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Abstract—We present a single-photon avalanche diode (SPAD) 

developed in 55 nm bipolar-CMOS-DMOS (BCD) technology, 
which achieves high photon detection probability (PDP) while its 
breakdown voltage is lower than 20 V. To enhance the PDP 
performance, the SPAD junction is optimized with lightly-doped-
drain and high-voltage-well layers which are provided in the 
BCD process. In addition, the dielectric layers over the SPAD are 
properly etched to reduce multilayer reflections so that the 
photon collection efficiency can be maximized. The SPAD 
achieves a peak PDP of 89.4% at 450 nm wavelength with the 
excess bias voltage of 7 V, while its breakdown voltage is 16.1 V. 
At the same bias condition, the device shows a dark count rate 
(DCR) of 38.2 cps/μm2. It also achieves a timing jitter of 55 ps at 
940 nm with the 7 V excess bias. This new high-performance 
SPAD implemented in such an advanced node BCD technology 
operating at a low breakdown voltage is expected to have a major 
impact on several single-photon applications, especially 
biomedical sensing and imaging. 
 

Index Terms—Avalanche photodiode (APD), bipolar-CMOS-
DMOS (BCD) technology, detector, electronic photonic 
integration, fluorescence correlation spectroscopy (FCS), 
fluorescence lifetime imaging microscopy (FLIM), frontside 
illumination (FSI), Geiger-mode avalanche photodiode (G-APD), 
high-volume manufacturing, integrated optics device, integration 
of photonics in standard CMOS technology, optical sensing, 
optical sensor, photodetector, photodiode, photomultiplier, 
photon counting, photon timing, semiconductor, sensor, silicon, 
single-photon avalanche diode (SPAD), single-photon counting, 
single-photon imaging, standard CMOS technology. 

 
Manuscript received March xx, 2022; revised; accepted. This work was 

supported by the Institutional Program (2E32242) of Korea Institute of 
Science and Technology (KIST). (Corresponding author: Edoardo Charbon, 
Woo-Young Choi, and Myung-Jae Lee.) 

W.-Y. Ha was with the Post-Silicon Semiconductor Institute, Korea 
Institute of Science and Technology (KIST), and the Department of Electrical 
and Electronic Engineering, Yonsei University, both in Seoul, South Korea. 
He is presently with the Institute of Electrical and Microengineering, École 
Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002, Switzerland. 

E. Park, D. Eom, H.-S. Park, and M.-J. Lee are with the Post-Silicon 
Semiconductor Institute, Korea Institute of Science and Technology (KIST), 
Seoul 02792, South Korea (email: mj.lee@kist.re.kr). 

E. Park, D. Eom, H.-S. Park, and W.-Y. Choi are with the Department of 
Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South 
Korea. 

P. Keshavarzian, E. Kizilkan, C. Bruschini, and E. Charbon are with the 
Institute of Electrical and Microengineering, École Polytechnique Fédérale de 
Lausanne (EPFL), Neuchâtel 2002, Switzerland.  

F. Gramuglia, D. Chong, S. S. Tan, M. Tng, and E. Quek are with 
GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D 
Street 2, Singapore 738406. 

I. INTRODUCTION 
INGLE-PHOTON avalanche diodes (SPADs) are 
devices in high demand for various applications, 
especially in biomedical practices [1], [2]. They could 

replace photomultiplier tubes (PMTs) thanks to their 
compactness and high sensitivity in tomography applications 
such as near-infrared optical tomography (NIROT) [3] and 
time-of-flight positron emission tomography (ToF-PET) [4]. 
They also play a key role in fluorescence-lifetime imaging 
microscopy (FLIM) [5], fluorescence correlation spectroscopy 
(FCS) [6], and Raman spectroscopy [7]–[11]. 

SPADs fabricated in CMOS technology are of great interest 
due to such advantages as low-cost fabrication, mass 
production, and monolithic integration capability with 
circuitry. Furthermore, with the technology scaling down, the 
advantages of CMOS-SPADs are becoming more pronounced 
in terms of pixel resolution, footprint, and functionality. Many 
attempts have therefore been made to develop SPADs based 
on advanced CMOS technologies [12]–[13]. As technology 
nodes scale, however, the doping concentrations of implants 
typically increase, which presents a challenge for the 
development of CMOS-SPADs as it narrows the width of the 
depletion region, resulting in a higher dark count rate (DCR) 
and lower photon detection probability (PDP) [13], [14]. 

