffusion [33] effects, which kinetically stabilize the alloy.
Additionally, the cocktail effect [32, 34–36] associated with the synergy between different elements,
modulates their mechanical and chemical behavior including their enhanced catalytic activity.

The computational study and modeling of HEAs, and in particular their catalytic properties, is a
promising approach to rapidly explore the enormous composition space. However, this is a challenging
endeavor: Disordered alloys typically require large unit cells to obtain a statistically representative structure,
making the ab initio simulations of HEAs computationally expensive and time consuming. Simulations of
both elemental metals and HEAs based on empirical interatomic potentials are much faster, but are usually
less accurate [37–39], especially when used to model multicomponent structures [40]. Furthermore, most
recent examples of traditional potentials for HEAs focus on a very narrow range of compositions and are
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specifically optimized for a precise scientific question [41, 42]. Even machine learning interatomic potentials
(MLIPs), which typically address this trade-off by approximating the outcome of electronic structure
calculations [43–46], cannot be applied straightforwardly. Many popular models based on atom-centered
descriptors [47, 48] suffer from an exponential scaling of memory and computational requirements with
respect to the number of distinct elements. Recent developments in Graph Neural Network [49, 50] and
equivariant [51, 52] models use a chemical space embedding approach that does not scale with the size of the
chemical space, but lacks interpretability. Both approaches also suffer from the exponential increase in data
requirements associated with the large composition space.

In our previous work [53], we introduced a general-purpose machine-learning (ML) model for the study
of HEAs with up to 25 transition metals in the composition (the HEA25-4-NN), as well as proposed an
efficient approach to generate a training set for it. Based on the idea of a physically-motivated and
interpretable alchemical contraction of the feature space [54], the model demonstrated very promising
accuracy, robustness and transferability in terms of various bulk HEA simulation scenarios, which is even
more remarkable in light of the difficulty in modeling even pure transition metals using MLIPs [55].
However, catalysis research requires the ability to model surfaces and defective structures, which is beyond
the capabilities of a model that is trained exclusively on distorted fcc and bcc bulk configurations. Here we
extend the scope of the model to study structure and stability of the surfaces of HEAs, with a particular focus
on the problem of surface segregation, which is of great importance for catalysis. We demonstrate that by
extending the bulk training set with a small number (less than 20%) of surface and molten structures, it is
possible to achieve a similar level of accuracy also for these defective configurations. We trace the
transferability of the model to the feature space contraction matrix, which is optimized based on the bulk
structures and reduces the chemical complexity of the training problem, and therefore the data
requirements. We then perform a simulation of the segregation process in a Cantor-style alloy with an
equimolar content of all the 25 transition metals included in the training set to evaluate the segregation
propensity of different elements. Finally, we study the segregation process in two selected HEAs.

2. Theory and computational details

The details of the reference DFT calculations and the structure of the ML model closely follow those used in a
recent paper focused on bulk structures [53], which allows us to perform an insightful comparative study.
Here we provide a brief summary of these details and focus on the strategy we adopt to extend the training
set to include disordered and inhomogeneous structures.

2.1. First-principles calculations
The training data on energies and interatomic forces of the structures was obtained from density functional
theory (DFT) simulations performed with the Vienna Ab initio Simulation Package (VASP)[56]. The
convergence criteria for the electronic self-consistent cycle was 10−6 eV, while the cutoff energy for the
plane-wave basis set was 550 eV. We used a Γ-centered Monkhorst-Pack [57] scheme with a resolution of
0.04 π Å−1 for sampling the first Brillouin zone. The behavior of the core electrons and their interaction with
the valence electrons was described with projector-augmented wave (PAW) pseudopotentials [58].
Exchange-correlation effects of the electrons were taken into account within the Generalized Gradient
Approximation (PBEsol functional [59]). The vacuum size for the surface slab calculations was set to 20Å.
Following the same reasoning as in [53], we performed the calculations without spin polarization. Even
though it is possible to describe the magnetism within the spin density functional theory approximation
(and even though this framework is often used by ML models that incorporate magnetic information), when
dealing with such a broad set of transition-metal compounds it is likely that some element combinations
require different approaches, such as DFT with Hubbard U and J corrections (DFT+U+J), and dynamical
mean-field theory [60, 61]. The use of different methods would introduce inconsistencies in the training
data, and may also require the adjustment of DFT method parameters such as Hubbard U and J for each
individual structure. Hence, non-spin-polarized calculations remain the most consistent choice for this
work, even though it limits the accuracy of the model for metals and alloys with strong magnetic behavior.
We further discuss the errors associated with the neglect of magnetism in sections 3.4 and 5, and in the
supplementary information.

2.2. MLmodel
For the sake of consistency between our previous work on bulk HEAs and our current work, we kept the
model architecture unchanged. Here, we summarize the main ideas underlying the model, while for all the
details, the reader is referred to the [53].
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The model is based on a combination of ridge regressions built upon a chemical composition, two- and
three-body correlation features, and a fully-connected neural network (NN) based on three-body features.
We use the alchemical compression method introduced in [54] to prevent the steep increase of model
complexity due to the large size of the chemical space. The model connects a representation of the atomic
environment Ai of the atom i with its contribution to the potential energy of the system V(Ai):

V(Ai) = V (aeb) (Ai)+V (2B) (Ai)+V (3B) (Ai)+V (NN) (Ai) . (1)

Here, the first term V(aeb)(Ai) = w(aeb)
ai correspond to an atomic baseline that depends only on the chemical

identity ai of each atom. The second term

V (2B) (Ai) =
∑
an

w(2B)
aian ⟨an|ρ

⊗1
i ⟩ (2)

corresponds to a pair potential, that is trained in the full 25× 25-dimensional space of two-element
correlations. The three-body potential

V (3B) (Ai) =
∑

bnb ′n ′l

w(3B)
bnb ′n ′l⟨bnb

′n ′l|ρ̃⊗2
i ⟩, (3)

instead, is based on descriptors that are contracted from the original, 25-elements chemical space (a) to a
much compressed pseudo-element space (b),

