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A B S T R A C T

The use of natural stones as building material can help reducing the carbon footprint of the construction
industry. However, their non-uniform shapes makes the construction of stone masonry structures challenging.
Therefore, the development of efficient algorithms for the stacking of irregular stones obeying structural and
architectonic requirements is essential. In this paper, we propose an image-based method for automating the
stacking of non-uniform stones in the construction of 2D load-resistant stone masonry walls. Stone wedging, a
traditional technique employed by skilled masons, is implemented to reinforce the stability of stone placements.
We use image processing for accelerating the stone selection and placement, and determine the wall’s resistance
using a variational rigid-block modeling approach. It is demonstrated that the developed method is efficient
and robust in challenging conditions. The analysis of the computational performance of the presented method
shows that it is suitable for automated construction.
1. Introduction

Construction industry is responsible for 30%–40% of energy con-
sumption as well as for high levels of CO2 emission (Dabaieh et al.,
2020). The major contributions to the emission of CO2 are the ex-
traction, production, and transportation of raw materials (Koroneos &
Dompros, 2007). On the other hand, stones have an extremely low
embodied energy (Morel et al., 2001) and the potential to be recycled
without reprocessing. However, constructing load-bearing structural
elements with natural stones is challenging due to their irregular
geometry and the massive shortage of skilled masons (Brehm, 2019).

When the skill level of the craftsman is low, the structural perfor-
mance of the built structure is drastically reduced (Bothara & Brzev,
2012). To leverage the labor work and to improve its efficiency, the
construction of masonry structures can be conducted by robots, where
the construction process is calculated by fast computer algorithms used
to feed the robots with the most appropriate sequence of actions neces-
sary to achieve a given structural goal. A family of such algorithms are
devoted to performing stacking of solid object such as regular-shaped
objects (Kollsker & Malaguti, 2021), irregular-shaped objects (Paxton
et al., 2022), and natural materials (Furrer et al., 2017). In the con-
text of stone masonry, stone stacking algorithms are developed for
arranging the placement of stones during the construction of masonry
structures ensuring its structural and architectonic goals. In contrast
to the broader category of packing problems (Grandcolas & Pain-Barre,
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2021; Leao et al., 2020; Umetani & Murakami, 2022), the stone stacking
problem specifically concentrates on achieving structural stability in
the assembly and adhering to the principles of traditional masonry
craftsmanship.

Different stacking algorithms have been proposed to generate dry-
stack masonry walls. Furrer et al. (2017) considered the structural
stability in the construction of a stone tower using the relative position
of the center of mass of the stones and the support polygon. Recent
developments also include the use of dynamic simulations to remove
unstable stone positions (Johns et al., 2020; Liu et al., 2021; Wer-
melinger et al., 2018). However, these works only considered gravity
load, and they did not account for lateral loading, which is non-
negligible for real-world structures. On the other hand, Liu et al. (2018)
and Thangavelu et al. (2018) considered the lateral resistance in their
stacking strategies by simulating the shake table test, where the built
walls are shaken with an increasing amplitude until the point where
the stone displacements reached a given limit. Their method provides a
quantitative mean to evaluate the structural performance of built walls;
however, it is computationally expensive.

To optimize the load bearing capacity of masonry walls by ma-
nipulating the stone layout, a simulation method that is capable to
differentiate the mechanical response of masonry walls as a function of
the stone layout is needed. Such micro-scale modeling can be achieved
by finite element method, distinct element method, and rigid block
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models (de Felice, 2011; Portioli et al., 2021; Wang et al., 2023; Zhang
et al., 2017). As the efficiency of the stacking algorithm is one of our
main concerns, we adopt rigid block models to conduct a kinematic
analysis due to its computational efficiency (Portioli et al., 2021).

This paper proposes a comprehensive stacking method for the con-
struction of dry stone masonry walls accounting for the rules-of-art
practised by masons and structural performance evaluated by numer-
ical simulations. With regard to the state-of-the-art, the developed
method introduces three novel features: We use image processing tech-
niques to accelerate the optimization processing and use a kinematic
analysis to assess the structural performance of the built wall in terms of
its lateral resistance. In addition, stone wedging, a technique employed
by skilled masons, is formulated in the algorithm to stabilize stone
poses. This approach can facilitate the development of automated
construction tools due to its reduced computational cost, robustness,
and ability to generate walls consistent with the engineering practice.

In the following, we first introduce in Section 2 the characteristics of
dry joint stone masonry walls as well as the state-of-the-art in stacking
algorithms. The developed stone stacking algorithm is then presented
in Section 3. It includes, the selection of candidate stones, the optimal
placement strategy, the stability assessment, and the selection of the
best stone for placement. Section 4 introduces the procedure employed
in the structural analysis of stone masonry walls based on the limit-state
behavior. Benchmarks are presented in Section 5, including examples
based on images of real and artificially generated stones. The built
walls are compared with reference walls using four evaluation metrics.
The sensitivity of the developed method with respect to changes in
the sampling method and the image resolution are also discussed in
Section 6. The final remarks are presented in Section 7.

2. Dry stone walls

Dry stone masonry walls are unmortared structures typically uti-
lized as retaining walls, boundary walls, and other simple building
forms (Mundell et al., 2010). Depending on the local availability of
stones and the regional constructive practice, dry stone walls show
different styles (Mundell et al., 2010). Despite the regional variation,
this type of structural system are commonly characterized by a tight
packing, straight course, interlocking, and wedging (Mundell et al.,
2010), as seen in Fig. 1. A tight packing of stones in a masonry structure
is achieved by placing stones as close as possible and filling voids
with small blocks (Vivian, 2014). Professional masons, usually have
the freedom to shape the available stones according to the need to
achieve a dense stacking. To the extent possible, horizontal layers,
referred to as ‘‘course’’, are composed of stones with uniform height,
presenting a straight level appearance (Mundell et al., 2010). When
there is a wide variation in stone heights, small stones are packed
together to match the height of large stones such that a straight course
is obtained for preserving a flat composition of layers (McRaven, 1999).
Moreover, each block should ideally be in contact with several other
stones (McRaven, 1999; Mundell et al., 2010; Vivian, 2014). This
is achieved through offsetting vertical joints to form ‘‘interlocking’’.
Furthermore, small shards of stones can be inserted to fill openings in
the face (Vivian, 2014) or to prevent rocking (Mundell et al., 2010),
this process is also known as wedging.

These construction principles were developed by professional ma-
sons over generations. However, considering the current shortage of
skilled masons in the job market, robots (Brehm, 2019) and AR sup-
ported construction (Settimi et al., 2023) emerge as alternative for
increasing the productive of the construction industry in such chal-
lenging scenario. To ensure the quality of the structure constructed by
such machines, the mason’s intuition must be translated into computer-
readable rules. Table 1 summarizes the aspects that have been con-
sidered by the state-of-the-art stone stacking algorithms found in the
literature. In addition to these geometrical features, factors such as
stable footing, inward sloping, stability under gravity, and stability
2

Fig. 1. Geometric features observed from a dry stone wall built by skilled
masons (EPFL, 2023).

under lateral loading are also considered in the computational problem
to ensure the structural stability.

The algorithms presented in Table 1 can be classified into three
categories: (i) model-based method solved by linear scalarization, (ii)
model-based method solved by hierarchical filtering, and (iii) model-
free method. The model-based method translates the mason’s rules-
of-thumb into mathematical formulations and optimization problems.
As there are several construction rules, the problem becomes a multi-
objective optimization problem and is commonly solved using either
linear scalarization (LS) or hierarchical filtering (HF). The former for-
mulates a single-objective optimization problem by summing all objec-
tives linearly (Johns et al., 2020; Lambert & Kennedy, 2012). The latter
removes undesirable solutions by forming hierarchical filters from the
features (Liu et al., 2021; Thangavelu et al., 2018). The model-free
method is based on machine learning techniques, typically referring to
reinforcement learning (RL). The method formulates a reward function
to train a model (often a neural network) that outputs the placement
and order of stones (Liu et al., 2018; Menezes et al., 2021). The reward
function presents the desired property of the wall, which is also inspired
from masons’ practice.

It is important to highlight that several of these algorithms are
developed for 2D problems. For their application in real-world con-
struction scenarios, stones need to maintain a uniform shape along
the third dimension, and their third dimension should be comparable.
An example of this can be seen with synthetic stones created in the
work of Liu et al. (2018), which prevents the out-of-plane rocking of
stones. Additionally, the out-of-plane wall failure is not considered in
the stability assessments. Our current work also focuses on a simplified
2D version of the stone stacking problem, yet it preserves the crucial
aspects, such as geometric and physical constraints.

In this paper, a model-based method is developed for stacking raw
stones by combining linear scalarization and hierarchical filtering. Our
method is distinguished by its comprehensive integration of masons’
rules-of-art, notably as the pioneering approach to introduce wedging
within the stacking process. Additionally, we are one of only two
methods that account for the lateral resistance of the constructed wall.
Compared to the dynamic simulation method utilized by Thangavelu
et al. (2018), the kinematic analysis method we adopted significantly
accelerates the determination of maximal resistance, thereby enhancing
the efficiency of our approach.

3. Method

This section introduces the proposed method for stacking dry-joint
walls. The problem’s scope and primary challenge are outlined in Sec-
tion 3.1 . A high-level description of the proposed algorithm is provided
in Section 3.2. Detailed explanations of the various components of the
algorithm can be found in Sections 3.3 to 3.8.
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Table 1
Components of objective function (for linear scalarization method), filters (for hierarchical filtering method), and reward function (for reinforcement learning method) in stone
stacking algorithms. Approach developed for a 2D or 3D environment and tested with a physical experiment.