To address this problem, Gramuglia et al. [15] and 
Keshavarzian et al. [16] reported a SPAD based on 55 nm 
bipolar-CMOS-DMOS (BCD) technology. The BCD 
technology provides deeper and/or lower-doped layers 
compared to CMOS technology, and this facilitates the 
implementation of SPADs with very low DCR and high PDP 
at higher excess bias voltages (VE). Also, the BCD technology 
makes high-voltage transistors available to designers, thus 
enabling pixels that allow for a high excess bias voltage [16]. 
One downside of the BCD-SPAD is the relatively high 
breakdown voltage (VB), typically over 30 V, which results in 
higher power consumption and limits its applicability range.  

Another approach is to use backside-illuminated (BSI) 
CMOS image sensor (CIS) technology with 3D stacking. 
While the recent reports by Shimada et al. [17] and Morimoto 
et al. [18] demonstrated excellent SPAD performance based 
on 90 nm BSI CIS processes, the BSI 3D stacking approach 
may not be appropriate for cost-effective applications. 
Furthermore, until now, both of these approaches have been 
commonly unavailable from a foundry. 

S 
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Fig. 1. Cross-sections of the BCD-SPADs. 
 

. 
 

Doping concentration magnitude linear (a.u.) 
 

Fig. 2. Doping-concentration profile of the BCD-SPADs. 
 
 

 
 

Electric field magnitude linear (a.u.) 
 

Fig. 3. E-field profile of the BCD-SPAD obtained with TCAD 
simulation. 
 
 

 
 

Breakdown probability magnitude linear (a.u.) 
 

Fig. 4. The breakdown probability profile of the BCD-SPAD 
obtained with TCAD simulation. 
 

In this paper, we present a SPAD fabricated in 55 nm BCD 
technology. In order to achieve high performance while 
maintaining the VB less than 20 V, the junction is formed with 
P-type lightly-doped-drain (PLDD) and high-voltage N-well 
(HVNW) layers. In addition, the dielectric layers above the 
SPAD are properly etched away to reduce the multilayer 
reflection. The resulting SPAD achieves outstanding 
performance in terms of PDP, DCR, and timing jitter with a 
low breakdown voltage of 16.1 V. 
 

II. DEVICE STRUCTURE AND SIMULATION 

A. Device Structure 
Fig. 1 shows cross-sections of two SPAD configurations 

Both SPADs have the identical device structure, where PLDD 
and HVNW layers form a 9 μm diameter PN junction and a 
total diameter of 14.4 μm as shown in Fig. 2. Both layers are 
standard in this technology, and the merits of using such layers 
are: (i) the PLDD generates less implantation-induced defects, 
enabling low-noise SPAD operation, and (ii) the HVNW 
provides a proper depletion region with the PLDD layer, 
which is wide enough to prevent band-to-band tunneling but, 
at the same time, not so wide as to significantly increase the 
breakdown voltage. To prevent premature edge breakdown, 
the SPADs are designed in a round shape and a P-epi guard 
ring with a width of 2 μm is implemented at the edge of the 
junction. A lightly-doped deep N-well (DNW) is used for the 
cathode connection, and it also makes the absorption region 
larger and consequently increases the PDP. To maximize the 
SPAD detection efficiency further, a few of the SPAD’s 
dielectric layers above the multiplication and guard-ring 
regions are etched away, thus forming a canyon. We 
implemented two SPADs with and without the canyon. By 
comparing their performance, the effect of the canyon can be 
clearly demonstrated. 
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Fig. 5. Simplified raytracing result of the BCD-SPAD without 
the canyon obtained with TCAD simulation. 

 

 
 

 
 
Fig. 6. Simplified raytracing result of the BCD-SPAD with the 
canyon obtained with TCAD simulation. 
 

B. TCAD Simulation 
In order to check the SPADs’ E-field profile, TCAD 

simulation using Okuto’s avalanche breakdown model was 
performed when the VB and VE were 16 V and 7 V, 
respectively [19]. As can be seen in Fig. 3, the E-field strength 
at the edge of the junction is reduced by the P-epi guard ring. 

 
 

Fig. 7. I-V characteristics of the BCD-SPADs under dark and 
illumination conditions. 
 

 
 

Fig. 8. Results of light emission tests of BCD-SPADs: (a) 
SPAD without the canyon before VB, (b) SPAD without the 
canyon at VE = 3 V, (c) SPAD with the canyon before VB, (d) 
SPAD with the canyon at VE = 3 V.  
 