⟨b|=
∑
a

uba⟨a|. (4)

The coefficients uba are collected in the alchemical coupling matrix u, that determine the compression from
the full to the reduced chemical space. For consistency, we compress the chemical space to 4 pseudoelements,
see [53] for a discussion of convergence. The bra-ket notation represents in a concise manner the
(al)chemical dimensions, as well as the indices of the radial basis (n,n ′) and the angular momentum channel
(l) that discretize the expansion of the neighbor-density correlations. A final NN term is designed to capture
the non-linear, many-body components of the target potential:

V (NN) (Ai) = F

[{
⟨q|ρ̃⊗2

i ⟩
}
q

]
. (5)

For each environment, a multi-layer perceptron F is applied to the set of compressed 3-body descriptors.
Although, as discussed above, we chose to build a non-magnetic model, one can see quite easily how this

framework could be modified to incorporate some recent ideas to describe spin in a ML framework. The
simplest approach is to simply train the model on spin-polarized data with a fully relaxed spin subsystem.
This approach provides an accurate description of a systems with a clear-cut magnetic ground state (such as
the ferromagnetic bcc iron [62]), but is problematic when there are multiple near-degenerate spin states,
e.g. near or above the Curie temperature. Alternatively, one needs to modify the architecture to explicitly
describe the magnetic state of the system, so that one can train on different magnetization states, and
simulate atomic and spin dynamics simultaneously and thus provides a more accurate, and principled
description of the system. This can be achieved by discretizing the spin states and treating different states as
separate species [63], or by associating scalar descriptors with the magnetic state of the atoms [64]. Both of
these approaches are easily translated into the alchemically-compressed architecture. A non-collinear,
vectorial treatment of the atomic magnetic moments is also possible [65, 66], which would require more
substantial modifications. As discussed above, in our opinion the challenge in including a consistent physical
description of magnetism for such a wide chemical space is comparable—if not harder—than the
implementation of a suitable ML architecture.

2.3. Training dataset construction
The starting point for this study is the dataset of reference [53], which contains approximately 25 000 bulk
configurations, each containing between 3 and 25 transition metals (the entire d block except for Tc, Re, Os,
Cd, Hg) arranged as a regular, or randomly distorted, fcc or bcc lattice. We refer to this original dataset as
‘subset O’. Although the resulting model was remarkably stable, and it was possible to perform molecular
dynamics simulations of mixtures with 25 elements at temperatures well above the melting point, it would be
unwise to use it for surface effects. To obtain a model that is capable of a reliable description of the surface
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Table 1. Summary of the various training subsets we used to generate an extended HEA ML potential to study surface structures and
energetics. Each subset is associated with a single-letter label which we use in the discussion.

Label Description No Entries

O Bulk structures 25 000
A Surface slabs 2640
B Bulk liquid, MD snapshots 1000
C Surface slabs, MD snapshots 1000
D Cantor alloy surface slabs, MD 500

segregation process in HEAs with up to 25 d-block elements, we need an extended data set, which we build
iteratively by including three additional groups of structures.

The first part of our extended dataset (labeled as A) follows the same philosophy as the bulk data, but
aims to capture surface energetics. We generate a few subsets of on-lattice surface slab structures based on bcc
and fcc lattices and Miller indices of (100), (110) and (111). The unit cell of each structure contains 45 atoms,
obtained by replicating the appropriately-oriented primitive cell of the surface according to a 3× 3× 5
geometry. The atomic composition is randomly assigned by sampling from a random subset of elements
ranging in size from 3 to 25. The lattice parameter is then rescaled according to the average atomic volume of
the elements in the assigned composition. For each subset of on-lattice data we generate a distorted
counterpart by randomly displacing atomic positions and rescaling the lattice parameter. After generating
10 000 samples for each lattice and surface orientation, we select the 200 most diverse of them using a

farthest point sampling (FPS) algorithm [67], based on their two-body correlation features ⟨an|ρ⊗1
i ⟩. Finally,

for each combination of lattice and Miller index, we include 20 FPS-selected structures with 3× 3× 4 and
3× 3× 6 geometry, so that the ML model can capture finite-size effects. Overall, subset A contains contains
2640 surface slabs.

In order to increase the structural diversity, we use replica-exchange molecular dynamics with atom
swaps (REMD/MC) for structure generation and FPS for selection. These simulations use a preliminary
version of the surface-enabled potential trained on a combination of subset A and the original dataset O. We
perform high-temperature (2000K–4000K) REMD/MC of 100 FPS-selected HEA bulk systems and
intermediate-temperature (300K–1500K) REMD/MC of 100 FPS-selected HEA surface slabs. From the
resulting trajectories, an additional round of FPS selection yields a collection of 1000 molten bulk structures
(subset B) and 1000 thermally equilibrated surface slab structures (subset C).

Finally, using a preliminary potential trained on subsets O, A, B, and C, we generate a Cantor-style alloy
surface slab containing all 25 elements in roughly equimolar proportions, perform intermediate-temperature
REMD/MC sampling, and select by FPS a set of 500 structures (subset D) that mimics closely the setup we
use to investigate the segregation propensity of different elements. All datasets used in this paper are
summarized in table 1.

3. Transferability of alchemical learning

The modeling scenario we investigate here—the extension of an existing ML model to a substantially
different type of configurations—is common in practical applications to chemical and materials modeling.
The simplicity and interpretability of the architecture of the HEA25-4-NN model allows us to gain some
generally applicable insights into successful strategies. For this reason, as well as because of the excellent
performance of HEA25-4-NN in out-of-sample, extrapolative predictions, we chose to use exactly the same
model architecture, despite the fact that recent results have shown that deep-learning models have the
potential of improving substantially the in-distribution accuracy for the bulk HEA dataset [68].