Components in formulation Model-based Model-free

LS + HF LS HF RL

Ours Johns et al. (2020) Lambert and Kennedy (2012) Liu et al. (2021) Thangavelu
et al. (2018)

Menezes et al. (2021) Liu et al. (2018)

Masons’ rules-of-art
Tight packing × × × × × ×
Straight course × × ×
Interlocking × × × ×
Wedging ×

Placement stability
Stable footing × × ×
Inward sloping × × × ×
Gravity × × × × × ×
Lateral load × × ×

Others
Physical experiment × × × ×
2D/3D 2D 3D 2D 3D 2D 3D 2D
Fig. 2. Stone stacking problem as solving sequential actions (𝑀1 , 𝑆1), (𝑀2 , 𝑆2),….
.1. Stone stacking problem

Given a stone set 𝛺0, an initial landscape 𝐿0, and a desired wall
imension (height ℎ𝑤𝑎𝑙𝑙 and width 𝑤𝑤𝑎𝑙𝑙 for a 2D problem, see Fig. 2),
he stone stacking problem search a sequence of actions {𝐴1, 𝐴2,… , 𝐴𝑖}

for constructing a dry joint masonry wall. Each action is composed by
the selection and placement pair (𝑀𝑖, 𝑆𝑖), where 𝑀𝑖 correspond to the
transformation of the stone 𝑆𝑖.

This problem has three constraints. The first constraint determines
the physical possibility of an action for avoiding, for instance, the
overlap of two stones. The second one is focused on the stability of the
partially-built wall, where a placed stone 𝑀𝑖𝑆𝑖 should not fall down and
he self weight of the newly placed stone should not cause any rocking
r lifting of the other placed stones. Finally, the layout of stones should
ollow the rules of art observed from masons practice (see Section 2).

.2. Algorithm for dry stone stacking

The main challenge for developing a method for stacking stones and
ptimizing the structural performance of the constructed wall lies on
he fact that the configuration of the wall depends on all the actions
aken in the construction process. In this work, we employ a current-
est greedy heuristics approach by considering the construction as a
arkov chain where each step depends only on the current state of the

rocess and not the past. This assumption was also used in the stacking
lgorithms developed by Liu et al. (2021) and by Thangavelu et al.
2018). In each step 𝑖, the algorithm conducts an action (𝑀𝑖, 𝑆𝑖) and
he landscape is updated from 𝐿𝑖 to 𝐿𝑖+1.

Fig. 3 present the steps taken by the proposed method for construct-
ng a stone masonry wall. It starts by setting an initial set of 𝑄 stones
𝛺0 = {𝑆1, 𝑆2, . . . , 𝑆𝑄}, the design goals in terms of wall’s width 𝑤𝑤𝑎𝑙𝑙
3

and height ℎ𝑤𝑎𝑙𝑙, and the initial landscape 𝐿0 (see Section 3.3). The
first step consists of rotating stones in the initial set to an optimal pose
defined in Section 3.6. Then the stones are clustered using the method
presented in Section 3.4. Next, a sequential processes of stone selection
and placement starts. At each step 𝑖, a subset of 𝐾 candidate stones
𝛱𝑖 = {𝑆 𝑖

𝑚 ∣ 𝑆1,… , 𝑆𝑖
𝑚,… , 𝑆𝑖

𝐾} is sampled (see Section 3.4), and for
each stone within this subset a trial placement (see Section 3.6) and
consequent stabilization (see Section 3.7) are performed. Next, the best
stone (𝑆𝑖

𝑚∗) is chosen via hierarchical filtering and scalarized multi-
objective optimization (see Section 3.8). The selected stone is then
placed on the landscape, and the remaining ones are returned to their
respective clusters, and the update of the landscape is represented by
the following set of matrices

𝐿𝑖+1 = 𝐿𝑖 +𝑀𝑚∗𝑆
𝑖
𝑚∗ (1)

𝑀𝑚∗ = 𝑅𝑠,𝑚∗𝑇𝑚∗𝑅0,𝑚∗ (2)

where 𝑀𝑚∗ is the transformation to place stone 𝑆𝑚∗, 𝑚 ∗ is the index
of the selected stone at step 𝑖; 𝑅𝑠,𝑚∗ is the rotation matrix obtained
with the stabilization algorithm (see Section 3.7), 𝑇𝑚∗ and 𝑅0,𝑚∗ are
the translation and rotation matrices determined by the placement
algorithm (see Section 3.6). If no candidate can be stably placed, the
algorithm can resample candidates from the clusters and start another
placement attempt. The number of consecutive failure is denoted as 𝜁 .
The construction continues until one of the following conditions are
met: (i) the design goal is achieved, (ii) all stones are placed, and (iii)
there are more than four consecutive failures. The mechanization of this
method is presented in Algorithm 1. A detailed discussion about each
component of the stacking algorithm developed herein are presented in
the next sections.

3.3. Image-based data set

The stone data set are defined as binary images, where pixels
corresponding to the stone domain are non-zero and pixels of the
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Fig. 3. Proposed stacking algorithm workflow for building dry joint walls.
Fig. 4. Binary images of (a) stone data set, (b) initial landscape.
background assume the value 0, as seen in Fig. 4a for an example stone
data set. The initial landscape, which is also represented by a binary
image, defines the width 𝑤𝑤𝑎𝑙𝑙 and the height ℎ𝑤𝑎𝑙𝑙 of the planning
wall by four bounds with non-zero pixel values (see Fig. 4b). As stones
shapes are represented in pixels, we also discretize the transformation
space with 1-pixel intervals, and the rotation space with 1-degree
intervals.

3.4. Sampling candidate stones

The first step in the construction process is the sampling of a
candidate stone set {𝑆1 …𝑆𝐾}. Clearly, one can use the whole data
set as the candidate set. However, a clustering approach is used herein
by identifying the stones by their similar features in order to sample a
subset of candidate stones to reduce computational cost.

In this work, the geometrical similarity between two stones is deter-
mined by two features. One is the stone eccentricity, which measures
how much it deviates from a circle. It is estimated by the eccentricity of
an ellipse with similar second-moment, which is defined as the ratio of
the focal distance (distance between focal points) over the major axis
length. The other feature is the stone size, estimated as the ratio of the
area of its bounding box to the largest bounding box area in the stone
data set. Next, the agglomerative clustering method (Ward, 1963) is
used with a distance threshold of 0.2. Fig. 5 shows an example of a
4

set with 32 stones which is separated into 7 clusters. Then candidate
stones are selected at random from each cluster.

3.5. Evaluation indices of an action (𝑀𝑚, 𝑆𝑚)

In the construction step 𝑖, an action consists of selecting and placing
a stone 𝑆𝑚 ∗ in the current landscape 𝐿𝑖 using the transformation 𝑀𝑚.
To compare different actions, we propose a set of indices. Among them
one can include the shape factor (SF) measuring the deviation of each
stone’s shape from the ideal rectangular form defined as the ratio of
the area of the stone to that of its axis aligned bounding box (Almeida
et al., 2016):

SF(𝑀𝑚, 𝑆𝑚) =
𝐴𝑆𝑚

𝐴𝐵𝑀𝑚𝑆𝑚

, (3)

where 𝐴 stands for area, 𝐵 stands for the bounding box which is aligned
with the global frame, 𝑀𝑚𝑆𝑚 refers to the transformed pose of stone
𝑆𝑚. If the stone is a completely axis-aligned rectangle, the index attains
its highest value of 1, as shown in Fig. 6.

Another index in the local filling ratio (LFR) which assumes the
stones should form a densely packed structure. It is defined as

LFR(𝑀𝑚, 𝑆𝑚) =
𝐴𝑚𝑎𝑠𝑘,𝑓 𝑖𝑙𝑙 , (4)

𝐴𝑚𝑎𝑠𝑘
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Fig. 5. Clustering result of the stones to build the PR wall (Ward, 1963).
Fig. 6. Favorable and unfavorable cases for the proposed geometric indices.
Fig. 7. Illustration of calculating indices of a stone 𝑀𝑚𝑆𝑚 on a landscape 𝐿𝑖.
where 𝐴𝑚𝑎𝑠𝑘 represents the area covered by arrows in Fig. 7. Fig. 7 is
an example of a landscape 𝐿𝑖 in the construction step 𝑖. The current
stone 𝑀𝑚𝑆𝑚 to be evaluated is in red. The mask to calculate the LFR
of the current stone refers to the part of the image that is covered by
‘‘rays’’ pointing from the contour of the current stone to the border of
the wall. Here we consider ‘‘rays’’ pointing to the negative direction of
𝑥 and y, as we assume the stones are packed from bottom to top, and
from left to right, and 𝐴𝑚𝑎𝑠𝑘,𝑓 𝑖𝑙𝑙 represents the area inside the mask
that is occupied by other stones. The index ranges from 0 to 1, where a
higher value indicates a denser layout on the left-side of the stone and
below the stone. Examples of favorable and unfavorable placement are
illustrated in Fig. 6.

The geometrical dice score (GDS) is an index inspired on the formu-
lation of the dice score (Pantoja-Rosero et al., 2022; Sorensen, 1948)
to measure how much an action can fill the current partially-built wall.
It is written as

GDS(𝑀𝑚, 𝑆𝑚) =
𝐴𝐵𝐿𝑖

𝐴𝑀𝑚𝑆𝑚

×
𝐴𝑀𝑚𝑆𝑚∩𝐵𝐿𝑖

𝐴𝑀𝑚𝑆𝑚∪𝐵𝐿𝑖

, (5)

where 𝐵𝐿𝑖
is the bounding box of landscape 𝐿𝑖. The index varies

between 0 and 1, where a value of 1 indicates that the stone is entirely
located within the bounding box of the present landscape, while a value
of 0 implies that it is completely outside (Fig. 6).