 
Therefore, we are able to avoid the premature edge breakdown 
phenomenon and form a high and uniform E-field at the planar 
PLDD/HVNW junction. In addition, the simulation to check 
the breakdown probability of the device was conducted using 
the McIntyre model as shown in Fig. 4 [20]. With the shallow 
junction, it is expected that the proposed devices achieve high 
PDP at 400~500 nm which corresponds to about 0.1 to 1 μm 
penetration depth of photons inside silicon. Finally, the effects 
of the canyon etch were investigated using ray-tracing 
simulations. In these simulations, the transmitted and reflected 
light is represented by the reddish and bluish arrows, 
respectively. The several dielectric layers on top of the non- 
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Fig. 9. PDP of the BCD-SPAD without canyon as a function 
of the wavelength at four different excess bias voltages. 

 
 

 
 
Fig. 10. PDP of the BCD-SPAD with canyon as a function of 
the wavelength at four different excess bias voltages. 

 
 
canyon-etched SPAD result in many reflections as shown in 
Fig. 5. On the other hand, the light reflections are reduced in 
the SPAD with the canyon etch as can be seen in Fig. 6. The 
simulation results indicate that more photons reach the active 
region with the canyon etch, thereby leading to a higher PDP. 
 

III. EXPERIMENT RESULTS 

A. I-V Characteristics 
Fig. 7 shows the I-V characteristics of the fabricated BCD-

SPADs with and without illumination measured using a 
semiconductor device analyzer at room temperature. As both 
SPADs are based on the same front-end-of-line (FEOL), they  

 
 
Fig. 11. DCR of the BCD-SPADs as a function of excess bias. 
 
 
show similar results, small dark currents and high avalanche 
multiplication. Thanks to the high doping concentration of the 
PLDD, both SPADs have a low VB of about 16.1 V, matching 
well with our expectations from the TCAD simulation. In 
addition, the dark currents of both SPADs increase at a higher 
voltage than the VB under illumination, which indicates the 
number of dark carriers is relatively low [4]. 
 

B. Light Emission Test 
Light emission tests of both SPADs are conducted to 

confirm the suppression of premature edge breakdown as 
shown in Fig. 8. The light-emitting area indicates the 
avalanche multiplication region when a higher excess bias 
than its VB is applied. Therefore, the test results clearly 
demonstrate that a high E-field, over the critical E-field of 
silicon, is uniformly formed in the planar junction of both 
SPADs. Moreover, as the edge of the junction is not brighter 
than the center, the devices don’t exhibit any premature edge 
breakdown, which was expected from TCAD simulation 
results shown in Figs. 3 and 4. 

 

C. Photon Detection Probability 
The PDP measurements were performed from 400 nm to 

950 nm in 25 nm steps for the two SPADs at VE = 1, 3, 5, and 
7 V as displayed in Figs. 9 and 10, respectively. The tests were 
based on the continuous light technique at room temperature 
[21]. In the setup for these measurements, coherent and 
uniform light was illuminated to the SPAD and a reference 
photodiode by using an integrating sphere and a 
monochromator. The optical intensity of the reference 
photodiode was then measured for calculating the number of 
photons impinging on the SPAD. The SPAD was quenched 
with an external passive quenching resistor of 100 kΩ and the 
outputs were monitored by the oscilloscope. The dead time 
was about 2.5 μs, with which it was checked that the SPADs 
do not suffer from any afterpulsing.  
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Fig. 12. Timing jitter of the BCD-SPAD without canyon. 
 
 

 
 

Fig. 13. Timing jitter of the BCD-SPAD with canyon. 
 
 

As both SPADs are based on a shallow junction, they have 
a peak PDP at around 450 nm. Moreover, the presence of 
fewer dielectric layers allows more photons to reach the 
silicon with fewer reflections, as expected with the simulations 
in Fig. 5 and Fig. 6, and therefore near 90% peak PDP is 
achieved with canyon etching when VE is 7 V, while the 
default structure shows about 82% peak PDP at the same bias 
condition. 

 

D. Dark Count Rate 
DCR is comprised of primary and secondary pulses. 

Thermally generated carriers and tunneling are dominant 
components in primary pulses, while the secondary pulses, 
known as afterpulses, are avalanches caused by the release of 
trapped carriers [22]. That is to say, the DCR of a SPAD is 
mainly affected by the FEOL and should not be affected by 
the canyon implementation. 