The extensive set of experiments in [53] shows that the HEA25-4-NN model is able to perform both
low-temperature and high-temperature MD without actually being trained on MD trajectories, and it even
achieves respectable accuracy when making predictions for some elements that are not represented in the
training set, thanks to the interpretable form of the alchemical contraction matrix. [53] Despite the overall
stability, the accuracy for molten configurations or surface structures is much worse than for in-sample
predictions, and so it makes sense to expand the training dataset to include more structural diversity. An
important question here, with a clear relevance for the broader goal of obtaining potentials that are generally
applicable over a large swath of chemical space, is whether compositional and structural degrees of freedom
must be sampled independently. In this particular situation, after having satisfactorily learned the behavior
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Figure 1. Learning curves for the validation error computed separately on the various datasets considered in this work. The errors
are calculated on a hold-out test set containing 10% of the structures. The labels for the datasets correspond to those in table 1,
and visualizations for each structure type are provided for convenience. For each curve, 10 000 structures from the dataset O were
included in the training set and kept fixed. Each section on the x-axis corresponds to the addition of a fraction of the structures
for each subset (xA for the subset A, and so on), while the preceding datasets are included in full. Individual data points marked
with crosses correspond to the hold-out errors obtained by direct application of the HEA25-4-NN model from [53], for a the
model trained on the OABC dataset with optimized alchemical weights matrix, and the final HEA25S-4-NN model trained on the
full dataset. The inset shows a parity plot of the alchemical coupling matrix u values in the case of model training with fixed u
values (x-axis) and optimizable u values (y-axis).

of 25 elements in the bulk phase, can we learn their behavior at a surface with a small number of additional
training structures or do we need a similar amount of data for each type of chemical environment?

3.1. Learning curves
The predictions of the HEA25-4-NN model on the new structural subsets are up to 20 times less accurate
than the in-sample predictions. While this might appear a very large degradation in performance, one has to
consider that these structures are entirely different from the bulk structures included in dataset O, and
indeed the errors on the high-temperature bulk structures are much smaller. In figure 1 we plot the accuracy
of a series of models trained by progressively including data from each of the subsets A, B, C. When
interpreting these curves, one should keep in mind that (1) the errors are computed separately on hold-out
sets containing 10% of the structures from all the available datasets, namely O, A, B, C, D; (2) the alchemical
weights matrix was taken from the HEA25-4-NN model and kept fixed during the training; (3) the models
are trained incrementally, i.e. we start from the model weights of HEA25-4-NN and we further optimize the
models after adding a new chunk of structures and after incorporating a new subset; (4) the train set is
similarly extended in an incremental fashion when going left to right in the plot; (5) we always include 10 000
randomly-selected structures from dataset O to avoid model drift. We also include the results of the
HEA25-4-NN, the model trained on the full OABC dataset with optimized alchemical weights matrix (see
the details in section 3.2), together with results of the final HEA25S-4-NN model (see the details in the
section 3.3) in figure 1 to explicitly demonstrate the overall training dynamics.

As the amount of training data increases, the accuracy of the model on this new data approaches the
accuracy on the O subset. It is clear that the model can quickly adapt to new types of structures: adding the
‘ideal’ surfaces from subset A improves the error by almost tenfold error not only on subset A, but also on the
MD surface structures in subsets C and D; adding the bulk structures in subset B improves the accuracy on
subset B, but also on the slab MD subsets C and D. The accuracy on dataset O degrades slightly initially, but
the final model is only marginally worse than the one fitted exclusively on O-like structures. This indicates
that, at least when including a substantial part of the original data in the new training, the model is flexible
enough to incorporate new structures without substantially affecting the in-sample accuracy. We note
however that learning curves exhibit a small slope which indicates that a much larger amounts of data would
be needed to improve further the accuracy. Overall, this suggests a nuanced answer to our general question
above. The trained model requires only a few structures to capture the gist of completely new types of
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configurations, and it can use the correlations from one set of structures to accelerate learning on new ones
(for reference, the accuracy of the HEA25-4-NN model trained on 200 and 1000 O structures is
approximately 150 and 30 meV/atomMAE [53]). However, reaching uniform accuracy across completely
different structural motifs may require almost-uniform train-set sampling.

We also see that keeping fixed alchemical weights has a minimal impact on model accuracy, an
observation we elaborate on in section 3.2. From this we can conclude that all the general information about
the interatomic interaction is already contained in the original dataset O, and one only needs to slightly
adjust the model weights by adding a small amount of new data during training to reach semi-quantitative
accuracy. The total number of structures in datasets A,B,C is less than 20% of the 24’000 bulk structures that
were used in [53] to train the parent model—and the learning curves indicate that an even smaller number
may suffice with a limited impact on the accuracy. The relatively small change in model accuracy when
adding the dataset D (which effectively corresponds to another iteration of a rudimentary active-learning
protocol) is further indication that, within the level of accuracy we seek, the alchemical model can effectively
combine information on different structure types, capturing the relevant information on surface effects from
the dataset A and the defect properties of high-temperature molecular dynamics from the bulk dataset B to
finally transfer this combined knowledge to the molecular dynamics of surface slabs.

3.2. Transferability of the alchemical weights matrix
The alchemical coupling matrix u is used to contract the power spectrum features from the original chemical
space of 25 elements to a reduced-size alchemical space. In [53] it was shown that the weights are relatively
insensitive to the details of the fit, and that can be interpreted in terms of the layout of the elements in the
periodic table. Here we can investigate further the generality of the contraction, by assessing how much it
depends on the compositions of the training dataset. To study this, we start from the pre-trained
HEA25-4-NN model and consider the dataset that combines the full O, A, B, C subsets, and perform two
training exercises—one with fixed alchemical weights and one in which the coupling coefficients are
optimizable parameters. The inset in figure 1 shows that the entries of the coupling matrix remain almost
unchanged upon optimization, which indicates that the values obtained from bulk structures are also
compatible with the similarity in behavior of elements at surfaces, reinforcing the notion that u contains
valuable, interpretable and transferable information about the chemical relations of the elements across the
periodic table. As one may expect, the small difference in alchemical weights results in negligible changes of
the model predictions compared to the case of fixed alchemical weights. This is evident from the minute
changes in test-set errors in figure 1, where the fixed-weights model is the last point in the ‘OAB+C’ learning
curve, and ‘OABC, opt. weights’ indicates the model trained on the same dataset with optimizable alchemical
coefficients. In fact, even the training curves of the two models are almost indistinguishable, as discussed in
the supplementary materials.