Further, the neighbor height ratio (NHR) uses the height of the
current stone and its neighbors to quantify the straightness of the
course. As we assume the stones are placed from left to right, one can
5

use the left neighboring stone (shown in green in Fig. 7) to calculate
the height difference 𝛥𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. The neighbor height ratio is obtained
by comparing the height difference with the height of the stone:

NHR(𝑀𝑚, 𝑆𝑚) =
𝛥𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
ℎ𝑀𝑚𝑆𝑚

(6)

𝛥𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 =∣ max 𝑦𝑀𝑚𝑆𝑚
− max 𝑦𝑙𝑒𝑓 𝑡 ∣ . (7)

Herein, 𝑦𝑙𝑒𝑓 𝑡 refers to the 𝑦 coordinates of the pixels occupied by the
left neighboring stone shown in green in Fig. 7. A straight course is
represented by NHR = 0. In the extreme case, where 𝑀𝑚𝑆𝑚 is the first
stone of a new course, one can use the difference of the average height
of all other stones in 𝛱𝑖 and that of the current stone to approximate
this value, which is written as

𝛥𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = ℎ𝑀𝑚𝑆𝑚
−

𝑄
∑

𝑞=1
ℎ𝑆𝑞

. (8)

The interlocking (see Section 2) quantifies how much a stone de-
viates from the stack bond. Thus, interlocking width ratio (IWR) is
defined herein as the ratio of the vertical joint offset distance to the
width of the underlying stone, and it is written as follows

IWR(𝑀𝑚, 𝑆𝑚) =

(
‖max(𝑥𝑀𝑚𝑆𝑚

) − min(𝑥𝑏𝑒𝑙𝑜𝑤2
)‖

𝑤𝑏𝑒𝑙𝑜𝑤2

+
‖min(𝑥𝑀𝑚𝑆𝑚

) − min(𝑥𝑏𝑒𝑙𝑜𝑤1
)‖

𝑤𝑏𝑒𝑙𝑜𝑤1

), (9)

where 𝑥 is the horizontal coordinate and 𝑤 is the width of a stone.
The index 𝑏𝑒𝑙𝑜𝑤 and 𝑏𝑒𝑙𝑜𝑤 refer to the following two stones: 𝑆
1 2 𝑏𝑒𝑙𝑜𝑤1
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Algorithm 1: Stone stacking algorithm
Input : 𝛺0 = {𝑆𝑞 ∣ 𝑆1 𝑆2 …𝑆𝑞 𝑞 ≤ 𝑄}, 𝐿0, 𝑤𝑤𝑎𝑙𝑙, ℎ𝑤𝑎𝑙𝑙
Output: (𝐴0, 𝐴1, ..., 𝐴𝑖)

1 begin
2 cluster the stone data set 𝛺0 ; ⊳ Section 3.4
3 construction step 𝑖 = 0;
4 number of consecutive failures 𝜁 = 0;
5 while 𝑖 ≤ 𝑄 do
6 sample a candidate stone set 𝛱𝑖 from 𝛺𝑖 ;

⊳ Section 3.4
7 for each stone 𝑆𝑚 ∈ 𝛱𝑖 do
8 solve the optimal initial pose 𝑅0,𝑚 ; ⊳ Section

3.6
9 solve the optimal translation 𝑇𝑚 ; ⊳ Section

3.6
10 if placement is stable then
11 𝑅𝑠,𝑚 = 𝐼 ;
12 else
13 solve the stabilization matrix 𝑅𝑠,𝑚 ;

⊳ Section 3.7
14 end
15 𝑀𝑚 = 𝑅𝑠,𝑚𝑇𝑚𝑅0,𝑚;
16 end
17 select the best action 𝐴𝑖 = (𝑀𝑚∗, 𝑆𝑚∗) ; ⊳ Section

3.8
18 if selection succeed then
19 update the current landscape

𝐿𝑖+1 = 𝐿𝑖 +𝑀𝑚∗𝑆𝑚∗;
20 update the stone data set 𝛺𝑖+1 = 𝛺𝑖+1 − 𝑆𝑚∗;
21 𝑖 = 𝑖 + 1;
22 𝜁 = 0;
23 else
24 resample candidate stone set;
25 𝜁 = 𝜁 + 1;
26 end
27 if filling ratio >0.99 or 𝜁 ≥ 5 then
28 construction terminates;
29 end
30 end
31 end

is the stone that has its top right corner located closest to the bottom
left corner of the current stone’s bounding box. 𝑆𝑏𝑒𝑙𝑜𝑤2

is the stone that
has its top left corner located closest to the bottom right corner of the
current stone’s bounding box. They are shown in blue in Fig. 7. The
index IWR varies between 0 and 1, with higher value indicating better
interlocking (Fig. 6).

The inward sloping (IS) is another index developed herein. An
inward-sloping top surface (large IS) on the boundary is favored by
the rules of art of dry stone masonry and is also implemented in other
stacking algorithms (Liu et al., 2021). Such characteristic is quantified
by the slope measured between the highest points of the left side and
of the right side of the stone, and it is written as

IS(𝑀𝑚, 𝑆𝑚) =
max0≤𝑥≤𝑥𝑐,𝑀𝑚𝑆𝑚

𝑦𝑀𝑚𝑆𝑚
− max𝑥𝑐,𝑀𝑚𝑆𝑚≤𝑥≤𝑤𝑤𝑎𝑙𝑙

𝑦𝑀𝑚𝑆𝑚

argmax0≤𝑥≤𝑥𝑐,𝑀𝑚𝑆𝑚
𝑦𝑀𝑚𝑆𝑚

− argmax𝑥𝑐,𝑀𝑚𝑆𝑚≤𝑥≤𝑤𝑤𝑎𝑙𝑙
𝑦𝑀𝑚𝑆𝑚

× sign(𝑥𝑐,𝑀𝑚𝑆𝑚
− 𝑥𝑐,𝑤𝑎𝑙𝑙). (10)

ere 𝑥𝑐,𝑤𝑎𝑙𝑙 refers to the 𝑥 coordinate of the center of the wall. By
omparing the 𝑥 coordinate of the center of the stone and the center
f the wall, we distinguish between stones placed on the left and those
n the right. This ensures that a good placement always yield a slope
6

owards the inner part of the wall, as illustrated in Fig. 6.
Further, the limit load coefficient (LLC) is a normalized load mul-
iplier obtained from kinematic analysis (see a detailed explanation in
ection 4), which is written as

LC(𝑀𝑚, 𝑆𝑚) =
𝛼
𝜇

(11)

where 𝛼 is the load multiplier and 𝜇 refers to the coefficient of friction.
The normalized feature quantifies the maximal lateral resistance of the
structure and ranges between 0 and 1.

3.6. Trial placement of each candidate stone

Once the set of candidate stones is sampled, one can proceed with
the trials, where each stone 𝑆𝑚 is tested for the best placement on the
current landscape. To this end, a novel algorithm is proposed herein
for analyzing and rating the transformations to all possible positions on
the current landscape 𝐿𝑖. Then, one can determine the transformation
𝑀𝑚 maximizing the objective function, as presented in the following
optimization problem

max
𝑀𝑚

LFR(𝑀𝑚, 𝑆𝑚) +𝐻(GDS(𝑀𝑚, 𝑆𝑚), 𝛽) −
𝑥𝑐,𝑀𝑚𝑆𝑚

𝑤𝑤𝑎𝑙𝑙
, (12a)

s.t. 𝑀𝑚 = 𝑇𝑚𝑅0,𝑚, (12b)

(𝑀𝑚𝑆𝑚)⊙ 𝐿𝑖 = 𝟎, (12c)

𝑅0,𝑚 = argmax SF(𝑅0,𝑚𝑆𝑚), (12d)

Here ⊙ refers to the element-wise multiplication between two matrices.
The transformation 𝑀𝑚 is composed of rotation 𝑅0,𝑚 and translation 𝑇𝑚
matrices. These matrices are applied to 𝑆𝑚, which is a candidate stone,
to obtain its transformed configuration 𝑀𝑚𝑆𝑚. Further, 𝑥𝑐,𝑀𝑚𝑆𝑚

denotes
the center of the transformed stone and 𝐻(⋅, ⋅) is a nonlinear function
given by

𝐻(𝑥, 𝛽) =

{

0 𝑥 ≤ 𝛽
𝑥 𝑥 > 𝛽,

(13)

In the majority of cases evaluated, we found that using this nonlinear
function with a value of 𝛽 equal to 0.7 resulted in better outcomes
compared to solely utilizing GDS or utilizing values of 𝛽 equal to 0,
0.5, or 0.9. This phenomenon may be attributable to the exclusive
contribution of high GDS values in fulfilling the existing landscape.

Two constraints are considered in the formulated optimization prob-
lem. First, the constraint in Eq. (12c) determines that the transformed
stone 𝑀𝑚𝑆𝑚 should not overlap the landscape 𝐿𝑖. On the other hand,
the constraint in Eq. (12d) imposes that the rotation 𝑅0,𝑆𝑚

of the stone
𝑆𝑚 orient the stone to a pose where SF is maximized.

To narrow down the possible solutions before evaluating all po-
sitions, the landscape image is processed beforehand. The objective
of this process is to remove impossible placements of the next stone.
We first filter out overlapping positions, as the next stone should not
overlap with the landscape. We then use a convolution to determine
non-overlapping positions by assuming the stone image as the convo-
lution kernel. Fig. 8 shows an example of a landscape and its matrix
representation. The stone image, which determines the convolution
kernel, is shown as a black rectangle. The resulting non-overlapping po-
sitions obtained from convolution are then illustrated as a red shadow
in the matrix representation.

