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A B S T R A C T 

The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of 
reionization by observing the corresponding 21-cm signal. Ho we ver, the 21-cm signal will be subject to instrumental limitations 
such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the 
SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions 
in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a 
fore ground remo val method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent 
between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian 

Process Regression, Polynomial Fitting, and F ore ground-Wedge Remo v al. Results sho w comparable performance, highlighting 

SegU-Net v2 ’s independence on these pre-processing methods. Statistical analysis shows that a perfect classification score 
with AUC = 95 per cent is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized 

regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 

21-cm signal, noise, and fore ground residual in images. Moreo v er, as the photon sources driving reionization are e xpected to 

be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of 
isolated bubbles with V ion > (10 cMpc ) 3 at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources. 

Key words: techniques: image processing – techniques: interferometric – dark ages, reionization, first stars – early Universe. 
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 I N T RO D U C T I O N  

adiation emitted by the first luminous sources drastically influenced
he chemical composition and thermal history of the intergalactic

edium (IGM), transitioning the Universe from an initial cold and
eutral state to a final hot and ionized state (e.g. Furlanetto, Oh &
riggs 2006 ; Ferrara & Pandolfi 2014 ; Choudhury 2022 ). These

ources most likely formed at locations where dark matter structures
ollapsed into gravitational bound structures during redshift z �
0 (Abel, Bryan & Norman 2001 ; Bromm et al. 2009 ; P a wlik,
ilosavljevi ́c & Bromm 2011 ). The newly launched JWST 

1 is
lready providing preliminary results by detecting possible ionizing
ource candidates at these high redshifts (Bakx et al. 2023 ; Castellano
t al. 2022 ; Naidu et al. 2022 ), which will help us understand the
onditions for early galaxy formation (e.g. Boylan-Kolchin 2023 ;
ayal & Giri 2023 ; H ̈utsi et al. 2023 ). 
 E-mail: mbianco@protonmail.com 

 http://jwst.nasa.gov 

1  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
Another way to probe the appearance of these first luminous
ources is to observe the evolution of neutral hydrogen ( H I ) in
he IGM. The ground state spin-flip transition of neutral hydrogen
roduces a signal with a wavelength of 21 cm in the rest frame,
nown as the 21-cm signal. The presence of this signal is directly
orrelated with the number density of neutral hydrogen present in the
arly Universe, and with the Universe expansion, the 21-cm signal
avelength redshifts into the radio frequency. As the first stars and
alaxies formed and began emitting ultraviolet radiation, they started
o ionize neutral gas in their surrounding. These primordial sources
roduce enough photons to escape their hosting environment and
ropagate into the IGM. As the hydrogen in the IGM becomes
onized, the intensity of the 21-cm signal decreases. Therefore,
y observing the 21-cm signal from the early Universe with radio
elescopes, we can study the reionization process and learn about the
roperties of the first luminous sources (e.g. Madau, Meiksin & Rees
997 ; Furlanetto et al. 2006 ). Several radio experiments, such as the
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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ow-frequency Array 2 (LOFAR; e.g. Ghara et al. 2020 ; Mertens et al.
020 ), Murchison Wide-field Array 3 (MWA; e.g. Trott et al. 2020 ;
hara et al. 2021 ), and Hydrogen Epoch of Reionization Array 4 

HERA; e.g. The HERA Collaboration 2022a , b ), have been trying
o detect this signal during the epoch of reionization (EoR). 

Currently, the low-frequency band component of the Square 
ilometre Array 5 (SKA-Low; e.g. Mellema et al. 2013 ), which will 
bserve the sky at a frequency range between 50 and 350 MHz, is
nder construction. SKA-Low will have a field of view co v ering ∼(10
e g) 2 on the sk y (Koopmans et al. 2015 ). This radio interferometer
ill be sensitive enough to capture the evolution of the IGM during
oR with images of the 21-cm signal from redshift z = 30 to 5.
his sequence of 21-cm maps observed at different frequencies will 
e stuck together to constitute a three-dimensional (3D) set of data, 
nown as the multifrequency tomographic data set (e.g. Mellema 
t al. 2015 ; Wyithe, Geil & Kim 2015 ; Giri et al. 2018a ). The 21-cm
ignal image data produced by the SKA-Low will contain imprints of
he ionized regions (or bubbles) caused by the luminous sources (Giri
t al. 2018a ; Giri, Mellema & Ghara 2018b ) and neutral regions (or
slands) tracing the cosmic voids (Giri et al. 2019 ). By detecting these
ubbles, we can learn about the locations of the first luminous sources
Zackrisson et al. 2020 ). We can also understand the nature and
istribution of the photon sources driving the reionization process by 
tudying the evolution of their sizes and morphology (e.g. Giri et al.
018a , 2019 ; Kapahtia, Chingangbam & Appleby 2019 ; Gazagnes, 
oopmans & Wilkinson 2021 ; Giri & Mellema 2021 ; Kapahtia et al.
021 ; Elbers & van de Weygaert 2023 ). However, detecting these
onized bubbles in radio telescope observations is not trivial due to 
everal limitations of the telescope, such as the limited resolution 
nd instrument noise. 

To detect these bubbles, previous authors hav e dev eloped methods 
sing visibilities data smoothed with appropriated filters to represent 
he sizes and shapes of the bubbles, then a likelihood for Bayesian
pproach estimates the parameters of the ionized regions filtered 
e.g. Datta, Bharadwaj & Choudhury 2007 ; Ghara & Choudhury 
020 ). Other authors employ the image data of radio telescopes. 
his approach can be intensity-based, where the method filters the 

mage based on a threshold value or region-based, by agglomerate 
lustering correlated pixels into groups with common traits within 
he image (e.g. Achanta et al. 2012 ; Mehra & Neeru 2016 ; Giri
t al. 2018b ). This task is a well-known assignment in artificial
ntelligence (AI) called segmentation. Therefore, another approach 
ould be to consider a deep learning application. Recent work by 
agnon-Hartman et al. ( 2021 ) demonstrated that a combination of

oreground a v oidance and machine learning techniques enable 21- 
m segmentation and bubble detection for experiments that are not 
ecessarily optimized for imaging. Moreo v er, recently, we presented 
ur first work (see Bianco et al. 2021 , hereafter Paper I ), where
e introduced a deep learning approach to identify the distribution 
f H I regions in SKA 21-cm tomographic image using a U-shaped
onvolutional neural network (U-Net) (Ronneberger, Fischer & Brox 
015 ). We named our framework SegU-Net and we assessed how 

his network could process 21-cm images during the EoR contami- 
ated by systematic noise simulated for SKA-Low and segment the 
mages into ionized and neutral regions with an average of 87 per cent
ccuracy for redshift between 7 and 9. Moreo v er, we assessed that our
 https:// www.astron.nl/ telescopes/ lofar
 https://www.mwatelescope.org 
 https:// reionization.org/ 
 https://skatelescope.org 
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etwork outperforms the Super-Pixel method (Giri et al. 2018a ), 
onsidered the state-of-the-art algorithm for EoR segmentation, with, 
n average, 10–20 per cent more accuracy. We also demonstrated 
hat SegU-Net could be used to reco v er the bubble size distributions
ith a relative difference within the 5 per cent and other summary

tatistics with the same level of accurac y. Moreo v er, we pro vided our
ethod with a per-pixel uncertainty map that provides a confidence 

nterval for its prediction and the derived statistics. We have tested the
esponse of our framework to different noise levels based on a shorter
250 h) and more extended (1500 h) observing time, corresponding 
o an under- and o v erestimation of the noise le vel, respecti vely. We
emonstrated that SegU-Net tolerates noise up to 

√ 

2 times larger 
han the one employed in the training process, obtaining the same
evel of accuracy. By studying the uncertainty map and the response
o the noise level, we realized that machine learning models are
ensitive to the dynamic range and the intrinsic resolution of the
imulated images. 

While our previous work demonstrated excellent performance in 
etecting H I regions from EoR images, it should be considered a
roof-of-concept as we consider EoR images with only telescope sys-
ematic noise, and we did not include an y fore ground contamination.
he biggest challenge for the SKA-Low observation, just like other 

adio telescopes, is to separate the 21-cm signal from the undesired
xtra-g alactic and g alactic foreground contamination, which outshine 
he cosmological signal by several orders of magnitude (Jeli ́c et al.
008 ; Bo wman, Morales & He witt 2009 ). The key goal of this work
s to develop tools which remo v e these fore grounds while reco v ering
he regions of H I during EoR from the 21-cm signal image data. 

In this work, we will further develop our deep learning-based 
ethod to determine the ionized bubbles in image data with the

resence of realistic galactic and e xtra-galactic fore grounds e xpected 
rom the SKA-Low. Therefore, here we present SegU-Net v2 , 
hich extends the previous work by including foreground emissions 
f galactic origin and a complete study of its dependency on the
oreground mitigation pre-processing step that partially subtracts the 
oreground signal, thus reducing the dynamic range in the 21-cm 

mages before starting the network training. In the last three decades,
ev eral fore ground remo v al methods with dif ferent approaches have
een developed. Some of the early attempts take advantage of the
pectral smoothness of the galactic and extra-galactic contaminants 
o fit along the line of sight and remo v e the foreground in either
eal or uv space (e.g.: Wang et al. 2006 ; Morales et al. 2006a ;

orales, Bo wman & He witt 2006b ; Gleser, Nusser & Benson
008 ; Liu et al. 2009b ; Wang et al. 2013 ). Ho we ver, more recent
pproaches suggest a non-parametric subtraction (e.g. Harker et al. 
009 ; Chapman et al. 2012 , 2013 ; Gu et al. 2013 ; Bonaldi &
rown 2015 ; Mertens, Ghosh & Koopmans 2018 ) as the frequency

moothness of the foreground spectrum can be corrupted by beam 

ffect and incomplete uv co v erage (Liu, Te gmark & Zaldarriaga
009a ). Therefore, we perform a complete study of different available 
pproaches for foreground subtraction in the case of the SKA-Low 

1-cm tomographic data set applied to SegU-Net v2 . We analyse
he effect of the subtraction process on the predicted binary maps
o that we can establish if a particular foreground removal method
rovides a concrete advantage for our task. 
This paper is organized as follows. In Section 2 , we present how

e generate the simulated data sets used for this work, including
etails of our foreground model in Section 2.3 and a description
f the mock 21-cm observation in Section 2.4 . In Section 4 , we
escribe the design and the training of our neural network. In Section
 , we discuss its application to our simulated SKA-Low data sets
ontaminated by the foreground signal, and we analyse summary 
MNRAS 528, 5212–5230 (2024) 
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Table 1. The telescope parameters used in this work. For the frequency 
channel width, we indicate the quantity at z = 7 and 11. 