3.3. Final model and dataset
Datasets O-C consistently sample the configuration space for simulations involving both bulk and
surface-slab HEA configurations. Subset D serves mainly as a demonstration of convergence with respect to
structural diversity. However, given that the application focus of this work is the study of surface propensity
of different transition metals, we decided to train a final model that also includes these validation structures,
allowing the weights of the alchemical coupling matrix to be optimized during the training to obtain the best
possible accuracy with the current architecture. We refer to this combined dataset as the HEA25S dataset,
and to this final model as the HEA25S-4-NN potential. Its accuracy on the hold-out test sets, computed
separately for each subset, is presented as the last points of figure 1. Inclusion of this last batch of structures
leads to a slight improvement of the performance on all test subsets. The error of the model in predicting the
energies of the HEA bulk structures, about 10meV/atom, is effectively unchanged compared to our previous
study [53]. Errors on dataset D are comparable, around 9meV/atom, and those for subsets A-C are only
slightly worse: from 13 to 16meV/atom. We make the final dataset and the model available as part of the data
record that accompanies this publication [69].

3.4. Model validation on structure relaxation and surface processes
In order to verify more quantitatively that the HEA25S-4-NN model can describe chemical and structural
realaxation and surface effects, we generate a small set of more targeted test structures. We construct (a) five
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Figure 2. Parity plots for relaxation (top) and cleaving (bottom) energies computed for 5 different realizations of a 25-element
equimolar Cantor-style alloy structure. The symbols identify 5 different random realizations, and colors represent different
simulation setups. MAE values in the legend provide an overall estimate of the error for each case. Relaxation energies are
computed as the difference between the energy of an on-lattice, Monte-Carlo (MC) relaxed configuration, or fully-relaxed
(REMD/MC) configurations of bulk and (111) surface structures and that of a fully random, on-lattice configuration. Cleaving
energies are computed as the difference between the energies of a bulk and a surface slab configuration, considering separately the
cases of a fully-random, MC-relaxed or fully-relaxed configuration.

2× 5× 10 fcc bulk structures of 100 atoms with 25-elements equimolar composition. Atoms are fixed to the
ideal lattice positions, and the molar volume adjusted following the same logic used for the main dataset.
Starting from these five structures, we use the HEA25S-4-NN model to generate: (b) bulk structures with the
atomic ordering relaxed by Monte Carlo atom swaps at T= 300K, keeping a rigid lattice; (c) fully-relaxed
bulk structures using combined REMD/MC sampling, followed by geometry optimization starting from
uncorrelated low-temperature snapshots; (d) (111) slabs of the same size obtained by rigidly cleaving the
random structures; (e) MC-relaxed (111) slabs ; (f) fully-relaxed (111) slabs. For each configuration, we
recompute the DFT energy, and the overall energy MAE for this set is 25.7 meV/atom—with the largest
errors being associated with on-lattice MC structures (see SI).

We then compute quantities that have a more direct bearing on relevant physical processes: figure 2(top)
shows a parity plot for ‘relaxation energies’ computed as Eb - Ea, Ec - Ea, Ee - Ed, Ef - Ed, that quantify the
enthalpic gain from short-range order, surface segregation and/or geometry relaxation. The subscript in
these expressions corresponds to a specific subset from the list above. The ML model predicts these terms
with an accuracy of 50.3, 12.5, 31.7, and 18.5 meV/atom respectively, which is less than 5% of the typical
relaxation energy on average. We note that the typical error on MC relaxation energies prediction is
significantly higher than in the case of REMD/MC relaxation. The main reason for such a difference is lack of
the MC-relaxed structures in the training set. Therefore, the evaluation of the model on MC relaxation may
be considered as another test for the model’s generalization capabilities. Figure 2(bottom) shows a parity plot
for the ‘cleaving energies’ Ed - Ea, Ee - Eb, Ef - Ec. While these should not be interpreted to correspond exactly
to a surface energy (averaging over multiple configurations, as well as incorporating entropic effects, would
be necessary) they gauge the accuracy of the model for enthalpic terms that are directly associated with the
creation of a surface. The accuracy (2.3, 14.4, 4.4 meVÅ−2) is a fraction of less than 10% the magnitude of
the cleaving energy, except for the case of the on-lattice MC relaxed structures, that represent an
extrapolative regime. In the SI we also compare relaxation and cleaving energies computed with and without
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Figure 3. Typical trajectories of the potential energy for a 36-replica REMD/MC run of the 864-atom surface slab. Each colored
line corresponds to one of the replicas, and the target temperature changes as Monte Carlo swaps occur. The full and dashed black
lines are obtained by concatenating the segments that correspond to the lowest and highest simulation temperature. Note the
logarithmic x axis.

spin polarization. The errors are comparable to or smaller than the errors associated with the ML model, and
small on the scale of the typical relaxation or cleaving energies, indicating that neglecting magnetic effects is
an acceptable—if harsh—approximation when studying finite-temperature and surface effects on the
structure and stability of HEAs.