Next, we filter out positions where the stone is not in touch with
the landscape (i.e. floating positions). To find these contact positions,
we dilate the landscape by one pixel, and use the same stone kernel
to execute another convolution. The resulting candidate positions are
shadowed in blue in the matrix representation (see Fig. 8). With such a
dilation-convolution method, we are able to detect positions that allow
the stones to be in touch with the previous landscape. The difference of
the two convolution results (red and blue in Fig. 8) produce the feasible
solutions as represented by the pink color in the landscape. With the
reduced solution space, we evaluate the value of the objective function
defined in Eq. (12) for all positions. The candidate stone will then be
placed on the optimal position shown as the black rectangle placed on

the landscape in Fig. 8.
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Fig. 8. Image processing steps to determine acceptable positions for placing the stone 𝑆𝑚 on the landscape 𝐿𝑖. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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3.7. Stabilization of each trial placement by rotation or wedging

As observed in Fig. 9a, there is always a possibility that the stone
placement is not stable. To avoid such conditions, one stability as-
sessment criterion and two stabilization methods are introduced in
this section. In this regard, a stone is considered stable when the
vertical projection of its center of mass (CoM) lies within the support
polygon, which is defined as the polygon that envelops the contact
points between the stone and the landscape (Furrer et al., 2017). In
2D, the support polygon is given by a polyline connecting the contact
points 𝐴 and 𝐵 (Fig. 9a). To assess the stability of a placement, we
first find the contact point between the stone and the landscape. This
is achieved by dilating the stone image by one pixel and checking if it
overlaps with the landscape. Once the contact points are detected, one
can determine the support polyline and examine whether the CoM of
the stone (point 𝐂 in Fig. 9a) can be vertically projected on it. If this
is the case, the stone placement is considered stable. Otherwise, one of
the stabilization methods must be used.

The first method involves rotating the stone around the point 𝐀
ith a rotation matrix denoted as 𝑅𝑠,𝑚. Point 𝐀 is defined as the end
f the support polyline that is closer to the Center of Mass (CoM, as
hown in Fig. 9a). To determine the direction of rotation, the sign of
he cross product between the vectors 𝐀𝐁 and 𝐀𝐂, i.e., 𝐀𝐁 × 𝐀𝐂, is
sed. The rotation is in the counterclockwise direction if 𝐀𝐁 × 𝐀𝐂 is
ositive, and negative otherwise. The rotation stops when new contact
oints are detected. The process can be carried out iteratively, with
oint 𝐀 dynamically changing based on new contact points, until the
ertical projection of the CoM (point 𝐂′ in Fig. 9b) lies on the new
upport polyline. The aforementioned approach may fail in cases where
he stone overlaps with the landscape before new contact points being
dentified. Therefore, we propose the second method outlined below.

The second method developed herein, referred to as wedging, is
nspired on a technique known as ‘‘wedging’’ which is used by masons.
his technique consists of adding small stones, also known as ‘‘wedge
tones’’, below the bigger ones as a mean to fill the void causing the
bserved instability (shown in Fig. 1). In this method, the supported
ide, which is covered by the gray square in Fig. 9c, is not considered
n the ‘‘wedging’’ process. Therefore, the uncovered part of the stone
s expanded until it touched another one. The size of the expansion
etermines the height ℎ𝑤𝑒𝑑𝑔𝑒 of the wedge stone, and the width of the
ontact area determines its width 𝑤𝑤𝑒𝑑𝑔𝑒, see Fig. 9c. The shortcoming

of this technique is that it requires additional small stones, which
might not be available. Thus, in this paper, these methods would work
hierarchically such that the rotation-based stabilization has the priority,
whereas wedging is employed only when the rotation-based method
fails.
7

3.8. Selection of the best action

Once the transformation of all candidate stones is solved, the al-
gorithm proceeds with the selection of the best action (stone and its
transformation) from the set 𝛱𝑖. To this end, we apply a combination
of hierarchical filtering and linear scalarization of multi-objective op-
timization, shown in Fig. 10. The pseudo code of this algorithm can
be found in Appendix A. The algorithm shown in Fig. 10 starts with a
matrix of 𝐾 rows, where each row represents the five indices of one
candidate stone. The third column of the matrix indicates the IWR for
inner stones, whereas for boundary stones, it indicates their IS. We
distinguish between inner stone and boundary stone by comparing the
minimum width of stones in the data set with the smallest distance
from the stone 𝑀𝑚𝑆𝑚 to the left boundary and the minimum distance
from the stone 𝑀𝑚𝑆𝑚 to the right boundary. If the former is larger,
the stone 𝑀𝑚𝑆𝑚 is considered as an edge stone and we use IS as the
corresponding third index (the third column of the matrix). Otherwise,
IWR is assigned to the third index.

The initial step involves filtering out candidates with a LLC less
than or equal to zero, which ensures that the placement remains stable
under gravity. The resulting set of candidate indices, consisting of 𝐾1
stones, is stored in a new matrix with 𝐾1 rows and five columns. If
no stone can pass the first filter, i.e. 𝐾1 ≤ 0, the construction process
ends. Otherwise, the set of 𝐾1 stones are filtered further with the second
filter LLC𝑚 > LLC into a set of 𝐾2 stones. This filter leaves actions
whose stability index (LLC) is larger than the average value, which is
calculated as

LLC = 1
𝐾1

𝐾1
∑

𝑚=1
LLC(𝑀𝑚, 𝑆𝑚). (14)

If no stone can pass the filter, i.e. 𝐾2 ≤ 0, the best stone 𝑆𝑚 is chosen
as the one whose indices maximize the following objective

max
𝑚

LLC𝑚, (15a)

s.t. 𝑚 = 0,… , 𝐾1. (15b)

Otherwise the hierarchical filtering process continues to the third filter
that selects stones whose interlocking index (NHR) is larger than the
average value over the 𝐾2 stones and obtain a set of 𝐾3 stones. The
average value of NHR in this filter can be calculated as

NHR = 1
𝐾2

𝐾2
∑

𝑚=1
NHR(𝑀𝑚, 𝑆𝑚). (16)

f 𝐾3 ≤ 0, the best stone 𝑆𝑚 is the one that maximize the following
bjective

ax
𝑚

𝜔1LLC𝑚 + 𝜔2NHR𝑚, (17a)
s.t. 𝑚 = 0,… , 𝐾2. (17b)
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Fig. 9. (a) Unstable initial pose, (b) rotation-based method where the rotation direction is indicated by the arrow, and (c) the wedge method. The wedge stone (in black) located
underneath the unsupported part of the stone to make it stable.
Fig. 10. Selecting the best stone 𝑆𝑚∗.
Here the 𝜔1 and 𝜔2 are two weights for the two indices. This filtering
process continues until all filters have been applied. The upcoming
filters are on IWR, GDS and LFR sequentially, with the averaged values
calculated as

IWR = 1
𝐾3

𝐾3
∑

𝑚=1
IWR(𝑀𝑚, 𝑆𝑚), (18a)

GDS = 1
𝐾4

𝐾4
∑

𝑚=1
GDS(𝑀𝑚, 𝑆𝑚), (18b)

LFR = 1
𝐾5

𝐾5
∑

𝑚=1
IWR(𝑀𝑚, 𝑆𝑚). (18c)

The same type of condition is verified for 𝐾4, 𝐾5 and 𝐾6. If at any
point a condition cannot be satisfied, the best stone is selected with
the corresponding objective functions as in Eqs. (19)–(21). The whole
process is summarized in Fig. 10.

max
𝑚

𝜔1LLC𝑚 + 𝜔2NHR𝑚 + 𝜔3IWR𝑚, (19a)

s.t. 𝑚 = 0,… , 𝐾3. (19b)

max
𝑚

𝜔1LLC𝑚 + 𝜔2NHR𝑚 + 𝜔3IWR𝑚 + 𝜔4GDS𝑚, (20a)

s.t. 𝑚 = 0,… , 𝐾4. (20b)
max
𝑚

𝜔1LLC𝑚 + 𝜔2NHR𝑚 + 𝜔3IWR𝑚 + 𝜔4GDS𝑚 + 𝜔5LFR𝑚, (21a)

s.t. 𝑚 = 0,… , 𝐾5. (21b)

When not specified, we adopt 𝜔 = (𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5) = (1, 1, 1, 1, 1) in
the numerical examples presented in this paper. If all conditions are
satisfied and all filters can be applied, the best stone is chosen with the
following objective function

max
𝑚

𝜔1LLC𝑚 + 𝜔2NHR𝑚 + 𝜔3IWR𝑚 + 𝜔4GDS𝑚 + 𝜔5LFR𝑚, (22a)

s.t. 𝑚 = 0,… , 𝐾6. (22b)
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This hierarchical filtering process builds a hierarchy of criteria,
removes unsatisfactory actions, and selects from the remaining actions
one that maximizes the weighted sum of certain indices. In this work,
the filters indicate different criteria for building dry stone masonry
wall, namely the stability under gravity, the stability under lateral load,
the course straightness, the interlocking for inner stones, the inward
sloping for boundary stones, the global filling and the local filling.
In Section 5.1, one can find how the indices influence the filtering
outcome and how it changes the layout of the built wall.

4. Kinematic analysis

The analysis of the resistance of masonry walls is performed with a
kinematic analysis approach. In this analysis, the main goal is to find
the maximal admissible load and the corresponding collapse mecha-
nism. In this regard, the lateral resistance of the wall under construction
is used to obtain the load factor 𝛼 used in the evaluation index in
Eq. (11). The method used in this paper is the kinematic analysis
method proposed by Krabbenhoft et al. (2012) to simulate granular
material, which was further adapted by Portioli (2020) and Portioli
et al. (2021) to analyze masonry walls (see Section 4.1). A Pic-to-Ri
algorithm is developed herein to convert the aggregate image into an
input data for the kinematic analysis (see Section 4.2).