Parameters Values 

System temperature T sys 60( ν
300 MHz ) 

−2 . 55 K 

Ef fecti ve collecting area A eff 962 m 

2 

Declination θ c −30 ◦
Frequency channel width 	ν 118 − 96 kHz 
Observation hour per day t daily 6 h 
Signal integration time t int 10 s 
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tatistics such as the mean ionization fraction, power spectra and
opological quantities. In Section 5.2 , we test our framework on a
ifferent fore ground remo val method. We discuss and summarize
ur conclusions in Section 6 . Throughout this work, we assume a
at � CDM cosmology with the following parameters: �� 

= 0.73,
m 

= 0.27, �b = 0.046, H 0 = 70 km s −1 Mpc −1 , σ 8 = 0.82, n s =
.96. These values are based on the Wilkinson Microwave Anisotropy
robe (WMAP) 5 yr observation (Komatsu et al. 2009 ) and consistent
ith Planck 2018 (Planck Collaboration VI 2020 ) results. 

 2 1 - C M  S I G NA L  

his section illustrates the process we follow to create 21-cm mock
bservations of the EoR. Development of the network requires mock
1-cm observations of the EoR for network training, validation and
esting, which will be described in Section 4 . 

.1 Simulating the cosmological 21-cm signal during EoR 

he intensity of the redshifted 21-cm signal emerging from a neutral
loud of hydrogen can be observed by a radio interferometric
elescope as the difference against the CMB temperature T CMB , i.e.
T b ≡ T b − T CMB . F or a giv en sk y angular position ˆ n ˆ n ˆ n and redshift z,
e can define it to be (e.g. Zaroubi 2012 ; Mellema et al. 2013 ) 

T b ( r r r , z) = T 0 ( z ) 

(
1 − T CMB ( z ) 

T S ( r r r , z ) 

)
[1 + δb ( r r r , z)] x HI ( r r r , z) , (1) 

 0 ( z) ≈ 27 mK 

(
�b 

0 . 044 

)(
h 

0 . 7 

)√ (
1 + z 

10 

)(
0 . 27 

�m 

)
. (2) 

here x H I is the neutral hydrogen fraction, δb is the baryonic o v erden-
ity, and T S is the spin temperature. We assume that the IGM is heated
ell abo v e the CMB temperature ( T S � T CMB ) at z � 12, which is

onsistent with theoretical predictions (e.g. Pritchard & Furlanetto
007 ; Ross et al. 2017 , 2019 , 2021 ). 6 In this context, equation ( 1 )
s al w ays positive and can be approximated as δT b ∝ (1 + δb ) x HI ,
hile the presence of ionized regions is characterized by a lack of

ignal, δT b = 0 mK . The radio interferometer cannot observe the
bsolute δT b . Therefore, the ionized regions cannot be identified by
nding pixels with zero signal in the 21-cm image data. To model the

arge-scale cosmological 21-cm signal expected during reionization,
e employ the PYTHON wrapper of the 21cmFAST seminumerical

ode (Mesinger, Furlanetto & Cen 2011 ; Murray et al. 2020 ). The
ode models the dark matter density evolution and gravitational
ollapse using the second-order Lagrangian perturbation theory.
rom the generated large-scale density field, a region is considered
ollapsed when it exceeds a defined mass threshold, which can be
elated to a minimum virial temperature T min 

vir . The excursion set
ormalism is then employed to calculate ionized regions (Furlanetto,
aldarriaga & Hernquist 2004 ). The code outputs a coe v al cube
t different redshifts that are then used for constructing 21-cm
ightcones. We refer the readers to e.g. Giri et al. ( 2018a ) for more
eneral details on the construction of lightcone from coe v al cube
imulations. In this work, we simulate the signal in coe v al cubes for
 total of ∼20 snapshot for redshift z = [7, 11] with a mesh grid of
28 3 that is 256 Mpc along each direction. 
NRAS 528, 5212–5230 (2024) 

 Note that the current 21-cm signal measurements have not completely ruled 
ut the possibility of cold reionization (see e.g. Ghara et al. 2020 , 2021 ; The 
ERA Collaboration 2022a ). The signal becomes very complicated if T S ∼
 CMB when reionization begins (Ross et al. 2021 ; Schneider, Schaeffer & 

iri 2023 ). Therefore, we defer a detailed exploration to the future. 

(  

7

d
L

.2 Systematic noise 

e model the SKA-Low antenna receiver noise by a random
aussian distribution with mean value zero and variance (Ghara

t al. 2017 ; Giri et al. 2018b ) 

uv = 

k B T sys 

A eff 

√ 

2 t daily 

	ν N uv t obs t int 
. (3) 

ere, t int is the integration time, t daily is the window of observation
er day, T sys is the system temperature, A eff is the ef fecti ve collecting
rea, 	ν is the bandwidth, N uv is the number of measurements that
re detected in each cell of the uv -co v erage grid. We assume an
bservation length of t obs = 1000 h. We list the SKA-Low telescope
arameters in Table 1 . The uv -co v erage grid is simulated assuming
he current plan for antennae distribution of SKA-Low. 7 In the top
ight-hand panel of Fig. 1 , we show an example slice of the 21-cm
ignal and a noise realization at z = 8.24. As the map is degraded to
 resolution corresponding to a maximum baseline of B = 2 km, we
an see the large-scale distribution of the neutral and ionized regions.

.3 For egr ound contamination 

etween 250 and 30 MHz , the dominant emission comes from the
alactic synchrotron radiation. This emission alone is expected to

ontribute to the majority of the total foreground contamination of
he comic 21-cm signal (Di Matteo et al. 2002 ; Di Matteo, Ciardi &

iniati 2004 ; Santos, Cooray & Knox 2005 ; Datta et al. 2007 ; Jeli ́c
t al. 2008 ; Kerrigan et al. 2018 ). Other contributors can include
missions from unresolv ed e xtra-galactic point sources, Galactic
ree–free emissions, supernova remnants and extra-galactic radio
lusters, which, for simplicity, hav e been ne glected in this study. We
ased our Galactic synchrotron emission model on the Choudhuri
t al. ( 2014 ) study. We express the foreground radiation with a
aussian random field with an angular power spectrum as 

 

syn 
l ( ν) = A 150 

(
1000 

l 

)β (
ν

ν� 

)−2 αsyn −2 	 αsyn log 
(

ν
ν� 

)

. (4) 

ere, the parameter for the Galactic synchrotron emission is the
ower spectra amplitude A 150 = 512 mK 

2 at the reference frequency
� = 150 MHz , the angular scaling β = 2 . 34, the spectra index
syn = 2 . 8 and the running spectral index 	 αsyn = 0 . 1. These
uantities are taken from Platania et al. ( 1998 ) and Wang et al.
 2006 ). We then generate the foreground temperature fluctuations
 The SKA-Low design is given at https:// www.skao.int/ sites/ 
efault/ files/ documents/ d18- SKA- TEL- SKO- 0000422 02 SKA1 
owConfigurationCoordinates-1.pdf. 

https://www.skao.int/sites/default/files/documents/d18-SKA-TEL-SKO-0000422_02_SKA1_LowConfigurationCoordinates-1.pdf
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Figure 1. An example of a slice through the sky-plane used during the network training. Top Left : The neutral hydrogen fraction at simulation resolution 
when the reionization process is halfway complete. Bottom Left : The simulated 21-cm signal after the interferometric smoothing with a maximum baseline 
of B = 2 km and matching frequency resolution. We then subtract the frequency mean signal to mimic the effect of the lack of a zero baseline. Top Right : 
Systematic noise added to the 21-cm signal for an observing time of 1000 h. A solid black line indicates the neutral field after the same interferometric smoothing 
scale. Bottom right : The Galactic synchrotron emission added to the 21-cm signal with the systematic. We can notice how the dynamic range is a few orders of 
magnitude larger and completely outshines the 21-cm signal. For all the differential brightness images, the units are in mK . 
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ap following the relation: 

T 
frg 
b ( U, ν) = 

√ 

�SKA C syn 
l ( ν) 

2 
[ x l ( U ) + i · y l ( U ) ] . (5) 

SKA is the total SKA-Low solid angle and U = l /2 π . The two
uantities x l and y l are independent random Gaussian variables with 
ean zero and variance of one, N ∼ (0 , 1). By performing two-

imensional inv erse fast-F ourier transform of equation ( 5 ), we get
he spatial distribution of the foreground contamination δT frg b ( ̂ n ˆ n ˆ n , z). 

ith each lightcone simulation, we fix the random variables seed 
or the lowest redshift, z = 7, and compute equation ( 4 ) for the
orresponding frequency of the image. 

.4 Mock 21-cm obser v ation 

rom the simulated coe v al cubes described in Section 2.1 , we
reate 3D lightcones with differential brightness δT sim 

b ( ̂ n ˆ n ˆ n , z) ≡
T sim 

b ( x , y , z) at x , y coordinates for a total box size of 256 cMpc
nd spatial resolution of 	x = 2 cMpc, both in comoving units,
orresponding to an angular mesh-size of 128 2 . This scale corre-
ponds to an angular resolution of 	θ = 0 . 77 arcmin at redshift
 = 7. The redshift coordinate is divided into 552 bins at equal
omoving distance 	 x from z = 11 to 7, corresponding of frequencies
rom νobs = 118 MHz to 178 MHz and a frequency resolution of
pproximately 	ν 	 0 . 11 MHz. 