4. Surface segregation propensity in a Cantor-style alloy

In heterogeneous catalysis, the composition and structure of the surface are among the most important
factors determining the activity of a material. In this respect, HEAs are interesting because they often exhibit
differential segregation of their components at the surface [70–74], which can be used to control their
properties. For example, this effect can be exploited to use small quantities of a rare-earth element, and
manipulate the alloy chemistry so that it accumulates at the surface, where it can enhance the catalytical
activity [5, 6, 31, 75, 76]. Even though the actual segregation propensity will depend on the specific
composition, as well as on processing conditions that might affect thermodynamics and kinetics, it is useful
to establish an ‘absolute’ scale for the surface affinity of each of the 25 transition metals we consider in this
study. To do so, we perform simulations similar to those performed in [53] for a bulk system. We consider a
surface slab of a Cantor-style alloy, containing all 25 elements in equimolar proportions, randomly assigned
to the atomic sites of an 864-atom slab with an initial fcc lattice, oriented to expose a (100) surface. We then
perform four independent REMD/MC runs, combining replica-exchange molecular dynamics (we use 36
replicas with temperatures distributed from 300K to 150K on a logarithmic scale) with Monte Carlo swaps
between atom types. Molecular-dynamics details are the same as in [53] with a time step of 2 fs and an
efficient Langevin thermostat. The cell is left free to fluctuate along the in-plane directions, with a small
applied pressure of 1 bar. The system shows glassy behavior, with rapid disruption of the fcc lattice, and
logarithmic relaxation of the potential energy (figure 3). This loss of crystallinity is not due to the presence of
a surface, but a consequence of the presence of a wide variety of species with very different atomic radii, and
was also observed in bulk simulations [53]. The simulation is not fully equilibrated even after 500 ps and
several hundred thousands attempted atom swaps. We observe however that the four trajectories behave in a
similar way, and that structure and composition profiles remain roughly constant after a few hundred ps.
Thus, we average over the last 100 ps of each of the four independent runs to provide a qualitative estimate of
the surface affinity.

We compute and analyze the concentration profiles of different elements along the normal direction to
the surface plane. Figure 4 showcases a few representative cases, together with a snapshot of a longitudinal
cut of the simulation slab. Concentration profiles for all elements and different temperatures are given in the
SI. There are clear-cut differences in the surface segregation propensities, with elements such as Ag
accumulating at the surface, others such as Mn being strongly depleted, and some such as Ni displaying an
intermediate behavior. The concentration profiles show pronounced differences in the peak shapes and
positions, which suggests a tendency for some elements to accumulate in the sub-surface layer and to form
ordered surface alloys. However, the disordered structure, the slow relaxation and the limited accuracy of the
potential make it difficult to provide definitive statements on the precise relaxed geometry of the structure
that is formed at the surface. Instead, we compute an integrated, macroscopic indicator of segregation
propensity in terms of the Gibbs surface excess Γa, that is defined for each element a as

Γa =
Na −NB

a ·N/NB

S
, (6)
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Figure 4. Concentration profiles of a few representative elements (Ag, Ni, Mn) averaged on the last 100 ps of four REMD/MC
simulations of the Cantor-style alloy at 300K with different surface segregation patterns (top) and a single snapshot of the system
taken from the end of the relaxation trajectory (bottom). The z-coordinate represents the distance from the center of the surface
slab, while the light blue area on the figure and a dashed line represent the bulk region and the Gibbs surface plane respectively.
Ag, Ni, Mn atoms are color-coded consistently with the concentration profiles in the upper panel, while all other atoms are
shaded in gray.

where Na and NB
a correspond to the total number of atoms in the slab, and the number of atoms inside the

bulk region of the surface slab. N and NB represent the total numbers of sites in the simulation and inside the
bulk region, respectively, and S is the surface area. We define the bulk region of a surface slab as a 10 Å-thick
region around the center of the slab (shown as a shaded region in figure 4). Values of Γa > 0 indicate the
tendency of a given element to accumulate at the surface. If Γa ≃ 0 , then the element does not have a
pronounced affinity, and will have roughly the same concentration in the bulk and at the surface. Finally, if
Γa < 0, the element will tend to stay in the bulk region, and be depleted at the surface. It is important to
stress that the definition (6) is insensitive to the thickness of the bulk region, which is only used to estimate
the concentration of each element ‘far’ from the surface. It avoids specifying explicitly which layers are
considered as part of the surface, and it provides an overall measure of the surface affinity that can be readily
connected to macroscopic quantities, such as the surface energy [77].

Figure 5(a) shows the computed surface excesses for the 25 elements at three representative temperatures.
Differences are very pronounced, with elements at the edges of the d block showing surface affinity, and most
of the elements in the central part of the d block being depleted at the surface. The temperature dependency
of the surface excess is usually weak, except for a few cases such as V or Nb, where it changes by more than
50% between 300K and 1500K. There is a remarkable correlation between the surface excess of the different
elements and their position on the 2D map constructed in [53] based on their bulk behavior (figure 5(b)).
This is perhaps unsurprising, given that the mutual affinity in the bulk and the affinity for the surface are
both loosely related to the binding energy between atoms. It is also worth noting that the periodic trends
observed for the surface excess, as well as the ordering derived from bulk short-range-order calculations,
reflect the trends in atomic radii across the transition metals, with larger radii at the beginning and the end of
each period. This is consistent with the fact that transition metals surfaces are characterized by an
accumulation of tensile stress [78, 79], that is alleviated by the segregation of elements with a large radius.

Overall, this observation reinforces the notion that the data-driven optimization of alchemical weights
can (re)discover physical trends across the periodic table [54], and that similarity in behavior in REMD/MC
simulations driven by the HEA25S-4-NN model can be used as a guide to performing element substitutions
when designing novel alloy compositions.
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Figure 5. Values of the surface excess Γa at different temperatures for each of 25 elements from the Cantor-style alloy REMD/MC
simulation (top). The element similarity map from our previous work [53], based on simulation of bulk Cantor-style alloy of the
same composition at 1253K and color-coded according to the surface excess values at the same temperature from this work
(bottom).