4.1. Kinematic analysis using mathematical programming

The numerical model employed in this scientific paper represents
the application of the mathematical programming approach introduced
by Portioli (2020) for the limit analysis of masonry walls. While Portioli
et al.’s implementation is accessible as an executable in Matlab (Porti-
oli, 2021), we reimplement the approach in Python to enhance com-
putational efficiency. Fig. 11 shows a model of two stones modeled as
rigid bodies in contact. The internal forces between them occur through
contact points that are located at the two ends of the contact interface.
In the approach, a four-point contact formulation is employed, which
means that each contact interface has four contact points, as shown
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Fig. 11. Rigid block model for kinematic analysis where the positions of the two bodies
re shifted for visualization purpose .
ource: Adapted from Portioli (2020).

n Fig. 11. Forces at the contact point 𝑘 are collected in a vector 𝑐,
including the normal 𝑐𝑛𝑘 and the tangent 𝑐𝑡𝑘 forces. The direction of
𝑐𝑛𝑘 and 𝑐𝑡𝑘 are denoted by two unit vectors 𝑛𝑘 and 𝑡𝑘, respectively; as
shown in Fig. 11. External loads, including the dead 𝑓𝐷 and live 𝑓𝐿
loads, are applied in the center of the elements. The problem of solving
for the maximal load factor (i.e. load multiplier) is then formulated as
a mathematical programming problem as follows (Portioli, 2020):

max 𝛼, (23a)

s.t. 𝐸𝑘𝑐 = 𝑓𝐷 + 𝛼𝑓𝐿, (23b)

𝑐 ∈
{

𝑐𝑘 ∈ 𝑅2 ∶ 𝜇𝑐𝑛𝑘 ≥ ‖

‖

‖

𝑐𝑡𝑘
‖

‖

‖

, 𝑐𝑛𝑘 ≥ 0
}

. (23c)

This is a maximization problem with two constraints, one on the
equilibrium condition (Eq. (23b)) and another on the failure criterion
(Eq. (23c)). Eq. (23b) establishes the equilibrium of stones subjected
to dead and live loads, with 𝐸𝑘 being the equilibrium matrix, whose
entries are determined from the location of contact points and element
centers. Thus, one can write this matrix as (Portioli, 2020):

𝐸𝑘 = −
[

𝑡𝑘 𝑛𝑘
(𝐷𝑗𝑘 × 𝑡𝑘)𝑦 (𝐷𝑗𝑘 × 𝑛𝑘)𝑦

]

, (24)

where 𝐷𝑗𝑘 is the vector representing a line segment from the center
of the element 𝑗 to the contact point 𝑘. The failure at the interfaces
(i.e., opening and sliding) is formulated in Eq. (23c). In particular,
the failure due to sliding follows the Coulomb friction law, where 𝜇
represents the coefficient of friction. One can see that Eq. (23) is a linear
optimization problem that can be easily solved using conventional
methods such as the simplex method, which is used herein in its dual
version (MOSEK, 2024). The kinematic variables, i.e. displacement of
the elements, can be obtained from Lagrange multipliers associated to
the solution of Eq. (23) (Portioli, 2020).

4.2. Pic-to-Ri: image-based generation of rigid block model

To run the previously described kinematic analysis, one should
retrieve the information about the interface and contact points from
geometrical models. In this section, a novel method, referred to as
‘‘Pic-to-Ri’’ is introduced herein for generating the rigid block model
automatically from images. In this regard, the information about the
mass and center of mass of the stones in a wall are recovered from its
image. Moreover, the contact coordinates and directions are obtained
from the detected interface between bodies. As an example, let us
consider an aggregate of three stones with an initial landscape as shown
in Fig. 12. Using the stacking algorithm presented in the previous
section, we obtain Fig. 12a, where each stone consists of pixels that
share the same value, and different stones have different pixel values.
The area of each stone is estimated by counting its number of its pixels,
and the center of mass (shown as blue triangles in Fig. 12c) is calculated
as the geometric center of its pixels. Using convolution in the edge
detection, we can detect the contact between stones (see Fig. 12b),
9

where green arrows indicate the normal directions at each point of the
detected interface. Next, only the end points of the interface are used
to perform the kinematic analysis, where the normal direction (𝑛𝑘) is
estimated as the average of all normal vectors in a given interface (see
Fig. 12c).

5. Experiments

The examples presented in this section are used to evaluate the
performance of the developed methods using various stone data sets.
We first use the topology of real stones extracted from a wall built
by masons in the work of Almeida et al. (2021) to demonstrate the
construction process. The intrinsic characteristics of the proposed algo-
rithm are revealed by varying the algorithm parameters and sampling
methods. Then we apply the algorithm to five sets of stones to verify the
robustness and adaptability of the algorithm. To facilitate comparison
between different walls, we also propose metrics to evaluate the quality
of the dry joint masonry wall. Furthermore, we investigate the compu-
tational performance of the developed algorithm and its sensitivity to
image resolution.

5.1. Building a dry-joint stone masonry wall

The demonstration consists of building a wall with a set of stones
extracted from the image of the wall built with partially regular stones
in Almeida et al. (2021). Fig. 13 illustrates the original wall built by
masons, where stones are colored by the clustering result. The stones
shown in Fig. 13(a) and their arrangement are directly annotated based
on the photograph of the constructed wall’s facade. The gaps between
the stones arise due to their lack of contact at the facade plane and
annotation errors. To reduce the gap, we reposition the stones such
that the distance between their centers and the bottom left corner is
minimized. The manipulation is performed sequentially, prioritizing
stones with smaller distance to the bottom left corner. The stones are
also dilated by one pixel for the same reason. The optimized layout
is shown in Fig. 13(b). In the following work, we use stones from
direct annotation as the initial stone data set for the algorithm, but the
evaluation of limit multiplier of the reference wall is conducted based
on the optimized wall.

To build a similar wall using our proposed algorithm, we assume
the initial landscape to be flat. As a base case, we use the sampling
strategy described in Section 3.4. The weights used in the selection
algorithm (Fig. 10) are 𝜔 = (1, 1, 1, 1, 1). The constructed wall is shown
in Fig. 14, along with the action order denoted by the numbers written
on each stone. The colors of the stones show the cluster to which they
belong. It can be seen that the wall is generally constructed from left
to right. This is imposed by the placement optimization formulation
(Eq. (12a)). The right side is also filled as a result of using GDS in
Eq. (12a). The wall displays geometric features such as straight course
height and interlocking. However, the layout is more regular on the
left side of the wall, which shows the difficulty in placing stones on
the right boundary. This results from the fact that the right boundary
is filled in the final few steps, when the availability of stones has been
reduced to the point that the algorithm cannot find alternatives. The
load multipliers of the built wall are 0.79 and 0.71 for tilting the
table towards the left and right, with the failure mechanism shown
in Fig. 15. The vertical displacement of the sliding stone in Fig. 15(a)
results from the associative flow rule in the kinematics analysis, which
causes artificial dilation in the sliding failure mode (Portioli, 2020).

To investigate the influence of the sampling method on the construc-
tion process, we apply three additional sampling strategies that differ
from the variant-stone sampling method described in Section 3.4 and
the results are shown in Fig. 16. The numbers on the stones indicate the
action index, and the colors show the cluster to which the stone belongs
to. Fig. 16a is a wall constructed with a random sampling strategy,
where the candidate set in each construction steps is a subset of the

whole set of available stones sampling from an uniform probability
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Fig. 12. Pic-to-Ri method: automated rigid block modeling from image data. (a) Segmented image of a constructed wall. (b) Detected contours and interface directions. (c) Rigid
bodies and contact points for kinematic analysis.
Fig. 13. A masonry wall built by masons with stones clustered into seven classes. (a) original wall (b) optimized wall with stones repositioned and dilated by one pixel. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Dry-stone masonry wall constructed with the algorithm developed herein.
The numbers represent the stones placement sequence and the colors denotes their
respective cluster. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

distribution. To make a fair comparison between the strategies, we
sample 7 candidate stones in each iteration. The wall shown in Fig. 16b
was built with a two-fold variant-stone sampling method, where at each
construction step, we first use the basic variant-stone sampling method
to determine the most appropriate cluster of stones, and then all stones
from that cluster are considered as the candidate set from where the
best stone is selected from. On the other hand, the wall in Fig. 16c was
built with the whole stone data set as candidate set in each construction
step, with the placed stones being removed in each step (i.e. full batch
method, the candidate set equals the remaining data set).

For all sampling methods, the algorithm is able to complete the
construction process by stacking stones to fill the target wall volume.
However, the uniform random sampling method yields a more irregular
stone layout (Fig. 16a) compared to strategic sampling methods (Fig. 14
and Fig. 16b), especially on the boundaries and at the last stage of the
construction process corresponding to the fourth course of the wall. The
two-fold variant-stone sampling method (Fig. 16b) is an enhancement
to the basic variant-stone sampling method (Fig. 14) and the obtained
wall has better geometric features, such as the filling on the right-
hand boundary and the straightness of course height. However, this
advanced method is twice as computationally expensive as the base
method because it requires two sub-iterations at each construction step.
The wall built with non-replacing full-batch sampling (Fig. 16c) is
better in terms of straight course height, especially in the first three
horizontal layers. The last layer is less satisfactory as stones are used
up and there is less diversity in the candidate stone set.

5.2. Quantitative evaluation of dry joint stone masonry wall

In this section, we build walls with five different stone data sets.
The data sets are obtained through manual segmentation of stones
10
from walls images built either by masons or by a reference stacking
algorithm. The original walls are used as reference walls for the result
obtained with the algorithm developed herein. The first three data sets
are composed by the geometry of stones retrieved from images in the
work of Almeida et al. (2021), where skilled masons built three types
of stone walls (regular (R), partially regular (PR) and irregular (IR)) in
an experimental campaign. The fourth and fifth data sets are extracted
from dry joint masonry walls built by a well-trained deep reinforcement
learning agent (Liu et al., 2018).