We select one tomographic simulation from the prediction data set 
s our fiducial simulation. In Fig. 1 , left column, we show a slice of
his fiducial lightcone at redshift z = 8.24, corresponding to νobs =
52 . 90 MHz. At this stage, the simulated lightcone is 50 per cent
onized. The top panel shows the neutral fraction x H I , with blue and
ed regions being the neutral and ionized re gions, respectiv ely. At
he same time, the green colour indicated regions of transitions with
 	 0.5. The differential brightness is calculated with equation ( 1 )
ith the approximation discussed in Section 2.1 . 
From radio interferometry telescope, we can obtain images by 

ridding the uv-plane and inv erse F ourier transform the gridded
isibility (Smirnov 2011 ; Offringa et al. 2014 ). Image weighting
an be applied to the visibilities before the gridding, and in the
ase of large-scales 21-cm EoR experiment with SKA-Low, the 
MNRAS 528, 5212–5230 (2024) 
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Figure 2. Cylindrical power spectra for a lightcone subvolume centred at 
redshift z c = 8.24 and frequency depth of ±10 MHz. Top Panel : 2D Power 
spectra from the simulated 21-cm signal only. Bottom Panel : Same quantity 
but with the galactic foreground contribution. The black dashed line indicates 
the wedge slope with θ = 2.25 ◦ and b = 8 × 10 −2 h Mpc −1 . 
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o-called natural weighting is preferable as the more redundant,
hort baselines ensures the highest signal-to-noise ratio in the image
t the expense of a limited image resolution and large side lobes
ffect (Briggs 1995 ). In our case, we do not simulate the 21-
m signal from the visibility space but instead work on images
lready in the real space. Therefore, to mimic the effect of the
imited resolution due to the visibility weighting, in the angular
irection, we apply a Gaussian kernel, G ( ̂ n ˆ n ˆ n , z), with full width at
alf-maximum (FWHM) of 21 cm(1 + z)/ B , where B = 2 km that
orresponds to the maximum baseline of SKA-Low. According to
he planned SKA-Low design, 8 it will be densely filled within this
 km providing enough sensitivity to construct images. The bottom
anel in Fig. 1 shows the differential brightness after smoothing
he field with G ( ̂ n ˆ n ˆ n , z). For reference, this interferometric smoothing
orresponds to an angular resolution of ∼ 2 . 9 arcmins at z ≈ 7 and

4 . 3 arcmins at z ≈ 11. In the frequency direction, we apply a top-
at bandwidth filter with the same width as the FWHM in the angular
irection. We implement the method explained in Section 2.2 and the
arameters listed in Table 1 to simulate the effect of the systematic
oise, δT noise 

b ( ̂ n ˆ n ˆ n , z). We create a random field with the same mesh
ize as the lightcone and add the simulated differential brightness. We
hen apply the same interferometric smoothing mentioned abo v e, and
he result is shown in Fig. 1 (top right-hand panel). As a reference
or the reader, this was the network input in our previous work
 Paper I ). 

In this paper, we want to extend our pre vious ef fort as we want
o reco v er the neutral binary map in the presence of contamination
ue to the synchrotron Galactic foreground, δT frg b ( ̂ n ˆ n ˆ n , z). The result
f the model described in Section 2.3 is shown in Fig. 1 (bottom
ight-hand panel). As we can see, the dynamic range of the observed
hanges drastically. Our previous work showed that our method is
ensitive to the SNR level between the noise and the 21-cm signal.
herefore, we need to introduce an additional pre-processing step in
ur framework to mitigate foreground contamination and decrease
he dynamic range of the contaminated images before providing them
or network training. We will discuss this method in more detail in
ection 3 . 
We can describe our mock observation pipeline by combining the

omponents and operations described here abo v e as (e.g. Liu & Shaw
020 ) 

T obs ( ̂ n ˆ n ˆ n , z) = δT sim 

b ( ̂ n ˆ n ˆ n , z) + δT 
frg 
b ( ̂ n ˆ n ˆ n , z) + δT noise 

b ( z) . (6) 

or each realization of the lightcone δT obs ( ̂ n ˆ n ˆ n , z), illustrated with
ig. 1 , we calculate the mean along the frequency channels, 

T obs ( z) = 

1 

N x N y 

N x ∑ 

i= 1 

N y ∑ 

j= 1 

δT obs ( x i , y j , z) , (7) 

here N x and N y are the dimension in the angular-direction of
he 128 2 mesh. We subtract this quantity from δT obs to account
or the effect of the null baseline in interferometry telescopes. For
his reason, the colour bar in the figure shows a ne gativ e value. W
onvolve the subtracted term with the Gaussian kernel G mentioned
bo v e 

˜ T obs ( ̂ n ˆ n ˆ n , z) = 

∫ 
�SKA 

[
δT obs ( ̂ n ˆ n ˆ n 

′ , z) − δT obs ( z) 
] · G ( ̂ n ˆ n ˆ n − ˆ n ˆ n ˆ n ′ , z) d ̂ n ˆ n ˆ n ′ . (8) 

his result constitutes a realistic mock observation of the SKA-
ow interferometric telescope, including systematic noise, Galactic
NRAS 528, 5212–5230 (2024) 

 The construction document can be found at https:// www.skao.int/ en/ 
esources/ 402/ key-documents . 

s  

o  

c  

W  
oreground contamination, and telescope limited resolution effect.
e employ this pipeline to create the training, validation and random

esting set . In Section 3 , we explain how we pre-process this type of
ata before inputting it into our neural network. 
Finally, we create an additional field that serves as the target of the

etwork training. We apply the interferometric smoothing explained
bo v e to the simulated neutral fraction field x H I (the top left-hand
anel of Fig. 1 ). We then choose a threshold of x th = 0.5 to discern
he ionized and neutral regions. The result is a binary lightcone,
 

B 
HI ( ̂ n ˆ n ˆ n , z), where neutral and ionized regions are classified by 1 and
, respectiv ely. F or a visual comparison, we o v erplot the contour
f this binary field as a black line in the top right-hand panel of
ig. 1 . 

 F O R E G RO U N D  MI TI GATI ON  

s we outlined in Section 2.4 , foreground contamination poses a
uge problem in detecting the 21-cm signal, as this signal is several
rders of magnitude fainter in comparison. In Fig. 2 , we illustrate the
ffect of the foreground contamination on the two-dimensional (2D)
ylindrical power spectrum for a lightcone subvolume centred at red-
hift z c = 8.24 and frequency width of 	ν ± 10 MHz. This quantity
f the 21-cm signal (top panel) is compared with the same signal
ontaminated by the Galactic foreground signal (bottom panel).
e observe that the contamination is visible at k ‖ ≤ 10 −1 Mpc / h

https://www.skao.int/en/resources/402/key-documents
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ith signal intensity of ≥ 10 9 mK 

2 . The black dashed line in the
gure indicates the foreground wedge. We will discuss this line 

ater in Section 3.2 . To reduce the dynamic range of the foreground
ontaminated images to a level that is manageable for the neural 
etwork, we include a pre-processing step on the observed data, ˜ T obs ( ̂ n ˆ n ˆ n , z). Hereafter, we refer to the resulting images of this pre-
rocess as residual lightcone or ima g es , δT res ( ̂ n ˆ n ˆ n , z). 
In foreground mitigation, we can consider two methods: fore- 

round subtraction or a v oidance (Chapman & Jeli ́c 2019 ). Here,
e consider three of the former cases, namely principal component 

nalysis (PCA), Gaussian regression processes (GPR), and Polyno- 
ial fitting, and one of the latter techniques, Wedge removal. In this

ection, we briefly describe four different pre-processing methods 
hat we test and we provide the residual image in Fig. 3 for each

ethod. The top panels show the residual image of the example 
llustrated in Fig. 1 , while black contours indicate the ground truth.
he bottom panel shows the 2D cylindrical power spectrum for the 
ducial lightcone subvolume centred at z c = 8.24 and frequency 
epth of ±10 MHz. 

.1 Principal component analysis 

CA is a commonly used method to remo v e fore grounds in 21-cm
xperiments (e.g. Alonso et al. 2015 ; Cunnington et al. 2023 ; Chen
t al. 2023a ). The method exploits the fact that foregrounds have large
mplitude and smooth frequency coherence. PCA simultaneously 
dentifies the largest foreground components and an optimal set 
f basis functions that describe the frequency structure of the 
ore grounds. As the fore grounds are highly correlated in frequency, 
he frequenc y–frequenc y co-variance matrix of the fore grounds will 
ave a particular eigensystem where most of the information can be 
ufficiently described by a small set of very large eigenvalues, the 
ther ones being negligibly small. Thus, we can attempt to subtract 
he foregrounds by eliminating the components corresponding to the 
igenvectors of the frequency co-variance matrix with the largest 
ssociated eigenvalues. In practice, we remo v e four components, 
hich captured most of the variance of the foreground modes. PCA

s a relatively fast and computationally efficient method that requires 
o prior assumptions about the foregrounds or the 21-cm signal. 
o we ver, PCA is not well-suited to handle non-linear relationships
etween the foregrounds and the 21-cm signal, and it can struggle 
o remo v e residual fore grounds not well-described by the largest
omponents. 

In Fig. 3 , left column, we show the residual image at z c = 8.24, on
op. After removing the first four components with PCA decompo- 
ition on the 20 MHz subvolume of the fiducial lightcone, we obtain
his image. On the bottom panel, we show the corresponding 2D 

ower spectra. 

.2 Wedge remo v e 

e consider another pre-process that focuses on discarding the 
ourier modes dominated by foreground contamination. This method 
ssumes that the contaminated modes are contained in specific 
egions in the k ⊥ 

−k � space, named the foreground wedge . These
ontaminated k -modes can be defined by (e.g. Liu, Parsons & Trott
014 ; Murray & Trott 2018 ) 

 ‖ ≤ | k ⊥ 

| H ( z) 

1 + z 

∫ z 

0 

d z ′ 

H ( z ′ ) 
· sin θ + b, (9) 

here H ( z) is the Hubble parameter and k ⊥ 

is the Fourier component
erpendicular to the line of sight. θ is the angular size of the field
f view, which can be interpreted as the horizon limit angle. b is
he bias that accounts for the presence of an intrinsic foreground
imit at low k � values. Pessimistic and arguably more realistic 
ssumptions consider the horizon limit to θ = 90 ◦ justified by 
ntenna side-lobes effect (Dillon et al. 2014 ; Pober et al. 2014 ).
n our case, we select θ = 2.25 ◦, corresponding to the field of view
FoV), at redshift z = 7 and comoving size of 256 cMpc, of our
ata set. We then select b = 8 × 10 −2 h Mpc −1 based on the 2D
ylindrical power spectrum shown in the right-hand panel of Fig. 2 .
he dashed black line indicates equation ( 9 ) for the θ and b mentioned
efore. 
In this work, we employ a simplified version of the code developed

y Prelogovi ́c et al. ( 2021 ). Here, we give a brief description,
eferring the reader to the original paper for more details. First,
e perform a 2D Fourier transform in the angular direction of a

ightcone subvolume, equation ( 8 ), centred at redshift z c and with a
iv en frequenc y depth, ±	ν. Subsequently, an iterating procedure 
long the line-of-sight axis calculates equation ( 9 ) and sets the k -
odes that obey the condition to zero. A Blackmann–Harris taper 

unction of the same angular and redshift size is multiplied by the
ightcone to a v oid artificial ringing in the Fourier space. Ho we ver,
his taper has the limitation that at low k � , it reduces the Fourier-
pace side lobes, while the opposite effect occurs at high k � . Finally,
e do an inverse Fourier transform to regain the real-space lightcone

ubvolume. 
An example of data with the foreground contamination remo v ed

y this algorithm can be seen in the second column of Fig. 3 . From the
esidual image (top panel), we see a large portion of the foreground
esidual is still present. The bottom panel shows the 2D cylindrical
ower. The dark blue colour indicates the k ⊥ 

−k � modes where the
edge remo v es method is applied. 