5. Surface segregation in selected alloys

The surface segregation study in the previous section is intended to provide insight into the overall surface
propensity of transition metals commonly found in HEAs. However, it cannot substitute an explicit study of
specific compositions, nor does it provide validation for our computational framework. Ideally, one could
assess the reliability of our framework by directly comparing the equilibrium surface composition for specific
HEA compositions with the surface distribution of elements observed in experiments. Nevertheless, there are
some key concepts that need to be considered when evaluating our results. First, the model is trained on DFT
data and thus the accuracy is limited by the accuracy of the DFT reference—which notably, for our model,
neglects effects due to magnetism. Second, our sampling protocol allows to achieve highly ergodic sampling,
whereas kinetic trapping plays a key role in (meta)stabilizing HEAs. Third, we consider the HEA surface slabs
under vacuum conditions, at variance with experimental setups where a significant amount of oxygen is
often present. In fact, the presence of a chemically-active environment can dramatically affect the surface
concentration of different species, due to the formation of oxides on the surface (see reference [70]) or the
leaching of some of the elements in solution. In this section, we first validate the ML potential against DFT
calculations for the prototypical Cantor alloy CoCrFeMnNi and comment on the suitability of ‘static’
approaches to evaluate segregation patterns, which are commonly used in combination with first-principles
calculations [70]. Then, we perform simulations for an IrFeCoNiCu alloy and comment on the comparison
with experimental data on the surface composition from [80].

5.1. CoCrFeMnNi alloy
We begin by ensuring that the accuracy of the HEA25S-4-NN model is sufficient to reproduce the energetics
of surface segregation relative to reference DFT calculations. To do so, we apply a simplified version of the
protocol used in [70]: we generate multiple slabs using the ideal lattice, an equimolar composition and
random element distribution, and compute the difference in enthalpy when all the surface sites are filled with
a specific atom type X= Cr,Mn,Fe,Co,Ni, keeping the overall composition fixed:Hsegr =HX,surf −Hrand. This
quantity is averaged over 16 different random realizations.

As shown in figure 6, there is excellent agreement between the values of segregation enthalpy obtained
using the ML potential and those obtained with explicit DFT calculations. Results also agree qualitatively
with [70], with Ni being the element with the highest surface propensity (large negative Hsegr) and Cr that
with the least propensity (large positive Hsegr). Mn and Fe have a small positive Hsegr, while Co has a negative
segregation enthalpy (i.e. slightly favors surface sites), at variance with [70], in which it was found to have a
(very small) positive Gsegr. The quantitative discrepancy can be attributed to the difference in DFT details
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Figure 6. Segregation enthalpies per surface atom of CoCrFeMnNi elements at 300 K, calculated with the HEA25S-4-NN
potential (blue) and with the reference DFT setup (orange). Non-magnetic PAWDFT data on Gibbs segregation energy from [70]
is provided for comparison (green). The error bars for HEA25S-4-NN and DFT results represent the standard deviation of the
values obtained from 16 independent calculations. The reference DFT data uncertainty of 40 meV is taken from [70].

and to the fact that [70] includes entropic terms and computes the segregation energy at constant bulk
composition, which requires estimating the chemical potential of the elements. We chose to ignore these
terms to obtain a more transparent validation of the ML model. We discuss further the details of the
calculation of Hsegr in the supplementary information.

Having access to a fully-flexible and inexpensive ML model, we can then verify whether estimates based
on static calculations, and on the overly simplified picture of the formation of a pure surface monolayer on
top of a random alloy, provide reliable indications of actual surface propensity. To do this, we prepare a
surface slab with a fcc lattice, (111) orientation, and a larger 7× 7× 11 supercell containing 539 atoms. We
perform a REMD/MC run of this surface slab for 200 ps in the NPT ensemble using a 2 fs timestep, following
the same workflow we applied to the 25-elements Cantor alloy. As shown in the SI, the resulting REMD/MC
trajectories reach equilibrium very quickly, which allows performing a single run, analyzing the surface
composition by averaging over the final 100 ps of the trajectory. Even the replicas at the highest temperature
retain an ordered fcc structure, consistent with the fact that the simulations are performed below the melting
point. To complement this analysis, we show in the SI the values of Hsegr computed with spin-polarized DFT,
and compare them with the mean enthalpy of structures that are relaxed with MC sampling on a rigid lattice
at 300K using the (non-polarized) HEA25S-4-NN model, and with combined REMD/MC sampling, also at
300 K. Neglecting finite-temperature sampling of short-range order and structural relaxation is an
approximation that is at least as severe as neglecting effects due to magnetism. Compositional and structural
relaxation stabilize greatly (up to several hundred meV/atom) the slab, in comparison to the static
calculations in [70]. This is also true when considering spin-polarized DFT calculations, even though the
relaxation procedure neglects magnetic effects. In other terms, performing a full relaxation using a
non-magnetic ML model leads to a better prediction of surface segregation incorporating magnetism a
posteriori than using spin-polarized DFT calculations limited to highly-idealized static structures. ML
potentials that are capable of describing atomic spins [63, 64, 66], in combination with thorough
thermodynamic sampling, would obviously provide an even better approximation—even though extending
spin-aware models to a similarly broad chemical space raises conceptual issues on the most appropriate
physical description of magnetism, and even though finite-temperature effects are likely to reduce the
importance of spin correlations for HEAs, that often have low Curie temperatures [81].

Analyzing more carefully the surface structure for ML-driven REMD/MC calculations, we observe that
the concentration profiles of the elements at 300K (see figure 7(a)) show a very strong nickel enrichment in
the first surface layer and depletion for all other elements. The second layer contains a significant excess of
chromium, while iron, manganese and cobalt are more abundant from the third layer and deeper into the
bulk. These observation are reflected in the Gibbs surface excess, computed according to equation (6) (see
figure 7(b)). There is a large surface excess for Ni and strong depletion of Co, which becomes less
pronounced at the highest temperature. Mn and Fe have weak depletion, and Cr has almost zero overall
surface activity—even though, as evidenced by figure 7(b), this is the net result of first-layer depletion and
second-layer accumulation. When comparing these observations with the statically-determined Hsegr, one
sees that the strong surface affinity of Ni is consistent between the two approaches and between
spin-polarized and non-polarized calculations, as is the fact that Mn and Fe have better affinity for the bulk.
The large positive Hsegr of Cr does not translate in strong depletion, which we attribute both to the fact that
Cr appears to find a favorable environment in the subsurface layer, and to the fact that Cr exhibits strong
local ordering in the bulk (as observed in [53]), which makes a completely random alloy a poor reference
state for the calculation of Hsegr. Similarly, our static DFT calculations show negative Hsegr for Co (indicating
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Figure 7. (a) Concentration profiles of the elements from the REMD/MC simulation of the CoCrFeMnNi alloy at 300K (top) and
a single snapshot of the system taken from the end of the relaxation trajectory (bottom). The z-coordinate represents the distance
from the center of the surface slab, while the light blue area on the figure and a dashed line represent the bulk region and the
Gibbs surface plane respectively. Atoms in the snapshot and concentration profiles follow the same color scheme. (b) Gibbs
surface excess Γa at different temperatures for the elements in the CoCrFeMnNi alloy from the REMD/MC simulations.