To facilitate the comparison between different configurations, we
use the following metrics to evaluate the quality of a stone masonry
wall. The stone filling to quantify the filling of the target wall volume
by comparing the sum of stone areas with the target wall area (Almeida
et al., 2016) as given by

𝐹𝑆𝐹% =
∑

𝐴𝑆𝑖

𝑤𝑤𝑎𝑙𝑙 × ℎ𝑤𝑎𝑙𝑙
, (25)

where 𝐴𝑆𝑖
is the stone area 𝑆𝑖, and 𝑤𝑤𝑎𝑙𝑙 and ℎ𝑤𝑎𝑙𝑙 are the width

and height of the wall. The horizontal arrangement to quantify the
straightness of the courses using a horizontal alignment factor (Almeida
et al., 2016). The factor is calculated by comparing the average length
of 𝑛 horizontal shortest paths along the joints (i.e., not crossing stones,
example of paths are shown in Fig. 17a) to the width of the target wall.
This metric is written as

𝐹𝐴𝐻% = 1
𝑛

𝑛
∑

𝑖=1

ℎ𝑖 −𝑤𝑤𝑎𝑙𝑙
𝑤𝑤𝑎𝑙𝑙

, (26)

where ℎ𝑖 is the length of the 𝑖 shortest horizontal path along the joints.
A lower value of 𝐹𝐴𝐻 indicates a straighter course height. Another
metric is the vertical arrangement to quantify the interlocking between
vertical joints. We compare the average length of 𝑛 vertical shortest
paths along the joints with the height of the wall by estimating the
following factor (Almeida et al., 2016)

𝐹𝐴𝑉 % = 1
𝑛

𝑛
∑

𝑖=1

𝑣𝑖 − ℎ𝑤𝑎𝑙𝑙
ℎ𝑤𝑎𝑙𝑙

, (27)

where 𝑣𝑖 is the length of the shortest vertical path 𝑖. An example of
the shortest vertical paths of a dry-joint wall is shown in Fig. 17b. In
this regard, a high value of 𝐹𝐴𝑉 indicates better interlocking. Further,
the lateral resistance is evaluated by simulating the tilting table test
using the kinematic analysis described in Section 4. We analyze two
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Fig. 15. Failure mechanism of constructed PR wall in a tilting table simulation for a (a) horizontal force direction in the left, and for an (b) horizontal force direction in the right.
Elements are colored by the ratio of their displacement to the maximum displacement in the model. The observed vertical displacement of the sliding stone in (a) is a consequence
of artificially dilated sliding surfaces when employing the associative flow rule (Portioli, 2020). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 16. Constructed wall using different sampling method to form candidate stone set: (a) uniform sample; (b) two-fold sample; (c) full batch sample. The numbers represent the
construction sequence, the colors represent the cluster. Action index are denoted at the center of each stone. Stones of the same cluster is in the same color. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 17. (a) Three horizontal shortest paths of dry-joint stone masonry wall to calculate 𝐹𝐴𝐻 . (b) Seven vertical shortest paths of dry-joint stone masonry wall to calculate 𝐹𝐴𝑉 .
load cases (tilting towards the left and right)and use the smaller load
multiplier in the evaluation.

𝐹𝐿𝑅 =
min(𝛼𝑙𝑒𝑓 𝑡, 𝛼𝑟𝑖𝑔ℎ𝑡)

𝜇
. (28)

Fig. 18 shows the wall constructed using the five data sets. The first
column of Fig. 18 shows the case number, the second column shows the
clustering of the input stone data set. As the stacking algorithm is not
deterministic, we first use a fixed seed to perform the construction. The
resulting walls are shown in the third column. Then a total of 20 trials
are performed for each set of stones. Subsequently, the wall with the
highest filling ratio and kinematics multiplier(rounded to one decimal
place) is selected from these trials and presented in the fourth column of
the results. The last column is the reference wall built either by masons
or by a reference algorithm. The stone layouts of the reference walls
are optimized through stone repositioning and dilation as explained in
Section 5.1.

It can be seen that the algorithm successfully build walls with
available stones in all cases, while keeping masonry features such as
11
straight course height and interlocking. On the other hand, case 3 and
case 5 were more challenging because the input stone set is widely
distributed in the size-eccentricity space. Therefore, the developed
stacking algorithm has to use wedge stones to keep the stability of the
larger ones, as shown in Fig. 19. Fig. 20 illustrates the stone filling
ratio achieved and the area of wedging stones used through various
stabilization methods. Each data point represents a wall constructed
with the fifth set of stones. The results indicate that combining rota-
tion and wedging techniques enhances the algorithm’s performance in
optimizing the stone filling ratio. Further, one can also observe that
stones from the same cluster are placed in a near neighborhood in all
cases in Fig. 18. This effect can be attributed to the NHR metric that
imposes straight course height. Stones from the same cluster of similar
size and eccentricity are close in terms of height. Thus, placing them
together can yield a flat horizontal layer.

However, we can notice once again that filling the right side of the
wall is a difficulty task. The algorithm can only place stones vertically
to fill the empty spaces as in case 1, in case 3 and in case 5, or leave
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Fig. 18. Stone masonry walls built with five stone data set. The colors represent the cluster, the numbers show the sequence of actions. Column from left to right: Case number,
clustering of the input stone data set, constructed stone wall with a fixed seed, best constructed wall out of 20 trials, and reference wall built by masons (Almeida et al., 2021)
(case 1–3) and by model-free algorithm (Liu et al., 2018) (case 4 and 5). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 19. (a) Wedge stones (in red) used in Fig. 18(a) wall 3, (b) wall 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
it empty as in case 2 and in case 4. Such challenge can be solved by
giving the algorithm possibility to place stone from right to left as well.
More specifically, this refers to reverting the sign of the third part on
the center of the stone in Eq. (12a) (i.e. changing from minimizing
to maximizing), using the right neighbor as reference stone in Eq. (7)
and to compute the LFR with a local area determined by rays pointing
to the positive direction of 𝑥. With the best action assuming both a
construction from the left and from right, and chosen as the one with
higher GDS such that

𝑆𝑚 ∗= argmax GDS (29)
12

𝑆𝑚∗,𝑙𝑒𝑓 𝑡 ,𝑆𝑚∗,𝑟𝑖𝑔ℎ𝑡
Fig. 21 shows the wall when the stones of one layer are placed
starting from the right and the left with the regular, partially regular,
and irregular stone data sets. It can be seen that the stones are aligned
with both the left and right boundaries. The weaker region of the wall
in terms of geometrical misalignment and voids shifts from the right
boundary to the middle part where the construction sequences from
the left and right boundaries meet. For example, we observe voids on
the right of stone 16 in Fig. 21a, on the left of stone 16 in Fig. 21b, and
below stone 37 in Fig. 21c.

A comparison between the reconstructed and the reference walls is
performed by using the metrics presented in Section 5.2. The obtained
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Table 2
Comparison of metrics of and mason’s walls and rebuilt walls.

Reference walls Constructed walls
(Fig. 18 the 5th column) (Fig. 18 the 4th column)

𝐹𝑆𝐹 𝐹𝐴𝑉 𝐹𝐴𝐻 𝐹 ∗
𝐿𝑅 𝐹𝑆𝐹 𝐹𝐴𝑉 𝐹𝐴𝐻 𝐹𝐿𝑅

Comparison with masons (Almeida et al., 2021)
Wall 1 0.837 39.780 0.000 0.64 0.974 39.084 1.573 0.83
Wall 2 0.883 40.810 0.830 0.48 0.883 36.598 1.348 0.83
Wall 3 0.957 22.410 3.440 0.26 0.839 21.347 4.163 0.52
Comparison with model-free algorithm (Liu et al., 2018)
Wall 4 0.800 6.765 1.707 0.60 0.839 22.674 2.207 0.66
Wall 5 0.753 15.783 6.767 0.05 0.725 55.851 3.033 0.59

*: The kinematic analysis on the reference walls are based on our annotations, which could be different
from the actual performance of the wall.
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ig. 20. Influence of the stabilization method on the stone filling ratio and area of
edge stones in the construction of Wall 5.

esults are listed in Table 2, with the best scores shown in bold. Com-
ared with the masons’ performance, the proposed algorithm performs
etter in terms of filling the space (evaluated by 𝐹𝑆𝐹 ) and in terms of
ateral resistance (𝐹𝐿𝑅). However, it presents an reduced performance
n terms of maximizing vertical interlocking (evaluated by 𝐹𝐴𝑉 ) and
rranging horizontal alignment (𝐹𝐴𝐻 ). Masons can build walls with
ery straight course height (small value of 𝐹𝐴𝐻 ) and significant inter-
ocking (large value of 𝐹𝐴𝑉 ), possibly because they are more flexible in
haping stones and using wedge stones. Such flexibility gives them the
ossibility to create smooth supporting surfaces and match the stone’s
eight with neighboring stones. When compared with the model-free
lgorithm (Liu et al., 2018), our algorithm outperforms it in almost all
valuations.

The versatility and flexibility of the algorithm can be attributed to
wo factors. On the one hand, the strategic sampling process that cluster
tones and sample them gradually from the initial data set ensures the
iversity of the candidate stone set, which is the key to maintaining
igh-quality geometric wall features throughout the whole construction
rocess. On the other hand, we consider mason’s practice by proposing
ight indices to evaluate the quality of an action (choosing and placing
stone). These metrics consider the neighboring stones and the current

andscape, providing a global view to assess a stone placement.