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Pe
ak

 P
D

P 
(%

)

Breakdown Voltage (V)

This Work

[13] IEDM'13
[14] IEEE Sens. J'21

[18] IEDM'21

[15] JSTQE'21

 
 
Fig. 14. Peak PDP vs VB comparisons of SPADs fabricated in 
90 nm or more advanced processes. 
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Fig. 15. Peak PDP vs timing jitter (FWHM) comparisons of 
SPADs fabricated in 90 nm or more advanced processes. 

 
 

DCR measurements were conducted with a passive 
quenching resistor of 100 kΩ and an oscilloscope. As can be 
seen in Fig. 11, the DCR difference between the SPADs with 
and without canyon etch is almost negligible, and therefore it 
can be concluded that the canyon etch process over the SPAD 
does not influence its noise performance. The SPADs show 
very low DCR, about 0.03 cps/μm2, at VE = 1 V so that it can 
be operable at a higher VE to increase its PDP performance. 
When VE is increased to 7 V, the DCR is about 40 cps/μm2. 

 

E. Timing Jitter 
The timing jitter performance is an important factor for bio-

medical applications that requires precise sensing such as ToF 
PET [23]. The timing jitter is the statistical fluctuation in 
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time between the absorption of the photon and its 
corresponding avalanche breakdown [22]. It is dominated by 
carrier transit time, such as drift, diffusion, and avalanche 
multiplication time [24]. The timing jitter performance of the 
SPADs was measured using the time-correlated single-photon 
counting (TCSPC) technique at VE = 7 V with a 940 nm 
picosecond pulsed laser having a 30 kHz repetition rate. Both 
SPADs have excellent timing jitter performance, about 66 ps 
FWHM, including the jitter of the laser and laser driver as 
shown in Figs. 12 and 13. Both show almost identical jitter 
values because they share a common SPAD structure. The 
timing jitter could be decreased further with integrated 
circuitry as well as an optimized setup [25]. 
 

IV. DISCUSSIONS 
The proposed devices are compared with state-of-the-art 
SPADs fabricated in 90 nm processes and below in Figs. 14 
and 15. The previously-reported SPADs that have lower VB 
than the present SPAD reported in this paper suffer from very 
low peak PDP as well as very high DCR [13], [14]. Compared 
to the SPADs which have higher VB, our SPAD still exhibits 
higher peak PDP and lower or comparable timing jitter [15], 
[17], [18]. We further improve the detection efficiency of our 
SPAD without sacrificing other performance characteristics. 
Therefore, the proposed SPAD achieves the highest peak PDP 
with excellent timing jitter performance in spite of the reduced 
VB, while showing reasonable DCR performance. Table I lists 
the performance summary of the SPADs and shows the 
performance comparisons with the state-of-the-art SPADs. 

 
 
Fig. 16. Different biomedical applications and their 
requirements [26]–[31]. 
 

 
The demonstrated SPAD can be an excellent candidate for 

several biomedical applications, where high PDP, low timing 
jitter, and low VB are required. For example, the high PDP of 
the proposed SPAD at around 450 nm is greatly beneficial to 
PET applications. In addition, the low timing jitter can 
substantially improve the sensitivity and resolution of ToF-
PET systems. Other biomedical applications such as FLIM 
and time-domain Raman spectroscopy also require such a high 
PDP in the visible wavelength range. Moreover, as the  

TABLE I 
 PERFORMANCE SUMMARY AND COMPARISON WITH SPADS FABRICATED IN 90 NM OR MORE ADVANCED PROCESSES 

 This work 
[13] [14] [15] [17] [18] 

Without Canyon With Canyon 

Technology 55 nm FSI BCD 55 nm FSI BCD 65 nm FSI 
CMOS 

65 nm FSI 
CMOS 55 nm FSI BCD 90 nm BSI CIS 90 nm BSI CIS 

Active Junction PLDD/HVNW PLDD/HVNW N+/PW N+/PW DPW/BNW n/a n/a 

Guard Ring P-epi GR P-epi GR Modified NW NW Virtual GR n/a n/a 

Active Area 63.6 μm2 63.6 μm2 64 μm2 100 μm2 60.8 μm2 n/a n/a 

VB 16.1 V 16.1 V 9.1 V 9.52 V 31.5 V 22 V 30 V 

VE 7 V 7 V 0.4 V 0.3 V 7 V 3 V 2.5 V 

Normalized DCR 44 cps/μm2 38.2 cps/μm2 15.6 kcps/μm2 138 kcps/μm2 2.6 cps/μm2 19 cps/pix 0.044 cps/μm2 