surface propensity) but finite-temperature sampling shows a negative surface excess ΓCo (indicating surface
depletion). These results demonstrate the necessity of performing simulations that allow sampling local bulk
relaxation and the formation of non-trivial surface orderings, as well as how drastically the behavior of the
elements may differ from static, highly-idealized reference calculation.

5.2. IrFeCoNiCu alloy
Even though obtaining a realistic description of local ordering is necessary to extract reliable estimates of
thermodynamical properties, experimental conditions often require a description of kinetic effects and of the
presence of a reactive environment at the surface. To investigate these effects, we consider the case of an
equimolar IrFeCoNiCu HEA, for which a detailed experimental characterization of the surface composition
has been recently described [80]. We first compute the Gibbs surface excess following the same protocol we
used for the CoCrFeMnNi alloy. In this case, simulations show high segregation propensity of Cu and Ni
(figure 8). Cu atoms are predominantly found in the first surface layer, while Ni atoms are mostly found in
the second layer (figure 8). The remaining elements have negative surface excess and segregate to the bulk,
with iridium having the smallest absolute value of Γ. We also observe that increasing temperature does not
change the relative order of segregation propensity of the elements, but is associated with a more even
distribution of the elements across the cell at high temperatures. Similar to the case of CoCrFeMnNi,
spin-polarized DFT calculations confirm the qualitative findings, with both on-lattice and fully-relaxed
structure being much more stable than the random reference even when re-computed including magnetic
effects. Even though the quantitative value of the segregation enthalpy is considerably smaller, there is no
indication of a major discrepancy that might alter fundamentally the trends we observe with the
non-magnetic ML potential.
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Figure 8. (a) Concentration profiles of the elements from the REMD/MC simulation of the IrFeCoNiCu alloy at 300K (top) and a
single snapshot of the system taken from the end of the relaxation trajectory (bottom). The z-coordinate represents the distance
from the center of the surface slab, while the light blue area on the figure and a dashed line represent the bulk region and the
Gibbs surface plane respectively. Atoms in the snapshot and concentration profiles follow the same color scheme. (b) Gibbs
surface excess Γa at different temperatures for the elements in the IrFeCoNiCu alloy from the REMD/MC simulations.
Experimental data on the concentration of dissolved metals C after electrochemical treatment of the IrFeCoNiCu nanoparticles in
a 0.1M HClO4 solution under the applied voltage from [80] is provided in the inset for comparison.

The comparison of these results with the experimental data in [80], shown in the inset, requires a brief
description of the experimental setup. First, the IrFeCoNiCu nanoparticles synthesized in that work were
treated with a 0.1M solution of perchloric acid (HClO4) at room temperature under an applied voltage,
which essentially washed away the outer shell of the nanoparticle. Scanning transmission electron
microscopy with energy dispersive spectroscopy imaging reveals an iridium-rich region at the surface. As
evidenced by the high concentration of all elements but iridium found in the solution, this process is driven
by the reactivity of the metals in the aggressive chemical environment, rather than by an intrinsic tendency of
Ir to accumulate at the surface.

Our simulations suggest that in the absence of an electrochemical treatment, thermodynamic drive would
favor the formation of a Cu/Ni thin layer at the surface. This suggests a broader investigation of the stability
of the IrFeCoNiCu alloy, which we tackled by performing a REMD/MC simulation of a 5× 5× 5 bulk fcc
crystal supercell (500 atoms in total), over the same temperature range (300K–1500K) used for the slab, and
at a constant pressure of 1 bar. Our results (figure 9) suggest that the alloy is thermodynamically unstable,
leading to precipitation of Cu and Ni even in the bulk phase. Therefore, we expect the homogeneous
IrFeCoNiCu nanoparticles from [80] to be only metastable. The sluggish diffusion that kinetically stabilizes
the quasi-random alloy may also affect the surface stability, explaining why the surface remains relatively
homogeneous in the absence of a chemical treatment. However, the instability of the bulk alloy and
thermodynamic drive of Cu and Ni to segregate at the surface may become a serious problem in catalysis
applications, by reducing the surface concentration of Ir over time, especially if operating temperatures are
reasonably high and if the environment does not ensure continued leaching of the reactive metals.

It would be desirable to have an alloy that is both thermodynamically stable in bulk form and that shows
an intrinsic drive towards surface accumulation of Ir. While chemical treatment might still be useful to
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Figure 9. Front (a) and side (b) views of the IrFeCoNiCu bulk system, relaxed at 300K in the REMD/MC simulation. Brown and
green spheres represent Cu and Ni atoms, while the remaining elements are transparent. Precipitation of Cu and Ni is observed
after relaxation, which indicates instability of the alloy.