.3 Gaussian process regression 

he GPR method was developed in Mertens et al. ( 2018 ) to separate
oregrounds from 21-cm signal by modelling the two components as 
 stochastic process and separating them using a Bayesian approach. 
he method involves constructing a prior statistical model of the fore-
rounds and the 21-cm signal and then using the model to estimate
he posterior distribution of the 21-cm signal given the observed data.
his is done by assuming that the foregrounds and 21-cm signals are

ealizations of Gaussian processes, fully defined by their covariance. 
he selection of the prior covariance model in GPR is made under
 Bayesian framework by maximizing the marginal likelihood. The 
at ́ern class of covariance functions is commonly used as prior

ovariance for the different data components. Following Mertens et 
l. ( 2018 ), a radial basis function kernel is used as the prior covariance
odel for the foreground component, while an exponential kernel is 

sed for the 21-cm signal. This method can ef fecti v ely remo v e fore-
round contamination from the 21-cm signal and has the advantage of 
eing able to incorporate prior knowledge about the signal and fore-
rounds. Ho we ver, it requires accurate modelling of the foregrounds
nd assumptions about the statistical properties of the signal and 
oregrounds. 

In Fig. 3 , third column, we show the result obtained by the GPR
resented here abo v e. Similar to PCA, see Section 3.1 , GPR remo v es
 good portion of the foreground contamination providing a better 
ontrast between the 21-cm emitting regions and the ionized one. For
nstance, the regions around ( x , y ) = (225 , 100)Mpc and ( x , y ) =
150 , 200)Mpc. From the 2D power spectra at k � > 3 × 10 −2 , we
ee more signal when compared to PCA pre-process data. 
MNRAS 528, 5212–5230 (2024) 
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Figure 3. Comparison between different foreground mitigation methods. From left to right, we have PCA, wedge removal, GPR, and polynomial fitting. First 
row, a visual example at redshift z = 8.24 of the residual image after the corresponding method. Second row, the cylindrical power spectrum for a lightcone 
subvolume centred at z c = 8.24 and frequency depth ±10 MHz. 
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.4 Polynomial fitting 

e can also use polynomial fitting to remo v e fore ground contamina-
ion from the 21-cm signal (Wang et al. 2006 ; Alonso et al. 2015 ). The
ethod involves modelling the foregrounds as a smooth polynomial

unction in log space and fitting this function to the observed data,˜ T obs . 

log ( T ( ̂ n ˆ n ˆ n , z) ) = 

N fg ∑ 

k= 1 

αk ( ̂ n ˆ n ˆ n ) 

[
log 

(
ν0 

1 + z 

)]k−1 

. (10) 

ere, ν0 is the 21-cm frequency and N fg indicates the polynomial
egree. In our study, we consider a fourth-degree polynomial. The
esulting fit is then subtracted from the data to remo v e the fore ground
ontamination δT res = δ˜ T obs − T ( ̂ n ˆ n ˆ n , z). 

This approach has the advantage of being simple and computation-
lly efficient but may not be as effective at removing foregrounds as
ther, more sophisticated methods. One limitation of the polynomial
tting is that it assumes the foregrounds can be well-described
y a smooth polynomial, which may not al w ays be the case (e.g.
h yag arajan et al. 2015 ). Additionally, if the polynomial fit is not in
igh enough order, it may leav e some fore grounds in the data, while
n o v erly high-order polynomial may also remo v e the signal. The
olynomial fitting has been combined with other foreground removal
ethods in some studies to impro v e the o v erall performance of the

ore ground remo val process. 
In Fig. 3 , fourth column, we show the result obtained by

he polynomial fitting. In both cases, from the residual image
nd the 2D power spectra, visually, we see similar results to
PR, see Section 3.3 , with a more considerable difference be-

ween the positive (neutral) and negative (ionized) regions in
he residual image, although presenting the same level of resid-
al foreground located at ( x , y ) ∼ (80 , 125) Mpc as in the other
ethods. 
NRAS 528, 5212–5230 (2024) 
 U-NET  F O R  2 1 - C M  I MAG E  SEGMENTAT IO N  

he network architecture of SegU-Net v2 is the same as in Paper I .
he only implementation consists of a simplistic hyperparameter op-

imization analysis on seven network hyperparameters. In Appendix
 , we give a brief overview of the hyperparameter space exploration
ethod we employed and in Table A1 , we list the six best-performing

et-ups we found. Moreo v er, in Appendix B , we present a first attempt
o open the black box and performed a Gradient-weighted Class
cti v ation Mapping (Grad-CAM; Selvaraju et al. 2019 ) importance

nalysis to highlight the features in the input image that the network
mploys to identify and predict the neutral regions from residual
mages. In Fig. B1 , we give a visual representation of the Grad-CAM
mportance analysis we performed. 

.1 Network ar chitectur e 

ere, we give a brief description of our network architecture. We
efer the reader to our previous work for more details. SegU-Net
s a U-shaped deep convolutional neural network composed of a
ontracting (encoder) and an expanding path (decoder). The former
as two convolutional blocks, followed by the 2D averaging pooling
peration of size 2 2 and a dropout layer with a 5 per cent rate,
ncoder-Level = 2 ∗ConvBlock + AvrgPool + Drop . 
 convolutional block consists of a 2D convolutional

ayer with kernel size 7 2 , followed by batch normalization
nd Rectified Linear Unit ( ReLU ) acti v ation function,
onvBlock = Conv2D + BN + ReLU . The latter path consists
f transposed 2D convolution followed by the concatenation
ith the corresponding output of the convolutional encoder
lock, dropout layer and two convolutional blocks, Decoder-
evel = TConv2D + CC + Drop + 2 ∗ConvBlock . This
tructure is repeated four times for both the encoder and decoder. At
ach level, the pooling operation halves the angular dimension of
he input and doubles the number of channels. The network takes as
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nput a redshift slice from the residual lightcone, δT res , and outputs
he corresponding 2D binary image, x B HI . 

.2 Data set 

e generated a large set of realizations of the SKA multifrequency 
omographic data set by changing the initial conditions and the 
ollowing three astrophysical parameters. We sample the high- 
edshift galaxy efficiency ζ and the MFP of ionizing photons R mfp 

ith a normal distribution with mean and variance N (82 , 18)
nd N (17 . 5 Mpc , 4 . 5 Mpc ), respectively. At the same time, the
inimum virial temperature for star-forming haloes T min 

vir is sampled 
n logarithmic space with distribution N (4 . 7 , 0 . 2). We chose this
ampling of parameters because we want the global v olume-a veraged 
eutral fraction x HI of all data to be at least greater than 90 per cent
t redshift z = 11 and less than 10 per cent at redshift 7. Moreo v er,
ith this parameter sampling, we can postulate the spin-saturation 

ssumption, T S � T CMB , which assures that the differential brightness 
s strictly positive and that neutral hydrogen is correlated with a 
ositive signal in each image. 
In this work, we updated the data set from Paper I for a total of

0 000 samples for the network training and 1500 for validation. Once
he network is trained, we will test its accuracy and generalization 
bility on an additional 300 mock observations during the prediction 
tep. We will refer to this data set as the random testing set .
he training data set is employed during the forward- and back- 
ropagation (Rumelhart & Zipser 1985 ), while the validation data 
et is used to validate the accuracy of network results during training.
e want to clarify that we trained SegU-Net v2 on δT res data

re-processed only with the PCA eigen-decomposition on the full 
edshift range, z = 7 to 11, which is explained in Section 3.1 . The
esting data set is an independent set of simulations on which we will
alidate the final results of the trained network. 

.3 Metrics 

e consider a true positive (TP) detection to be the number of pixels
orrectly identified as neutral, while a true ne gativ e (TN) is the
pposite. F alse positiv es (FP) and false ne gativ es (FN) represent the
umber of pixels wrongly classified as neutral or ionized. Therefore, 
e can define the Matthews correlation coefficient (MCC) for 
uantifying the accuracy of our network predictions as 

 φ = 

TP · TN − FP · FN √ 

(TP + FP)(TP + FN)(TN + FP)(TN + FN) 
. (11) 

his metric can have values between −1 ≤ r φ ≤ 1, quantifying 
he quality of binary field (two-class) classifications. A ne gativ e 
alue indicates anticorrelation, zero represents a completely random 

lassification, and positive values indicate a positiv e correlation. F or
 direct comparison with previous studies on segmentation of 21- 
m image data (e.g. Gagnon-Hartman et al. 2021 ), we define three
dditional statistical metrics as follows: 

ccuracy = 

TP + TN 

TP + FP + FN + TN 

. (12) 

ere, this metric indicates how well a model is able to predict the
arget variable correctly: 

recision = 

TP 

TP + FP 

. (13) 

his second metric refers to the level of consistency or repeatability 
f a predicted value. While accuracy and precision are important 
etrics in e v aluating the performance of a network, they may
ot be sufficient in certain scenarios. For instance, in our binary
lassification problem, there can be scenarios when neutral regions 
an be much rarer than ionized regions and vice versa. In this case,
ccuracy can be misleading as the model may achieve high accuracy 
y simply predicting the majority class for all instances. Precision 
nd recall are more informative metrics in such cases as they consider
he class imbalance: 

oU = 

TP 

TP + FP + FN 

. (14) 

o we ver, here, we include the third additional metric, the Intersection
 v er Union (IoU), that quantifies how well the predicted neutral
egion of interest overlaps with the true one. We will use these
etrics later in Section 5.2 . 
In our case, we are targeting binary maps that indicate the location

n the sky at a given redshift as either neutral or ionized. Therefore,
n easy way for the reader to interpret the results is in the number
f pixels guessed correctly or wrongly. For this reason, we introduce
he false positive rate (FPR), also referred to as non-specificity, and
he true positive rate (TPR), also known as sensitivity: 

PR = 

TP 

TP + FN 

, FPR = 

FP 

FP + TN 

. (15) 

he former quantity gives the percentage of neutral pixels (positive 
ase in our context) correctly identified as neutral. A value of TPR =
 will indicate that the network identified all the neutral pixels
orrectly. Otherwise, 1 − TPR indicates the percentage of pixels 
alsely classified as ionized. Similarly, the FPR gives the percentage 
f pixels falsely detected as neutral. 

.4 Per-pixel error estimation 

he error calculation uses the same method as in Paper I . In the
rediction step, we employ temporal time augmentation (TTA) 
perations (Perez & W ang 2017 ; W ang et al. 2020 ) on the network
nput data to create several copies of the same realization but that we

odify by rotating and vertical/horizontal flip operation. In this work, 
e fix the axis of symmetry and rotation to the frequency direction.
hus, the number of manipulations was reduced to a sample of
6 copies. This number corresponds to the maximum independent 
perations we can apply to an image. SegU-Net v2 then gives
 prediction for each modified copy that is then rotated or flipped
ack to obtain a different prediction of the same input image. We
alculated the standard deviation, σ std , on the 16 copies and obtained
 per-pixel uncertainty map as shown in Fig. 4 , bottom panel. The
ethod is simple but ef ficient, sho wing ho w dif ficult it was for the

etwork to give the predicted binary field for each pixel in the image.