Peak PDP  
@ wavelength 

82%  
@ 425 nm 

89.4%  
@ 450 nm 

5.5%  
@ 425 nm 

2.1%  
@ 440 nm 

62%  
@ 530 nm n/a 69.4%*  

@ 510 nm 

PDP at 940nm  
@ VE 

3.64%  
@ 7 V 

3.94%  
@ 7 V 

0.3%  
@ 0.25 V 

0.2%  
@ 0.3 V 

4.2%  
@ 7 V 

20.2%*  
@ 3V 

24.4%*  
@ 2.5 V 

Timing Jitter  
@ λ, VE 

68 ps  
@ 940 nm, 7 V 

66 ps  
@ 940 nm, 7 V 

235 ps  
@ 637 nm, 0.4 V 

197 ps  
@ 685 nm, 0.3 V 

52 ps  
@ 780 nm, 3 V 

137 ps  
@ 940 nm, 3 V 

100 ps  
@ 940 nm, 2.5 V 

*PDE with microlens on the top of the SPAD 
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Fig. 17. Peak performance and target wavelength of typical CMOS/BCD-based SPAD sensors for biomedical applications 
reported in [25]–[30]. For the proposed SPAD we used different excess bias voltages and a fill factor of 40%, assuming no 
microlenses were used. (a) Reported PET applications vs SPAD at 450 nm, (b) Reported FLIM applications vs SPAD at 450 nm, 
(c) Reported NIROT applications vs SPAD at 700 nm, (d) Reported Raman spectroscopy applications vs SPAD at 450 nm. 

 
 

proposed device achieves reasonable NIR efficiency with the 
use of lightly-doped DNW, it's expected that the SPAD can be 
also utilized in NIROT applications. In addition, the low VB 
offers an advantage to biomedical equipment in terms of 
power management and consumption, which is expected to 
play a major role in portable diagnostic and surgical systems. 

Many multi-pixel SPAD sensors targeted at biomedical 
applications are actually co-integrated with the corresponding 
quench/recharge and data acquisition circuits. Therefore, the 
overall pixel efficiency, also called photon detection 
efficiency (PDE), is defined as PDE = PDP  fill factor (FF). 
Fig. 16 shows the PDE and normalized DCR range of typical 
CMOS/BCD-based SPAD sensors for biomedical applications 
[26]–[31]. The fill factor of the SPAD is determined by the 
ratio of the active area of the SPAD to the total area of the 
device. With an active area diameter of 9 μm and a total 
diameter of 14.4 μm, the fill factor of the device is about 40%. 
Also, as shown in Fig. 17, the sensors in different biomedical 
applications are compared to the peak performance of the 
proposed SPAD at different excess bias voltages, taking into 
account a FF of 40%. Considering the various target 
wavelengths of each technology, the non-identical peak 
performance of the SPAD is used for the comparison. For 
PET, FLIM, and Raman spectroscopy, the SPAD’s 
performance at 450 nm, where the device has the maximum 
efficiency in their target wavelengths, is compared to the 
SPAD sensors as can be seen in Fig. 17. (a), (b), and (d). On 
the other hand, the performance at 700 nm is used to compare 
NIROT’s sensors. Although an ideal sensor would be placed 
in the top left corner of the plot, the proposed SPAD can be 
optimized in terms of the PDP and DCR according to each 
application by adjusting its excess bias voltage. It should thus 
be able to satisfy the demanding requirements of most 
biomedical applications. 

 

V. CONCLUSION 
We have demonstrated and characterized high-performance 

SPADs based on 55 nm BCD technology. With the use of 
layers available in BCD technology, the SPAD structure is 
optimized for low-noise and high-efficiency operation with a 
low VB. In order to enhance its efficiency, we use canyon etch 
to reduce multilayer reflections. The resulting SPAD has a VB 
of 16.1 V, peak PDP of 89.4% at 450 nm, DCR of 38.2 
cps/μm2, and timing jitter of 66 ps at VE = 7 V. It’s expected 
that the proposed SPAD has a great potential for several 
biomedical applications. 
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