Abstract

Flavins play an important role in many oxidation and reduction processes in biological systems. For example, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are common cofactors found in enzymatic proteins that use the special redox properties of these flavin molecules for their catalytic or photoactive functions. The redox potential of the flavin is strongly affected by its (protein) environment; however, the underlying molecular interactions of this effect are still unknown. Using hybrid quantum mechanics/molecular mechanics (QM/MM) simulation techniques, we have studied the redox properties of flavin in the gas phase, aqueous solution, and two different protein environments, in particular, a BLUF and a LOV photoreceptor domain. By mapping the changes in electrostatic potential and solvent structure, we gain insight into how specific polarization of the flavin by its environment tunes the reduction potential. We find also that accurate calculation of the reduction potentials of these systems by using the hybrid QM/MM approach is hampered by a too limited sampling of the counterion configurations and by artifacts at the QM/MM boundary. We make suggestions for how these issues can be overcome.

Details