 RESULTS  

his section discusses the result obtained with SegU-Net v2 
cting on data pre-processed with the PCA foreground removal 
ethod as explained in Section 3.1 . Here, we e v aluate the result

n the predicted binary maps and the network performance on 
he different methods (illustrated in Section 3 ) in Sections 5.1 and
.2 , respectively . Finally , in Section 5.3 , we demonstrate a possible
strophysical application of SegU-Net v2 . 

.1 Identifying H II regions with SegU-Net v2 

n Fig. 4 , we visually e v aluate one realization of the network
redicted neutral (red) and ionized (blue) regions. We refer to this
MNRAS 528, 5212–5230 (2024) 
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Figure 4. Visualization of the different fields for our fiducial lightcone. Top left : For a given position on the x -direction, the redshift evolution of the residual 
lightcone after the PCA pre-processing step. Top Right : Residual image at redshift z = 8.24 ( x HI = 0 . 5). Same image as in Fig. 1 . Middle left : Redshift evolution 
of the predicted neutral (red) and ionized (blue) lightcones. Middle right : Predicted map at the corresponding redshift. Bottom left : The corresponding per-pixel 
error lightcone, orange colour indicates the intensity of the uncertainty. Bottom right : The corresponding per-pixel error map. For all panels, we o v erplot contours 
that represent the ground truth. 
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imulated lightcone as the fiducial simulation. In the right column, we
how a slice at redshift z = 8.24 ( νobs = 152 . 90 MHz ), corresponding
hen the global v olume a verage neutral fraction is x HI = 0 . 5. From

op to bottom, we show the residual image after the PCA pre-
rocessing employed as the input of the neural network, the binary
ap predicted with SegU-Net v2 from the PCA pre-processed

ata and the derived per-pixel uncertainty , respectively . In the left
olumn, we show the redshift evolution of the same fields along one
iven direction of the corresponding fields. 
First, when we compare the bottom right-hand panel in Fig. 1

ith the top right-hand panel in Fig. 4 , we can notice that the pre-
rocessing step drastically reduces the signal from δT b ∼ ±10 5 mK
o just an observed differential brightness of few tens δT b ∼ ±40 mK.
evertheless, some of the foreground contamination is still visi-
le. For instance, in Fig. 4 top left-hand panel, we can see that
cross a few frequency bands at z ≈ 10.8 presents an anomalous
eature. Moreo v er, we can see that foreground residual is still
resent between 7 ≤ z ≤ 8.2. This signal excess is self-evident
n the per-pixel uncertainty for the same redshift range. Some
requency bands are saturated with considerable uncertainty σ std ∼
.3. This is because the foreground component is correlated along
he frequency direction and is primarily diffused over large angular
NRAS 528, 5212–5230 (2024) 
cales. The foreground residuals thus observe extended features
long the z direction o v er multiple adjacent frequenc y channels.
rom the redshift evolution of the predicted binary field (left middle
anel), we notice that the network can either falsely detect bubbles
hen most of the lightcone is still highly neutral, z ≥ 9.5, or

ompletely miss ionized bubbles that are entirely surrounded by
eutral hydrogen. In both cases, the mislabelling is limited to bubbles
ith sizes close to or smaller than the interferometric smoothing

cale, 	x ∼ 9 Mpc, as the network confuses structures with small-
cale noise fluctuations. Thus posing a hard limit on the possibility
f measuring and detecting the smallest H II bubble close to the
nstrument resolution. We discuss this further in Section 5.3 . This
imitation is visible from the reco v ered binary field at redshift
 = 8.24 (middle right-hand panel). Here, the detection of the
ubbles at 180 Mpc ≤ x ≤ 210 Mpc is entirely missed. We observe
he same outcome for the island of neutral hydrogen at coordinates
 x , y ) ≈ (75 , 75) Mpc. These erroneous findings are associated with
 moderate to high uncertainty σ str ≥ 0.2. As we mentioned abo v e, the
er-pixel uncertainty shows that at the early stage of reionization, z
 9, most of the uncertainty is either situated around small H II

olumes, V ≤ (10 3 Mpc ) 3 , or at the border between neutral and
onized regions. On the other hand, at the late stages, z < 8.2,
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Figure 5. Statistical analysis of the predicted binary maps for the testing data set. Each point indicates an image at a given redshift in the colour bar. Left-hand 
panel : Correlation plot between the ground truth v olume a verage neutral fraction, x HI , true , against the predicted, x HI , pred . Right-hand panel : Matthew correlation 
coefficient r φ against global v olume-a veraged neutral fraction. The dashed blue line indicates the redshift averaged r φ . Here, solid green lines indicate the 
68 per cent (1 σ ) and dashed green lines the 95 per cent (2 σ ) data contour. Right-hand panel : Receiver operating characteristic curve for the same data set. The 
dashed line of different blue shades indicates the percentage of reliability of the prediction. 
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igh uncertainty is mostly located in the vast, interconnected ionized 
GM. 

In Fig. 5 , we show three statistical analyses for the entire random
esting set . In the left-hand panel, we show the correlation plot
etween the true global averaged neutral fraction x̄ HI , true against the 
redicted x̄ HI , pred . The dashed green line indicates the 95 per cent data
ontour, corresponding to a 2 σ difference from the ground truth. The 
 σ contour clearly shows a deviation on the left-hand side of the
lack dashed line (perfect correlation), indicating that the predicted 
mages tend to be considered more neutral than they should be. 
his trend is more visible at lower redshift z < 8.5 ( ̄x HI , true < 0 . 4)
s more points reside outside of the 95 per cent percentile. This
ehaviour can be moti v ated by the presence of residuals from the
oreground that the PCA process could not remo v e. As we mention
n Section 3.1 , we consider the first four components to contain most
oreground information. These components are most representative 
t higher frequency as the foreground amplitude increases inversely 
roportional to redshift, equation ( 4 ). Therefore, for tomographic 
ata with a wide redshift range, the decomposition can under- 
epresent foreground contamination at lower redshift, resulting in 
ore residuals when we reconstruct the image from the remaining 

omponents at the corresponding redshift slices. This effect is visible 
n the uncertainty map in Fig. 4 . 

In Fig. 5 , middle panel, we show the correlation coefficient against
he same quantity as before, x H I , true . Each point corresponds to 
n image at a redshift indicated by the colour bar. We add the
8 per cent data contour (solid line) on this panel, corresponding 
o a 1 σ difference from the ground truth. We first noticed that we
btain a global accuracy that is approximately 15 per cent lower, 

¯ φ = 0 . 71, compared to our previous work in Paper I . This lower
core with the same network structure and architecture is justified 
ecause any signal extrapolation in foreground contamination is 
xtremely arduous compared to forecasting in the presence of just 
elescope systematic noise. Moreo v er, as we stated before, we notice
hat at lower redshift z < 8.5 ( ̄x HI , true < 0 . 4), a sizable portion of the
edshift slices have a difference larger than 2 σ . This behaviour is
lso evident from the increase of the uncertainty map in Fig. 4 for
mages at z < 8.5. 

Lastly, in Fig. 5 , right-hand panel, we show the correlation between 
he true positive rate (TPR), also known as sensitivity, and the FPR,
lso known as non-specificity, on the random testing set . In our case,
hese quantities indicate the percentage of pixels correctly labelled as 
eutral and the fraction of pixels mislabelled as ionized, respectively. 
his plot is known as the receiver operating characteristic (ROC) 
urve, and it is a standard analysis in classification problems as it
ives an intuitiv e o v erall performance of the method. The results
rom our network show that most of the realizations with redshift
ange z ∈ [7 . 5 , 10] are located in the top-left corner, representing
he ideal performance or perfect classification. This indicates that 

ost binary maps have high sensitivity and specificity, i.e. neutral 
nd ionized regions are correctly identified. Data points close to the
iagonal line indicate that the method performance is not much better
han a random classifier. In our case, this is true for the values at the
xtreme of the redshift range. The data points on the top-right corner
ave high sensitivity but low specificity, meaning that the network 
abels correctly neutral regions, from equation ( 15 ), left metric, FN

TP, while misclassifying most of the ionized pixels as neutral, 
N � FP. This is the case for images with z > 10; ho we ver, at this

edshift, the images are mostly neutral; thus, the incorrect detection 
s limited to a few pixels of the image. The data point in the bottom-
eft represents the opposite situation where the network has high 
pecificity but low sensitivity. This scenario indicates that the model 
s not able to differentiate well between neutral and ionized instances,
rom equation ( 15 ), right function, TP � FN and FP � TN. We see
he opposite trend as in the previous case, where images with z ∼ 7
ccupy this instance. Another important quantity deri v able from the
OC curve is the area under the curve (AUC). This quantity gives an
 v erall e v aluation of the classification method. In Fig. 5 , right-hand
anel, we o v erplot four curv es that represent different AUC scores.
n our case, we can see that the network performs well as the random
esting set points are mostly located abo v e the 85 per cent line and
re well centred around the AUC = 95 per cent . 

.2 Sensitivity to the choice of pr e-pr ocessing method 

e trained SegU-Net v2 on the signal that is pre-processed 
sing the PCA method. Therefore, it is vital to investigate how
ensitive the trained model is to the pre-processing method used 
o mitigate foreground. Here, we test SegU-Net v2 on the fore-
round mitigation processes we presented in Section 3 . We cannot
se the entire lightcone as the GPR module currently available has
een validated only for a bandwidth of 20 MHz. From the entire
MNRAS 528, 5212–5230 (2024) 
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M

Figure 6. Comparison of the reco v ered binary field from different foreground mitigation pre-processes. We have PCA, wedge removal, GPR, and polynomial 
fitting from left to right. Top panels : A visual example of the reco v ered binary map at redshift z = 8.24 after the mentioned pre-processing step. The red/blue 
indicates the predicted neutral/ionized regions, while the green contour indicates the ground truth. Bottom panels : The corresponding per-pixel uncertainty map 
derived by SegU-Net v2 . The orange indicates the intensity of the uncertainty, defined as a general standard deviation. The title includes the resulting r φ at 
this redshift. 
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ightcone, we use three subvolume centred at redshift z c = 7.68,
.24, and 8.97 with frequency size of 20 MHz, corresponding to 172,
81, and 186 redshifts bins from z ∈ [7 . 19 , 8 . 24], [7 . 68 , 8 . 88], and
8 . 31 , 9 . 72], respectively. The volume average neutral fraction of
hese subvolumes is x HI 	 0 . 25, 0.50, and 0.75, corresponding to
he late, middle, and early stages of reionization, respectively. 