.3. Influence of stone set on the constructed wall

The size, shape and distribution of stones in the given stone set influ-
nce the performance of the algorithm. To study this influence, we used
he algorithm to build walls from two series of stone sets. The algorithm
s allowed to stack stones from two sides, with the method explained
n the previous section. The first stone series comes from Thangavelu
t al. (2018), where stones are represented as polygon shapes with eight
egrees of Gaussian noise applied to their vertices, resulting in a diverse
13

(

ange of sizes and shapes. For each set of stones, we built 10 walls and
ig. 22 presents an example from each set. The metrics of stone filling
nd lateral resistance of all 80 walls are shown in Fig. 23. The stone set
ith an 80% noise level is the most difficult, resulting in walls that were
oth unfilled and weak. As the noise level decreases, there is an uptrend
n stone filling ratios. However, the trend is not linear as the algorithm
erforms surprisingly well in the construction with stone set with a
0% noise level. With noise level smaller than 60%, the algorithm
onsistently achieves stone filling ratios above 60%, outperforming the
andom strategy outlined in Thangavelu et al. (2018). The negative
nfluence of noise level on the filling ratio of constructed walls can also
e observed in Fig. 24(a). Our algorithm is able to fill the wall volume
s much as the reference, despite the fact that the current task is more
hallenging compared to the one in the reference study (Thangavelu
t al., 2018)—the stone set provided to our algorithm is limited to the
nes from the resulting walls in that study without additional options.

Regarding lateral resistance shown in Fig. 24(b), there is no clear
rend associated with changes in noise level. As we evaluate lateral
esistance through push-over tests on the free-standing walls, the failure
ode in most cases is the rocking of the corner stones on the top row,

imilar to the mode shown in Fig. 15(a), which depends on the stone’s
eight-to-width ratio. Although variations in noise level can affect this
atio, the influence is neither positive nor negative because increasing
he ratio in one orientation will conversely decrease it when the stone is
otated by 90 degrees. The fluctuation is also observed by analyzing the
eference walls, as shown in Fig. 24(b). Nonetheless, higher noise levels
o make it more challenging for the algorithm to find a stable position
or the stones, as they are less similar to rectangular shapes. In this
ase, the best pose is not necessarily the one where the shape factor is
inimized, explaining why the filling ratio decreases as the noise level

ncreases. By considering more orientation options, such as orientations
anging between [−𝜋, 𝜋] with 10-degree intervals, the performance of
he algorithm can significantly increase in terms of the filling ratio and
he lateral resistance. Typical walls constructed with 10-degree interval
rientations are shown in Fig. 25.

When comparing the interlocking metric 𝐹𝐴𝑉 of walls built using
tone sets of different noise levels, we can observe a positive influence
n both our walls and the reference walls, as illustrated in Fig. 24(c).
his is because diverse stone shapes naturally lead to staggered joints
hen the stones are packed tightly. The vertical joints of our walls are
etter staggered due to our precise method for evaluating the distances
etween these joints (IWR), in contrast to the reference which uses an
pproximate method that equates vertical interlocking with maximizing
he number of contacting stones (Thangavelu et al., 2018). As for the
orizontality metric (Fig. 24(d)), their is no obvious trend in how noise
evel impacts this metric. Although stones in a low noise level set
ave similar heights and widths, the algorithm may rotate stones for
nterlocking, which causes misalignments in the course height.

The second series of stones is generated from a Fourier-based shape
enerator for granular materials, as described in Mollon and Zhao
2012). These stones exhibit a more rounded appearance in contrast
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Fig. 21. Walls constructed from two sides. (a) Wall built with regular stones, (b) Wall built with partially regular stones, and (c) Wall built with irregular stones.
Fig. 22. Walls constructed with our algorithm using the stones from Thangavelu et al. (2018). The noise level of each stone set is indicated on top of the wall.
Fig. 23. Filling ratio 𝐹𝑆𝐹 and stability 𝐹𝐿𝑅 of walls constructed with data set
of Thangavelu et al. (2018). The arrows point to walls shown in Fig. 22.

to the ones from Thangavelu et al. (2018). The contour of a particle is
generated through the following series (Mollon & Zhao, 2012):

𝑟𝑖(𝜃𝑖) = 𝑟0 +
𝑁
∑

𝑛=1
[𝐴𝑛 cos(𝑛𝜃) + 𝐵𝑛 sin(𝑛𝜃)] (30a)

𝐴𝑛 = 𝑟0𝐷𝑛 ⋅ cos 𝛿𝑛 (30b)

𝐵𝑛 = 𝑟0𝐷𝑛 ⋅ sin 𝛿𝑛 (30c)

𝐷𝑛 =

{

2𝛼⋅log2(𝑛∕3)+log2(𝐷3) for 3 < 𝑛 < 8
2𝛽⋅log2(𝑛∕8)+log2(𝐷8) for 𝑛 > 8

(30d)
14
Here (𝑟𝑖, 𝜃𝑖) denotes the polar coordinates of points on the contour,
which in this study is discretized into 128 points. 𝑟0 corresponds to the
average radius of the particle. The second descriptor 𝐷2 has an impact
on the elongation of particles generated. The value for other descriptors
are 𝐷1 = 0, 𝐷3 = 0.05 and 𝐷8 = 0.015, with their specific influences on
the particle’s form detailed in Mollon and Zhao (2012). 𝛿𝑛 is a random
phase angle between [−𝜋, 𝜋] that gives particles different shapes. The
coefficients 𝛼 and 𝛽 are assigned a value of −2, same as in the reference.

We generate two types of stones by varying the value of 𝐷2. 𝐷2 = 0
results in circular stones while 𝐷2 = 0.2 gives elliptic stones. Addi-
tionally, we explore two different stone size distributions: one with
a constant radius of 30 pixels and another with a radius uniformly
varying between 10 and 50 pixels. With these parameters, we form
four sets of stones and construct 20 walls, each measuring 210 pixels in
height and width. Typical walls constructed are shown in Fig. 26 and
the filling ratio and interlocking metric of all walls are illustrated in
Fig. 27.

It can be seen that the algorithm performs poor in filling the wall us-
ing stones of a fixed size. This is due to its strategy of prioritizing stone
placement near the boundary, as in Eq. (12), which causes instability
when stacking round-shaped particles. In contrast, when the algorithm
is provided with stones of varying sizes, it can more easily achieve
stable stacking by either placing a smaller stone atop a larger one or
positioning a larger stone over two smaller ones, both of which yield
more stable structures than stacking stones of uniform size. Moreover,
the variation in stone size enhances interlocking, which is also observed
in the previous analysis where 𝐹𝐴𝑉 increases with noise level.

The evaluation of the two stone series demonstrates that the per-
formance of the algorithm is significantly influenced by the variety in
stone sizes and shapes. A stone set with limited variability might be
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Fig. 24. Influence of noise level of stone set on the metrics of walls constructed with our algorithm. Walls with stone filling ratio larger than 0.6 are indicated with blue points
and those smaller than 0.6 are indicated with yellow triangles. We also evaluate the walls provided in Thangavelu et al. (2018) for reference (green dashed line). (a) Stone filling
ratio 𝐹𝑆𝐹 ; (b) Lateral resistance 𝐹𝐿𝑅; (c) Vertical interlocking 𝐹𝐴𝑉 ; (d) Horizontality 𝐹𝐴𝐻 .

Fig. 25. Typical walls constructed with stone orientations ranging between [−𝜋, 𝜋] with 10-degree intervals.
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Fig. 26. Walls built with stone set generated by prescribed Fourier descriptors.
Fig. 27. Geometric metrics of walls constructed from stone set generated by prescribed
Fourier descriptors.

easy to stack and the algorithm can achieve a high filling ratio, but it
often results in walls with inferior interlocking, particularly when the
stones’ height and width are nearly equal. The algorithm benefit from
the diversity in stone types, whether they are round or rectangular.
However, it struggles in scenarios where the stones are uniform circular
shapes or prismatic stones with acute angles, as these configurations
challenge the assumption that the target wall has uniform width along
height and the optimal pose of a stone is when the shape factor is
minimized.

6. Computational performance

As the proposed algorithm aims at its application in automated
construction, the computational cost is one of the main concerns.
16
This section investigates computational performance by estimating the
processing time of each component of the developed algorithm to
identifying potential bottlenecks. The sensitivity of image resolution on
the layout of the constructed wall and associated computational cost
are also discussed. The examples presented next were run on Intel Core
(TM) i7-10700 CPUs with 2.90 GHz of clock.

6.1. Computational cost for single procedures

One can clearly see that the computational demand to find the
ultimate layout of a masonry wall with the algorithm presented in
this paper depends on the size of the available stone set and the
employed sampling method. In this section, we analyze the processing
time to built two walls as shown in Fig. 14 and in Fig. 16c. The input
and output image sizes of the two examples are equal to 280 × 80
pixels. The computational cost of other walls using other stone set and
construction method can be found in Appendix B. To further improve
the computational performance of the stacking algorithm, the stone
trial task are performed in parallel with a shared memory scheme.

Fig. 28 shows the relation between the sequence of 32 stone place-
ments and the associated computational cost for both considered walls.
The first wall is constructed with basic variant sampling method, where
in each iteration the candidate set is composed of one stone from each
cluster; whereas the second is constructed with full batch sampling
method, where all available stones are sampled as candidate stones
in each step. Further, three procedures are considered for each step,
namely the trial placement of candidate stones (see Section 3.6), the
stabilization of placed candidate stones (see Section 3.7), and the
selection of the best stone (see Section 3.8). The time spent on each
procedure is colored in blue, green and orange respectively.