accelerate the formation of the Ir layer, such alloy would likely be easier to manufacture and more stable in
practical applications. Based on the observation that the Ir-Fe-Co phase remains stable in our REMD/MC
simulation and the relatively higher surface propensity of Ir over Fe and Co, we investigated the ternary
IrFeCo system, which was recently patented as a promising candidate for applications in catalysis [82]. We
further verify the bulk stability of the IrFeCo by performing exactly the same REMD/MC simulation as for
the five-element composition. In this case, we observe that the relaxed structure remains uniformly mixed
even after convergence of the trajectories (see the SI). Given that the highest temperature in the REMD/MC
run is 1500K, we expect the alloy to preserve its phase stability also at high temperature. Furthermore, we also
study surface segregation with a setup analogous to that used for the other systems: we create a 7× 7× 11 fcc
surface slab and perform a REMD/MC simulation in this system over the same range of temperatures from
300K to 1500K and at constant pressure of 1 bar. We then calculate the surface excess using equation (6)
after averaging the composition of the bulk region over last 100 ps of the trajectory. The results are presented
in figure 10. Ir tends to accumulate at the first surface layer, while Co is abundant in both the first and second
layer. As a result of the balance between the propensity of the two elements for the surface and sub-surface
layer, the overall value of ΓCo shows a very pronounced temperature dependence. At 300K Co is the most
surface-active, followed closely by Ir, while at higher temperature Ir remains abundant in the first layer, while
the concentration of Co becomes more uniform, reducing its overall excess to almost zero. The bulk phase
stability and the positive ΓIr at all temperatures make the IrFeCo system potentially interesting for
applications, allowing one to create nanoparticle with a thermodynamically-stable Ir surface layer.

14



J. Phys. Mater. 7 (2024) 025007 A Mazitov et al

Figure 10. (a) Concentration profiles of the elements from the REMD/MC simulation of the IrFeCo alloy at 300K (top) and a
single snapshot of the system taken from the end of the relaxation trajectory (bottom). The z-coordinate represents the distance
from the center of the surface slab, while the light blue area in the figure and a dashed line represent the bulk region and the Gibbs
surface place respectively. Atoms in the snapshot and concentration profiles follow the same color scheme. (b) Gibbs surface
excess Γa at different temperatures for the elements in IrFeCo alloy from the REMD/MC simulations.

6. Conclusions

We extend a recently-developed ML potential trained on the DFT energetics of arbitrarily complicated alloys
of 25 d-block metals to include surfaces and defective structures, allowing us to study equilibrium surface
segregation of the various components. By investigating in detail the effect of incorporating new structures
and re-optimizing a pre-trained model, we infer some general guidelines for the broadly-relevant goal of
training models for chemically and structurally diverse problems. First, it appears that the ‘alchemical
embeddings’ we use to reduce the complexity of learning across a large sector of the periodic table are
transferable between different types of structural environments. The weights that describe how individual
elements are projected on a smaller-dimensional set of pseudo-elements change only minimally if we
re-optimize them on the extended data set, and the impact on the model accuracy is negligible. We also
observe that very few structures need to be added to improve the accuracy for a new class of configurations:
whereas the bulk-only model reached saturation with approximately 10 000 structures, a few 100 s of surface
and molten configurations are sufficient to improve the validation error by almost an order of magnitude.
On the other hand, the error saturates at a semi-quantitative level of accuracy, with errors between
10–20meV/atom that are too large to resolve the fine details of the energetics of intermetallic phases. More
flexible models are necessary to reach quantitative levels of accuracy [68], although this may come at the
price of reduced extrapolative power, and an increase in the data requirements.

The new model, which we name HEA25S-4-NN, is then used to thoroughly sample configurations and
element distributions for a large slab of a 25-elements Cantor-style alloy. Based on the quasi-stationary state
of these simulations (that never fully achieve equilibrium due to the glassy nature of the system) we compute
the Gibbs surface excess of all 25 elements. This quantity, that can be interpreted as a measure of their surface
propensity, shows clear periodic trends, that are consistent with the known surface stress effects that would
favor the presence at the surface of atoms with a large metallic radius, and correlates very strongly with a
measure of chemical similarity that was derived in [53] based exclusively on bulk short range ordering
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information. Thus, one can use the bulk-derived similarities as a guide for alloy design also in terms of the
surface activity of the various components.

We then present two examples of the application of the HEA25S-4-NN model to the study of surface
segregation of equimolar quinary alloys. We perform a direct validation of the accuracy of the model against
a DFT assessment of the surface segregation enthalpy of different species in CoCrFeMnNi, finding errors that
are well below 10% of Hsegr. Furthermore, we demonstrate that the kind of static, idealized calculations that
are usually employed to investigate surface propensity with explicit electronic-structure calculations can lead
to qualitative errors, such as estimating a strong tendency towards surface depletion of Cr, whereas explicit
REMD/MC sampling shows a tendency for Cr to accumulate in the sub-surface layer. The errors associated
with treating the HEAs as random and/or rigid lattices are comparable (and usually larger) than those
associated with the neglect of magnetism, which is one of the most prominent physical limitations of our ML
model. At the same time, one has to acknowledge that simulations that aim to compute the equilibrium
thermodynamics of a solid-vacuum interface cannot directly describe more complicated experimental or in
operando conditions. Our simulations of a IrFeCoNiCu suggest that the bulk alloy is only metastable, and
tends to phase separate into a NiCu and an IrFeCo phases. The instability is also reflected in the strong
tendency of Cu and Ni to form a surface bilayer. The accumulation of Ir at the surface of seemingly stable
quinary alloy nanoparticles that has been recently observed in experiments [80] can only be understood in
terms of the slow diffusion kinetics in the bulk phase, and the leakage of chemically active elements in the
aggressive environment used to treat the particles. Based on our simulations, we propose that the ternary
IrFeCo alloy may be a more stable composition, that also exhibits a thermodynamic drive to form a stable Ir
surface layer at all temperatures.

This study demonstrates the ease by which ML potentials for chemically-diverse datasets can be extended
to include new types of structures, and used to capture the qualitative behavior of complex materials in
finite-temperature conditions. Even though ad hoc models trained for more restricted sets of compositions
and thermodynamic conditions, and the incorporation of magnetic effects at least at the level of
spin-polarized DFT, are still needed to achieve errors of a few meV/atom, the semi-quantitative accuracy we
achieve is sufficient to gather insights on subtle phenomena such as surface segregation, to study in a detailed
way the structure and energetics of specific alloy compositions, and to propose new alloy compositions for
applications to heterogeneous catalysis.
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