We then apply four different foreground mitigation pre-processing
teps to each subvolume: PCA, wedge remove, GPR, and Polynomial
tting. From the residual volumes, we predict the neutral/ionized
egions from the trained SegU-Net v2 , with PCA, pre-processing
tep as presented in Section 5.1 . By applying different foreground
itigation processes, we can quantify the robustness and adaptability

f our trained network. 

.2.1 Visual evaluation 

e visually compare the middle stage of reionization subvolume
or the four cases in Fig. 6 . From the left to right column, we
ave PCA, wedge remove, GPR, and polynomial fitting, respectively.
he top panels visually compare an image at the subvolume central

edshift z c = 8.24 for the different pre-processes. In the bottom
anels, we show the corresponding uncertainty map from the SegU-
et v2 . We notice that for the case of the fiducial simulation, the
olynomial fitting and GPR pre-processing obtain similar results
ith correlation r φ( z c ) = 0.81 and r ( z c ) φ = 0.84, respectively.
he former case appears to o v erestimate the e xtent of the neutral

egions (see at position ( x , y ) 	 (75 , 125) Mpc) as well as falsely
etecting the presence of isolated neutral island in the vast ionized
egion, for instance, see around ( x , y ) ∼ (75 , 100) Mpc. The PCA
btains approximately 10 per cent less accuracy, r φ( z c ) = 0.70, its
imitation comes forth when predicting the vast ionized region (see
t position 50 Mpc ≤ x ≤ 125 Mpc and 75 Mpc ≤ y ≤ 125 Mpc ) as
he network is o v er-predicting the presence of an interconnected
NRAS 528, 5212–5230 (2024) 
eutral hydrogen region. Wedge Remove method has the lowest
erformance, with r φ( z c ) = 0.62. In this example, the pre-process
orecasts an excess of neutral hydrogen outside the ground truth.
n the other hand, this method underestimates its presence within

he e xtensiv e neutral cloud. In Table 2 (third column), we show the
esulting r φ( z c ) for each pre-process. 

Among the methods presented, the Wedge Remo v e method ap-
ears to be the least efficient for SegU-Net v2 . The uncertainty
ap in Fig. 6 shows that the wedge remo v e method has high incerti-

ude in the vast interconnected H II regions, for x ∈ [0 , 125] Mpc and
 ∈ [0 , 150] Mpc, as well as between nearby H I regions, for instance
t ( x , y ) 	 (120 , 160) Mpc. The presence of a higher foreground
esidual compared to the other methods (visible in the same region
n Fig. 3 ) indicates that lower performance is attributed to a harsh
nd perhaps undisclosed subtraction that does not aim at portraying
he foreground contamination but rather removes its contribution.
verall, the GPR method, followed by PCA decomposition, appears

o give an advantage compared to the other pre-processing. At the
ame time, all the cases fail to detect ionized or neutral regions of
izes close to the interferometric smoothing scale, 	x 	 9 Mpc. 

.2.2 Redshift evolution 

n Fig. 7 , we show the redshift evolution of the Matthew correlation
oefficient r φ for the four different methods. On each panel, we show
he results from the early ( z c = 8.97, in red), middle ( z c = 8.24, in
reen) and late ( z c = 7.68, in blue) stage of reionization subvolumes
ith the corresponding error bar represented by the shadow area.
he horizontal dashed line denotes the redshift averaged correlation
oefficient, r φ . In Table 2 (fourth column), we show the resulting
 φ for each subvolume and subvolume. Based on this quantity, we
otice that the ranking goes by the GPR method with r φ = 0 . 71 at
 C = 7.68, 0.67 at z C = 8.24 and 0.63 at z C = 8.97, followed by the
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Table 2. Result summary of the predicted binary field for the tested pre-processing step on the three lightcone subvolume at representative stages of reionization. 

z c Pre-process r φ ( z c ) Accuracy Precision IoU TPR (per cent) FPR (per cent) r φ x HI R C [cMpc] 

7.68 Ground truth – – – – – – – 0 . 24 19 . 89 
All z PCA 0.78 0.94 0.81 0.67 83.12 5.98 0.82 0.26 ± 0.12 21 . 62 + 4 . 34 

−3 . 90 

PCA 0.75 0.89 0.81 0.70 84.08 8.32 0.73 0.26 ± 0.15 17 . 96 + 8 . 66 
−4 . 66 

Wedge 0.55 0.80 0.65 0.20 52.56 49.82 0.28 0.07 ± 0.12 11 . 96 + 9 . 46 
−2 . 54 

GPR 0.77 0.90 0.82 0.73 86.22 7.97 0.77 0.28 ± 0.14 19 . 75 + 6 . 93 
−5 . 03 

Polynomial 0.75 0.89 0.82 0.70 83.81 8.09 0.76 0.27 ± 0.15 19 . 17 + 7 . 84 
−5 . 18 

8.24 Ground truth – – – – – – – 0 . 45 29 . 54 
All z PCA 0.84 0.91 0.86 0.72 90.60 5.32 0.80 0.48 ± 0.07 31 . 37 + 3 . 09 

−3 . 93 

PCA 0.70 0.85 0.81 0.75 91.12 21.48 0.69 0.49 ± 0.11 27 . 65 + 9 . 13 
−6 . 12 

Wedge 0.62 0.64 0.65 0.22 74.95 45.43 0.22 0.16 ± 0.13 15 . 20 + 24 . 13 
−6 . 18 

GPR 0.84 0.92 0.91 0.85 93.02 9.44 0.75 0.48 ± 0.09 29 . 14 + 5 . 26 
−4 . 89 

Polynomial 0.81 0.91 0.89 0.83 92.18 11.01 0.74 0.49 ± 0.10 29 . 21 + 5 . 83 
−5 . 21 

8.97 Ground truth – – – – – – – 0 . 72 49 . 09 
All z PCA 0.78 0.92 0.93 0.85 93.43 15.52 0.76 0.74 ± 0.29 48 . 57 + 5 . 93 

−6 . 36 

PCA 0.72 0.88 0.90 0.85 93.80 23.75 0.68 0.75 ± 0.33 46 , 06 + 9 . 47 
−8 . 74 

Wedge 0.53 0.51 0.76 0.37 70.96 77.96 0.19 0.38 ± 0.11 28 . 57 + 11 . 46 
−8 . 54 

GPR 0.75 0.90 0.91 0.86 94.53 22.10 0.72 0.74 ± 0.28 46 . 64 + 7 . 21 
−7 . 52 

Polynomial 0.74 0.89 0.90 0.86 94.53 22.78 0.72 0.74 ± 0.29 47 . 24 + 7 . 07 
−7 . 81 

Figure 7. Redshift evolution of the r φ correlation coefficient for the different tested pre-processing step. Each panel shows the result on three lightcone 
subvolumes centred at z c = 7.68 (blue), 8.24 (green) and 8.97 (red) with a ±10 MHz frequency depth. These redshifts correspond to the late, middle and early 
stages of reionization, respectively. Solid lines indicate the r φ coefficient for the predicted binary maps. Shadow areas indicate the error due to the uncertainty 
map. Horizontal dashed lines indicate the redshift av eraged r φ coefficient. F or the case of PCA, we plot the decomposition e x ecuted on the full redshift range 
(dark blue) as a reference. 
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CA with r φ = 0 . 68, 0.67, and 0.62, respectively. Polynomial fitting
ollows with r φ = 0 . 65, 0.62, and 0.60, while wedge remo v e follows
ith r φ = 0 . 18, 0.19, and 0.15, respectively. An important remark: in

his comparison, we limit the PCA decomposition to the subvolumes
edshift bins (172, 181, and 186), and it is performing slightly worse
hen compared to the same results in the previous section on the
52 redshift bins. Therefore, we attribute the performance decrease
o the reduced number of redshift bins that directly lower the number
f orthogonal components with which the data are represented. For
he case of PCA in Fig. 7 , we plot on the same panel the performance
f the PCA decomposition on the 552 redshifts (dark blue line).
ere, we can notice how the redshift averaged correlation coefficient

s substantially higher, r φ = 0 . 82 at z C = 7.68, 0.80 at z C = 8.24,
nd 0.76 at z C = 8.97, hence indicating that the PCA pre-process
s preferred if we have at our disposal a tomographic data set with
n extended redshift range. The sharp increase at z 	 8.76, the
udden increase at z ≥ 9 and the constant broadening for z ≤ 8.1
f the uncertainty error in Fig. 7 indicates that the PCA, GPR and
olynomial fitting are sensible to the evolution and distinctiveness
f the same structures in the data. 
Moreo v er, all processes, except for PCA, show a slight decrease

n accuracy close to the redshift extremities values of the subvolume.
he wedge removal efficiently helps reco v er the binary maps only

or the selected subvolume central part, close to the central redshift.
hile the accuracy decreases rapidly toward the edges as the

ore ground remo v al becomes inef ficient, in our simplified version
f the wedge removal code, we do not include the sliding trough
rocess (see Section 3.2 ). Therefore, a comparison between the
edge removal and the other pre-processing should be strictly limited

o the subvolume central part. 

.2.3 Recovered neutral island size distribution 

n Fig. 8 , we compare the neutral island size distribution (ISD)
erived from the H I binary field predicted with the different pre-
rocessing methods presented in Section 3 . We employ the mean-
ree path (MFP; Mesinger & Furlanetto 2007 ) method to derive the
robability density distribution ( R d P /d R ) of the neutral region sizes
r radius R . This size distribution measures the topological evolution
f the reionization process (Friedrich et al. 2011 ; Giri et al. 2018a ).
ee Giri et al. ( 2019 ) for a detailed study of ISDs during reionization.
In Fig. 8 , each panel shows the predicted ISD (solid line) for three

ubvolumes centred at redshift z c = 7.68 (blue), 8.24 (green) and
.97 (red) against the ground truth ISD (dashed line). In the bottom
art of each panel, we show the difference with the ground truth.
imilarly to before, in the case of PCA, the estimated distribution
ith PCA decomposition on the full redshift range, from 7 to 11,

s shown with a darker colour. We show the uncertainty error on
he predicted ISD with a shadow area of the same colour. The GPR

ethod and the polynomial fitting from neutral island distribution
nalysis appear to be the best fit. Differences are visible only at a large
cale, R ≥ 100 Mpc, with a factor ∼3 larger for the early and middle
eionization subvolume stage. The only noticeable difference for the
arly stage subvolume is for the extremely large sizes, R ≈ 300 Mpc.
he results from the training pre-processing (darker colour) predict
n ISD consistently shifted toward a larger scale for the case of z c =
.68 and 8.24. Deviations from the ground truth start to be visible
or scale R ≥ 40 Mpc and R ≥ 80 Mpc with differences from up to a
actor of ∼2 and a maximum of 5 at R ≈ 200 Mpc. On the other hand,
or the case of the subvolume centred at z c = 8.97, the predicted ISD
hows no virtual difference. These results confirm what we concluded
NRAS 528, 5212–5230 (2024) 
n Section 5.1 , with the analysis from Fig. 5 (left-hand panel). The
CA performed on the subvolume redshift range shows the same
actorial difference but with an opposite behaviour. Differences are
ore prominent for the late stage of reionization subvolume and

et gradually better at the early stage. In this analysis, the Wedge
ethod fails to depict the HI distribution for all the subvolumes.
or small neutral regions, R ≤ 20 Mpc, the predicted distribution

s a factor of 2 larger, while for larger sizes, the distribution can
e severely underestimated, with R d P /d R two orders of magnitude
maller than the ground truth distribution. This performance is an
ndication that with the Wedge pre-processing, SegU-Net v2 is
truggling to connect large neutral regions due to the missing 21-cm
ignal lying in the foreground wedge region that has been remo v ed
long with the foreground. 