One can observe that using variant sampling method significantly
reduces computational cost in comparison to the processing time to
perform a full batch sampling, but without sacrificing the quality of
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Fig. 28. Computation time for each construction step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 29. Evolution of computation cost with image size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the built wall. For both cases, the placement procedure takes most of
the time, the selection ranks second, and the computational demand
in the stabilization procedure is negligible. During construction, the
computation cost of one step is almost stable for variant sampling
method as the number of candidate stone set is unchanged. The time for
the selection procedure (shown in orange in Fig. 28) increases slightly
as the construction continues. This is because kinematic analysis cost
most of the time in the process. As more stones are placed, there are
more rigid bodies and contact points in the model, leading to a higher
computation cost. But for full sampling method, the computational time
decreases as the size of the candidate set decreases.

6.2. Influence of data set size on time complexity

The algorithm’s time complexity is influenced by the number of
stones (𝑄), the number of clusters (𝐾), and the number of placed stones
(less than 𝑄). The key contributors to the overall complexity include:

1. Initial Rotation: Optimizing the orientation of each stone to
minimize the shape factor, adding a complexity of 𝑂(𝑄).

2. Clustering: Applying a hierarchical clustering algorithm with a
time complexity of 𝑂(𝑄2 log𝑄) (Ward, 1963).
17
3. Placement, Stabilization, and Selection: These involve a discrete
search for feasible positions and stabilization for each stone
candidate, with the selection based on individual stone eval-
uations. The strategic candidate sampling method used here
results in a time complexity of 𝑂(𝐾), whereas the full batch sam-
pling method has a complexity of 𝑂(𝑄). It is important to note
that these processes are repeated in every step. Therefore, for
the entire wall construction, the time complexity using variant
sampling is 𝑂(𝑄𝐾), and using full batch sampling is 𝑂(𝑄2).

Given that placement is the most costly process (as demonstrated in
Section 6.1), it dominates the algorithm’s overall complexity, which is
𝑂(𝑄𝐾) for the variant sampling method and 𝑂(𝑄2) for the full batch
sampling method. Therefore, employing a strategic sampling method
can significantly reduce the computational cost, especially for large
data set with stones of similar shapes and sizes.

6.3. Sensitivity to image resolution

Since the stacking algorithm developed in this paper is based on
images, changes in image resolution are likely to affect its performance.
For this analysis, we consider the input stone data set in Section 5.1
with different image resolutions scaled by 0.5, 1.0, 1.5 and 2.0. The
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desired wall sizes are also scaled accordingly. Fig. 29 shows the con-
structed wall in various resolutions. Each stone is assigned to a unique
color (regardless of the image resolution) to identify the same stones
in different resolutions. The difference in stone layout results from
the non-deterministic nature of the algorithm. The computation time
for constructing the whole wall and the maximal step time during
construction are also illustrated in Fig. 29. It can be seen that there
is a quadratic relationship between the resolution scale and the com-
putation cost. It happens because both the number of possible positions
in the trial placement and the time to evaluate one position increase as
the image becomes larger. When the image is of size 140 × 40, it only
takes 0.18 min to stack 32 stones. Even when considering the highest
resolution, the maximum step time remains below 25 s, demonstrating
a satisfactory level of speed for real-time automated construction. This
is particularly significant considering that the robot manipulation to
grip and transport one stone typically takes approximately 1 min (Johns
et al., 2020).

7. Conclusions

This paper proposed an stacking algorithm based on imaging pro-
cessing techniques and efficient kinematic analysis for the optimal
placement of irregular stones in the construction of dry joint stone
masonry walls. In this regard, images of stones were used as an input
data set, and the developed algorithm provided the order of placement,
pose, and position of each stone used in the construction of the wall, as
well as the rigid block model used to assess its structural performance.
The developed algorithm was able to build qualified walls in different
scenarios with various stone data set and wall size. When compared
with skilled masons, our algorithm was better in space filling and
maximizing the lateral resistance of the wall, while maintaining com-
parable geometric features in terms of course straightness and vertical
interlocking. We also outperformed the model-free method (Liu et al.,
2018) in almost every respect.

By arranging stones of various shapes and sizes, we demonstrated
the algorithm’s effectiveness in handling rectangular stones. With
rounded stones, the algorithm successfully attained dense and stable
configurations when the stones were of diverse sizes. However, it was
less effective for stacking stones with acute angles due to the study’s
methodology in optimizing stone orientation by minimizing the shape
factor. Although considering more orientation angles improved the
metrics, it also led to higher computational costs.

The analysis on the computation cost of the algorithm showed that
it can be used in real-time robotic constructions, capable of planning
a 32-stone wall in 10 s. Reducing the image resolution can efficiently
reduce the computation cost. Further, we observed that the computa-
tional time was proportional to the size of candidate stone set. Using
parallel computing, solving the best position of each candidate stone
on separate processors, can accelerate the process and allow the use of
large candidate set.

An immediate extension of this research will concentrate on the
practical implementation of the proposed method for physical construc-
tion. In this regard, objects possessing a uniform section shape can
serve as suitable candidates as 2D stones. The physical actions can
be carried out using robotic arms (Johns et al., 2020) or by individ-
uals equipped with augmented reality (AR) facilities (Settimi et al.,
2023). Furthermore, there is potential for further advancement of the
current algorithm, including the incorporation of 3D stones, planning
mortar-joint stone masonry walls, and advanced wedging algorithms.

Data availability

The codes and data set are available on Github (https://github.com/
eesd-epfl/StablePacking-2D/).
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Appendix A. Algorithms

Algorithm 2: Selecting the best action
Input : 𝛱𝑖 = {(𝑀1, 𝑆1) (𝑀1, 𝑆1) … (𝑀𝑚, 𝑆𝑚)}, 𝐿𝑖, 𝜔𝑇

Output: (𝑀𝑚∗, 𝑆𝑚∗)
1 begin
2 𝛱1 = {(𝑀,𝑆) ∣ LLC(𝑀,𝑆) > 0, (𝑀,𝑆) ∈ 𝛱𝑖};
3 if 𝛱1 = ∅ then
4 return Construction Terminates;
5 else
6 𝛱2 = {(𝑀,𝑆) ∣ LLC(𝑀,𝑆) ≥ LLC(𝛱1), (𝑀,𝑆) ∈ 𝛱1};
7 if 𝛱2 = ∅ then
8 (𝑀𝑚∗, 𝑆𝑚∗) = argmax 𝜔𝑇 𝑒1LLC(𝑀,𝑆);
9 else
10 𝛱3 = {(𝑀,𝑆) ∣ NHR(𝑀,𝑆) ≥ NHR(𝛱2), (𝑀,𝑆) ∈

𝛱2}};
11 if 𝛱3 = ∅ then
12 (𝑀𝑚∗, 𝑆𝑚∗) =

argmax 𝜔𝑇 (𝑒1LLC(𝑀,𝑆) + 𝑒2NHR(𝑀,𝑆));
13 else
14 𝛱4 = {(𝑀,𝑆) ∣ IWR(𝑀,𝑆) ≥ IWR(𝛱3), (𝑀,𝑆) ∈

𝛱3 𝑀𝑆 being inner stone} ∩ {(𝑀,𝑆) ∣
IS(𝑀,𝑆) ≥ IS(𝛱3), (𝑀,𝑆) ∈
𝛱3},𝑀𝑆 being boundary stone};

15 if 𝛱4 = ∅ then
16 (𝑀𝑚∗, 𝑆𝑚∗) = argmax 𝜔𝑇 (𝑒1LLC(𝑀,𝑆) +

𝑒2NHR(𝑀,𝑆) + 𝑒3(IWR(𝑀,𝑆)∕IS(𝑀,𝑆)));
17 else
18 𝛱5 = {(𝑀,𝑆) ∣ GDS(𝑀,𝑆) ≥

GDS(𝛱4), (𝑀,𝑆) ∈ 𝛱4}};
19 if 𝛱5 = ∅ then
20 (𝑀𝑚∗, 𝑆𝑚∗) =

argmax 𝜔𝑇 (𝑒1LLC(𝑀,𝑆) +
𝑒2NHR(𝑀,𝑆) + 𝑒3IWR(𝑀,𝑆) +
𝑒4GDS(𝑀,𝑆));

21 else
22 𝛱6 = {(𝑀,𝑆) ∣ LFR(𝑀,𝑆) ≥

LFR(𝛱5), (𝑀,𝑆) ∈ 𝛱5}};
23 if 𝛱6 = ∅ then
24 (𝑀𝑚∗, 𝑆𝑚∗) =

argmax 𝜔𝑇 (𝑒1LLC(𝑀,𝑆) +
𝑒2NHR(𝑀,𝑆) + 𝑒3IWR(𝑀,𝑆) +
𝑒4GDS(𝑀,𝑆) + 𝑒5LFR(𝑀,𝑆));

25 else
26 end
27 end
28 end
29 end
30 end
31 end
32 end

Appendix B. Example walls

B.1. Walls built with stone sets in Fig. 18

See Figs. B.30–B.32.

B.2. Walls with larger dimensions

See Figs. B.33–B.34.

https://github.com/eesd-epfl/StablePacking-2D/
https://github.com/eesd-epfl/StablePacking-2D/
https://github.com/eesd-epfl/StablePacking-2D/
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Fig. B.30. Constructed walls with regular stones using various construction method. Image size: 289 × 79 pixels.

Fig. B.31. Constructed walls with partially regular stones using various construction method. Image size: 280 × 80 pixels.

Fig. B.32. Constructed walls with irregular stones using various construction method. Image size: 433 × 115 pixels.

Fig. B.33. Walls constructed from a stone set of 91 irregular stones, of which 90 stones could be placed in the construction of the left wall and 91 stones could be placed in the
construction of the right wall. Stones from the same cluster are in the same color. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. B.34. Walls constructed with bricks of the same size. The wall on the left is constructed with bricks of an aspect ratio of 2 and the wall on the right is constructed with
bricks of an aspect ratio of 3. The bricks are colored for differentiation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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