From the probability density distribution R d P /d R , we can estimate
he mean radius of the neutral islands at a given redshift, defined as 

 C ( z) = 

∫ ∞ 

R min 

R 

d P 

d R 

( z) d R. (16) 

n our case, we set the lower limit to the intrinsic resolution of our
imulation R min = 2 cMpc. In Table 2 , rightmost column, we list this
uantity derived from the predicted binary field with the different
re-process. The ground truth average radius is R C = 19 . 89 cMpc
or the subvolume centred at z c = 7.68, R C = 29 . 54 cMpc for z c =
.24 and R C = 49 . 09 cMpc for z c = 8.97. Based on this quantity,
e notice that the GPR method and Polynomial fitting produce a
etter prediction for the late and middle EoR subvolumes, with a
ifference to the ground truth below the cMpc, while for the early
tage scenario, they tend to underestimate of a few cMpc. In the
ase of both PCA decompositions, the predicted quantity differs
y a few cMpc in excess and deficit, respectively. This trend is
lso visible from the predicted ISD, as PCA shows a systematic
nderestimation, while the same decomposition on the entire redshift
ange shows an o v erestimation for the same scale, R ≥ 30 cMpc.
onsidering the uncertainty, the wedge method seems to work

easonably well only for the late stage of reionization. Ho we ver, for
his scenario, the predicted ISD does not match. At late stages, the

edge Removal prediction of R C cannot be trusted, as this quantity
iffers substantially. 

.3 Relation between ionized volume and total ionizing photons

ackrisson et al. ( 2020 ) illustrated the possibility of employing SKA-
ow tomographic data as a foreshadowing method to identify the

egion of interest for future and ongoing experiments that aim to
bserve galaxy formation in the early Universe, such as the JWST ,
uclid, and Nancy Grace Roman Space Telescope (e.g. Beardsley
t al. 2015 ; Geil et al. 2017 ). This work demonstrated that there is a
imple relation between the volume of isolated H II bubbles, V ion , and
he grand total of ionizing photons, N γ, tot , produced by the primordial
ources within the same ionized region. Although we are o v erlooking
ele v ant instrumental ef fects (e.g. incomplete uv-co v erage, absence
f gain error, beam effect and more), we assume that our framework,
escribed in Section 2.4 , produces realistic enough mock observation
o demonstrate the challenge of identifying and measuring the sizes
f such bubbles and its derived relation. 
For this analysis, we require the mass and the position of the

ources within the ionized bubbles. Therefore, we decided to use
 simulation run with the C 2 Ray radiative transfer code (Mellema
t al. 2006 ). In Paper I , we demonstrated how SegU-Net works
easonably well on simulations other than those employed for the
raining and validation. Moreo v er, recent works demonstrated the
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Figure 8. Island size distribution for the different pre-processing steps. Each panel shows the predicted size distribution R d P /d R (top section) and the 
difference to the ground truth (bottom section). The colours indicate the lightcone subvolume at the late ( z c = 7.68, blue), middle ( z c = 8.24, green), and early 
( z c = 8.97, red) stage of reionization. The results from the neutral regions in the predicted fields are shown with solid lines and the ground truth with dashed 
lines. For the case of PCA, we plot as a reference the predicted size distribution with a dot–dashed line. 
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9 We should note that we have not tested the framework on radiative transfer 
hydrodynamical simulations due to the unavailability of models with box 
lengths exceeding 200 Mpc, which is essential for studying the 21-cm signal 
(e.g. Giri et al. 2023 ). 
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imitations of U-Net when cross-v alidating dif ferent cosmological 
odels (Chen et al. 2023b ). Here, we employ the obtained ionized

ydrogen and density coe v al cubes to calculate the 21-cm differential
rightness with equation ( 1 ) and follow the mock observation 
rocedure explained in Section 2.4 . We consider the third axis the
requency direction to create the corresponding network input and 
arget. We use one realization of the simulated coe v al cube at redshift
 = 8 . 89 with box and mesh size of 348 cMpc and 250, respectively.
e interpolate the 250 mesh grid into a 166 grid per side to a

orresponding intrinsic resolution similar to our 	 x = 2 . 09 Mpc data
et. One of the inputs of the C 2 Ray code is the cumulative halo mass
moothed into the mesh grid. In this way, we can associate an ionized
ubble to the sources within the same region by converting the total
alo distribution mass M h, tot to the total ionizing photon produced 
 γ, tot = f γ �m 

/�b M h , tot . We refer the reader to Iliev et al. ( 2006 ,
012 ) and Dixon et al. ( 2016 ) for further reading on the halo source
odel. 
Though SegU-Net v2 is not trained on simulations produced 

ith C 2 Ray , we still find that the ionized regions are accurately
dentified. This analysis shows that the trained model is quite 
eneral 9 and, therefore, capable of finding physical features in real 
bservations. In Fig. 9 , we show the relation between V ion and N γ, tot 

erived from the simulation data (blue crosses) and the predicted 
inary maps (orange points). We notice that SegU-Net v2 is 
ailing to correctly quantify the number of ionizing photons for 
olumes V ion � (10 cMpc) 3 , vertical black dash line. This limitation
orresponds to the 2 km interferometric smoothing scale we apply in
ur mock observation pipeline. At z = 8.89, the Gaussian kernel has
n angular scale of 	θ ≈ 3 . 57 arcmin, corresponding to a comoving
ize of 9 . 9 cMpc. This limitation is also consistent with the results
n Fig. 5 , where the correlation between prediction and ground truth
lowly decreases, r φ ≤ 80 per cent , for higher redshift, z ≥ 9. 
MNRAS 528, 5212–5230 (2024) 



5226 M. Bianco et al. 

M

Figure 9. Relation between the volume of ionized region versus the grand 
total of ionizing photons within the same re gion. F or a coe v al cube at redshift 
z = 9 ( x HI = 0 . 75) and box size of L box ≈ 348 cMpc. Relation derived from 

the ground truth is represented with blue cross data, while orange circle points 
are derived from SegU-Net prediction. The dashed red line corresponds to 
the linear fit of the ground truth data points. The vertical line indicates the 
2 km baseline smoothed resolution. 
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 DISCUSSION  A N D  C O N C L U S I O N S  

ith this work, we impro v ed our previous effort in Paper I and
pdated our deep learning framework, SegU-Net v2 , for the
dentification of neutral and ionized regions in realistic 21-cm mock
bservation expected from SKA-Low. One of the advantages of our
etwork is the possibility to provide per-pixel uncertainty maps on
ts predictions. In Section 2.4 , we introduced our extended mock
bservation pipeline by including synchrotron Galactic foreground
ontamination, presented in Section 2.3 . Additionally, we performed
achine learning hyperparameter optimization. We show the best-

erforming hyperparameters set-up we analysed in Appendix A . 
In this work, we combine our network with a foreground mitigation
ethod that pre-processes the input data and reduces, in part, the

oreground contribution. We trained SegU-Net v2 on 10,000
ightcones with 552 redshift slices from z = 7 to 11 pre-processed
ith PCA on 4 components for the full redshift range. We chose this
re-processing method as it is the most commonly used method for
oreground contamination and provides fast and efficient mitigation.
n Section 5.1 , the analysis on a random sample data set, composed
f 300 lightcone with the same redshift extent and bins, shows that
he updated version of our network works well, with an average
orrelation of 71 per cent, on 21-cm images contaminated and
re-processed by a foreground contamination method. This level
f accuracy is almost ∼ 20 per cent less than our previous results
nd is attributed to the added complexity due to the presence of
he Galactic foreground. We show that SegU-Net v2 reco v ered
inary fields that tend to be considered more neutral at z ≤ 8.5.
e attribute this to the under-subtraction of the PCA pre-processing
ethod employed during training. This trend is confirmed by the

ncrease of the uncertainty map for the same redshift extent that
aturates entire frequency channels (see the bottom panel in Fig. 4 ). 

In Section 5.2 , we compared the binary maps predicted with
egU-Net v2 on different pre-processing foreground mitigation
nd one a v oidance method. We consider three subvolume of the
ducial simulation with frequency width 	ν = ±10 MHz centred at
NRAS 528, 5212–5230 (2024) 
edshift z c = 7.68, 8.24 and 8.97, representing a late, middle and early
tage of reionization. In this work, we consider PCA decomposition
Section 3.1 ), Wedge removal (Section 3.2 ), Gaussian Process
egression (Section 3.3 ) and Polynomial fitting (Section 3.4 ). We
emonstrated that SegU-Net v2 is able to reco v er H I regions
ith varying accuracy for all the pre-processing methods we tested.

n our case, the network is able to generalize enough and work with
he same level of accuracy as the training case on pre-processing

ethods that were not employed during its training (see summary
tatistics in Table 2 ). Moreo v er, in Section 5.2.3 , we study the ISD of
he predicted binary maps. GPR and Polynomial fitting work better
n reco v ering the ISDs, as well as the av erage distribution size R C 

f neutral regions, than the two cases of the PCA pre-processing
applied on the full redshift range and the subvolume redshift range).

Therefore, we can conclude that SegU-Net v2 is the pre-
rocessing method agnostic, providing accurate predictions inde-
endent of the pre-processing method, as long as the foreground
itigation provides reasonable residual images of the original 21-cm

ignal. Another conclusion is that PCA decomposition on lightcone
ata with a wide redshift range, e.g. frequency depth of the order of
0 MHz or larger, is to be preferred. In the case of smaller available
ub volumes, with frequenc y depth between 20 MHz and 30 MHz ,
ther methods such as GPR or Polynomial fitting are to be preferred
s they provide better prediction when compared to PCA on the same
edshift range. 

Finally, we provided a concrete use case of SegU-Net v2 in the
ontext of 21-cm SKA-Low tomographic observation. Previous work
emonstrated that a linear relation could be derived between the size
f the ionized volume and the grand total number of ionizing photons
roduced by the hosted source. In Section 5.3 , we demonstrated
hat our network could reco v er with precision the linear relation for
onized volumes that are resolved. Here, we stipulate the limited
esolution of the SKA-Low layout by the interferometric smoothing
cale for the maximum baseline of B = 2 km, which corresponds
o an angular scale of approximately 3 . 57 arcmin at redshift z =
.89, corresponding to an early stage of reionization scenario, 

¯ HI = 0 . 75. 
The current version of SegU-Net v2 is trained using semi-

umerical simulations, known for their non-conservation of photons
e.g. Choudhury & Paranjape 2018 ; Hutter 2018 ). This discrepancy
rises when the number of photons emitted by the sources does not
atch the number of IGM ionizations. Ho we ver, it is important to

ighlight that SegU-Net v2 does not exhibit sensitivity to the
odel linking the sources and sinks in the simulations. Instead, it

earns the ionization patterns present in the 21-cm signal distribution.
onsequently, the framework successfully predicts the accurate
olume of ionized regions in simulations generated by C 2 Ray , a
umerical simulation code that conserves photons (Section 5.3 ). In
uture work, we plan to retrain the network on models from photon-
onserving frameworks, such as Beorn (Schaeffer, Giri & Schneider
023 ) and pyC 2 Ray (Hirling et al. 2023 ). 
In this paper, SegU-Net was trained on one

VIDIA 

R ©Tesla R ©P100 with 16GB for a total computational
ost of approximately 12 GPU hours. When comparing the
re-processing method, we also consider the computational time
equired to compute the foreground mitigation/a v oidance method.
n our set-up, one lightcone subvolume of frequency depth 20 MHz
ith 200 redshift bins takes about 7 s CPU time to compute with
CA and 2 s with Polynomial fitting. Wedge remo v er pro vides faster
re-processing with 230 ms but inefficient foreground mitigation.
n the other hand, GPR provides slow but reliable mitigation with a

omputing time of ∼1.2 CPU hours. 
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The Grad-CAM importance score analysis conducted in Appendix 
 shows that the network decoder convolutional layer starts by iden- 

ifying and grouping the region with the strongest positive emission. 
n the bottleneck of the U-Net model, the low-dimensional latent 
pace then uses the encoded information to identify the threshold 
hat defines the boundary of the neutral regions. The decoder layers 
se the compressed information and the U-Net skip connection with 
he encoder layer to define the location of the borders. Finally, the last
onvolutional layer further refines the decoder output. Ho we ver, the 
nalysis showed that the network struggled to correctly identify the 
esidual foreground when this signal is similar to the 21-cm intensity. 
his explains why the final predictions include a positive detection 
f 21-cm signal regions and a false ne gativ e due to the noise or
oreground residuals. 

In our case, SegU-Net is a deterministic deep learning model. 
ecently, a series of works have imported probabilistic models in 

adio astronomy and astrophysics (Friedman & Hassan 2022 ; Sortino 
t al. 2023 ; Wang et al. 2023 ). This approach inherently handles noise
nd variability in the data compared to the deterministic case. At the
ame time, they can learn the underlying probability distribution of 
he data, which can help for a better interpretation. On the other hand,
eterministic models like U-Net often have the advantage of being 
omputationally efficient and easier to train. In future work with 
egU-Net , we consider converting the model to be probabilistic. 
Our analysis shows that using image data from SKA-Low, SegU- 
et v2 accurately determines the ionization fraction at different 
tages of reionization. Additionally, we have identified how the 
onized regions detected by SegU-Net v2 can be used as markers 
or locating the galaxies responsible for driving the reionization 
rocess. These findings demonstrate the potential of our framework 
or synergy studies with other telescopes, such as the JWST , Euclid,
nd Nancy Grace Roman Space Telescope. 
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PPENDI X  A :  H Y P E R PA R A M E T E R  

X P L O R AT I O N  

s we mentioned in Section 4 , we perform an optimization analysis
f the SegU-Net hyperparameters. We are aware of tools that
utomatize the exploratory analysis of the network hyperparameter
pace, such as Optuna (Akiba et al. 2019 ). Ho we ver, constrained
y time and computational resources, we manually searched the
est-performing parameters through a trial-and-error approach. First,
e selected a few combinations of the network parameters and
erformed a short training of no more than five to ten epochs. Based
n the result obtained in this short training, we selected six of the
est-performing results with the lowest validation loss and performed
 full training to identify the ideal hyperparameters set-up. In future
ork, we intend to undertake a more comprehensive study. 
We list the six best-performing set-ups we tested in Table A1 . We

nclude an analysis of seven model parameters, from left to right:
he acti v ation function of the convolutional layers, the number of
hannels for the bottom layer, the number of pooling operations, the
ropout rate, the final acti v ation function before the binary operation,
he size of the kernel filters and the type of pooling operation. As
 loss function, we employed the balanced cross-entropy (BCE)
unction (Salehi, Erdogmus & Gholipour 2017 ) and the Adaptive

oment Estimator (Adam) (Kingma & Ba 2014 ) as the stochastic
radient descent algorithm to minimize the loss. We employed the
n bold text for the results presented in this paper. Although we
onitored the validation loss to select the best set-up, we noticed that

he first and second models gave the worst prediction for images at the
dges of the redshift range z ∼ 7 and 11. The fifth model provided the
ost balanced result, with an o v erall r φ ≈ 0.7 score, as shown in Fig. 5

entral panel. Moreo v er, in contrast to the findings by Li et al. ( 2018 ),
e observe that setting the dropout rate to zero enhances accuracy
nly for the third-ranked set-up. Meanwhile, other configurations
 xhibit impro v ed performance when both batch normalization and
ropout are included. 
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Table A1. SegU-Net hyperparameter optimization analysis for the best-performing set-ups of seven parameters with optimization on the validation loss. 

Ranking Acti v ation Channels latent space Depth Dropout Final acti v ation Kernel Pooling type 
r φ (per 
cent) Validation loss ( × 10 −2 ) 

1 LeakyReLu 256 3 0.42 σ ( x ) 6 max 89.08 6.59 

2 LeakyReLu 128 4 0.00 σ ( x ) 5 max 89.02 6.62 

3 Elu 128 3 0.34 x 11 average 87.76 7.27 

4 LeakyReLu 128 4 0.50 σ ( x ) 5 max 88.72 6.85 

5 ReLu 256 4 0.05 x 7 average 88.50 7.48 

6 ReLu 256 5 0.14 x 7 max 86.53 9.15 
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PPENDIX  B:  INSIDE  T H E  BLACK  BOX  

he trained model we presented in this paper is able to reco v er the
onized field from noisy images with residual foreground contami- 
ation. This is an indication that the network learns to identify the
egions of interest from important hidden features that maximize the 
eco v ery. Ho we ver, the machine learning model’s complexity, high
imensionality and non-linearity make them difficult to interpret and 
egulate, so these applications are often referred to as a black box .
ere, we present a first attempt to open and look inside SegU-Net
lack box. A standard tool to visualize and understand the decisions 
ade by a general convolutional neural network is the Gradient- 
eighted Class Acti v ation Mapping (Grad-CAM) technique (Sel- 
araju et al. 2019 ). This method applied in segmentation and object
lassification highlights the features of an input image employed in 
redicting a particular class. Grad-CAM achieves this by computing 
he gradients of the predicted class y c ≡ x B HI score with respect to the
eature maps F k of all the k > 0 convolutional layers up to the layer
n the network under study. A weighted combination of these feature 
aps gives the importance score M 

( i,j ) 
c ∈ [0 , 1] that indicates the

mportance of the feature in the image at location ( i , j ) for the class
 th. This score is given as 

 

( i,j ) 
c = 

1 

Z 

∑ 

k 

w k 

∂ y c 

∂ F 

( i,j ) 
k 

, (B1) 

here Z = 

∑ 

k w k is the normalization factor, corresponding to the 
um of the k th weights, while w k is the weight corresponding to
he feature map F k . In our case, we focus on the neutral regions,
ategorized with a value of c = 1 in our maps. Values close to one
ndicate high importance, while in the opposite case, it indicates 
rrele v ance. 

In Fig. B1 , we show the result for three hidden layers. The first
olumn shows the input image and the M c score represented by 
ark shadows, indicating the location in the image employed in 
he classification of the neutral regions. Solid line contours indicate 
he ground truth. The central column shows the Grad-CAM filtered 
egion obtained by element-wise multiplication of the input image 
ith the importance score. This plot shows us what features the
etwork emphasizes in the image for identifying the neutral region. 
he right column visualizes the hidden layer output, with the number
f subpanels corresponding to the number of channels. From top to
ottom, we have the output of the convolution block at the second
evel of the encoder after two convolutional layers and a pooling
peration. The hidden state has angular and channel dimensions 
64 , 64 , 32). We can see that in the encoder, the network focuses
n the regions with the highest intensity, which, thanks to the pre-
rocess presented in Section 3 , are mostly located within the neutral
egion. The different channels in the hidden layer show a similar
onclusion, with the convolutional operation capturing the large- 
cale region that produces 21-cm signals. In the second row, the
ottom of the U-Net, known as the low-dimensional latent space, 
ith dimension (16,16,128), gives a compressed representation of 

he input image, and it appears to focus on location in the image with
he highest and lowest values. Our interpretation is that the network
ocuses on these extreme values to quantify the ‘threshold’ value 
hat sets the boundary between neutral and ionized regions. This 
nterpretation is also supported by the 128 hidden layer plots in the
ight-hand panel, as the compressed data shows different constant 
alues across the channels. In the last row, we show the importance
core from the final convolution before the binarization of the output.
ere, it appears that the network uses the threshold value defined in

he bottom layer of the U-Net to locate the delimitation that defines
he neutral regions, as the shadow is located along the contour of the
round truth (black solid line). We notice that some locations in the
mage with substantial foreground residuals are wrongly included. 
he hidden layer plot shows that the network struggles to remo v e the

oreground residual completely. 
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Figure B1. Region of interest detected by Grad-CAM for three hidden layers. Left-hand panels : Input image with shadow areas that indicate the region of 
attention detected by the Grad-CAM method. Black solid contours indicate the ground truth for comparison. Central panel : The filtered Grad-CAM image 
element-wise multiplication between the input and the M c filter. Right-hand panel : A visualization of the hidden layer output. The number of subpanels indicates 
the channel size of the hidden layer. 
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