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Abstract
This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity 
splines that seamlessly meet the C1 requirement of Kirchhoff–Love-based discretizations. Weak enforcement of coupling 
conditions is achieved through the symmetric interior penalty method, where the fluxes are computed using their correct 
variationally consistent expression that was only recently proposed and is unprecedentedly adopted herein in the context of 
coupling conditions. The constitutive relationship accounts for generically laminated materials, although the proposed tests 
are conducted under the assumption of uniform thickness and lamination sequence. Numerical experiments assess the method 
for an isotropic and a laminated plate, as well as an isotropic hyperbolic paraboloid shell from the new shell obstacle course. 
The boundary conditions and domain force are chosen to reproduce manufactured analytical solutions, which are taken as 
reference to compute rigorous convergence curves in the L2 , H1 , and H2 norms, that closely approach optimal ones predicted 
by theory. Additionally, we conduct a final test on a complex structure comprising five intersecting laminated cylindrical 
shells, whose geometry is directly imported from a STEP file. The results exhibit excellent agreement with those obtained 
through commercial software, showcasing the method’s potential for real-world industrial applications.

Keywords Isogeometric Analysis · Trimming · Weak coupling · Interior penalty · Kirchhoff–Love shells · Laminates

1 Introduction

Due to their ability to efficiently distribute stress within 
their volume, shell structures are extensively utilized in 
high-performance industrial applications. With the advent 
of composite materials, laminates, which are created by lay-
ering orthotropic materials with fibers oriented to optimize 
the mechanical response, have garnered significant attention 
from the scientific community. Experimental and numerical 
investigations of such laminates have been crucial in meeting 
design criteria and enhancing overall structural performance.

The numerical investigation of laminates using full-scale 
three-dimensional analysis in practical application is often 
avoided due to its extensive computational requirements, 
especially in the initial stages of design. As an alternative, 

two-dimensional versions of theories describing the main 
mechanical phenomena involving thin-walled structures 
have been proposed. The classical Kirchhoff–Love theory 
[1–3] assumes that a unit segment perpendicular to the 
shell’s mid-surface remains straight and perpendicular to 
the surface after deformation. The Reissner-Mindlin theory 
[4, 5], also known as the First-order Shear Deformation The-
ory (FSDT), relaxes the assumption of perpendicularity and 
becomes more suitable for moderately thick shells. Addi-
tionally, Higher-Order models [6, 7] consider more complex 
displacement behaviors along the thickness, constituting a 
sort of intermediate level in terms of accuracy between two-
dimensional and three-dimensional theories.

The Kirchhoff–Love shell theory requires only the dis-
placement field in the mid-surface of the shell as main 
variable, since the the rotation of the perpendicular unit 
segment can be computed directly from the derivatives of 
the latter. However, due to the fourth-order nature of the 
equations, the continuity of the approximation space needs 
to be C1 over the shell mid-surface, meaning that both the 
displacements and their first derivatives need to be con-
tinuous across elements’ boundaries. This requirement 
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poses challenges in the choice of basis functions and the 
construction of the approximation space, especially in the 
context of finite element analysis where Lagrange-type 
basis functions may not satisfy the C1 continuity condi-
tion, resulting in a preference for shell elements based on 
Reissner-Mindlin in the available commercial software. 
Moreover, when the shell mid-surface is characterized by 
kinks, to preserve the angle between intersecting faces, 
the condition on the continuity of the rotation of the per-
pendicular unit segment along the common edge does not 
coincide with the C1 continuity of the displacement field 
anymore, requiring additional effort to be enforced. Early 
approaches to solve the Kirchhoff–Love equations in the 
context of Finite Element Method relied on C0 continuous 
basis functions, with C1 continuity enforced weakly in a 
mixed Continuous-Discontinuous Galerkin approach [8].

The choice of the most suitable  2D theory and the 
numerical method to solve the resulting set of partial 
differential equations (PDEs) is an active research topic, 
with various methods being explored. Examples of these 
methods include the Finite Element Method [9–11], 
Discontinuous Galerkin method [12–14], Ritz method [15, 
16], or Differential Quadrature method [17, 18].

A particularly promising approach that was  recently 
proposed is the Isogeometric Analysis (IGA). In IGA, 
NURBS (Non-Uniform Rational B-Splines) basis 
functions are used both to define the surface of the shell 
and to construct the approximation space for the primary 
variables, allowing for a seamless connection between 
design and analysis [19]. Since its introduction in [20], 
IGA has been successfully applied to solve Kirchhoff–Love 
[21, 22], Reissner-Mindlin [23–25], and Higher-Order [26] 
shell theories. In particular, since NURBS functions can be 
easily constructed with arbitrary continuity, satisfying the C1 
requirement for the Kirchhoff–Love shell equation becomes 
straightforward withing each IGA patch.

However, when dealing with complex shapes, multiple 
IGA patches are often required to accurately represent the 
desired geometry, and efficiently coupling these patches 
becomes a critical issue. Various approaches have been pro-
posed to couple adjacent IGA patches in a strong sense by 
directly linking some of their degrees of freedom. For exam-
ple, in [27], IGA regions of the domain are connected in a 
strong sense with other regions modeled with a mesh-free 
approach; in [28] patches meeting at G0 interfaces are both 
connected in a strong sense to auxiliary bending strips that 
approximate the kink; in [29], the approximation functions 
for the displacement are continuous across the patches with 
only the coupling of the rotation imposed in a weak sense; in 
[30], the coupling approach relies on the Reissner-Mindlin 
theory where also rotation degrees of freedom are directly 
available; the construction of C1 multi-patch approximation 
spaces, as detailed in [31, 32], is used in [33] and [34] for 

the strong coupling of both displacement and rotation for 
Kirchhoff–Love IGA patches, but limited to G1 geometries. 
However, all of these approaches rely on a conforming 
requirement, meaning that the parameterization of the com-
mon edge is the same for each of the patches to be coupled.

For discretization involving IGA patches meeting at non-
conforming interfaces, the continuity of the displacement 
and rotation must be enforced with a weak method. In fact, 
the main advantage of such approach is that the coupling 
condition, as well as the boundary Dirichlet condition, does 
not need to be intrinsically satisfied by the solution space, 
allowing more flexibility in its definition. In the literature, 
various methods have been proposed to weakly enforce 
coupling between IGA patches for many model problems, 
including the Kirchhoff–Love equations. Examples of these 
methods include the morthar type and Lagrange multipliers 
methods [35–41], the pure penalty methods [42–47], the 
projected super-penalty method [48, 49] and the Nitsche-
type methods [50–58]. Among these, the Nitsche-type 
methods are particularly appealing as they do not require 
the introduction of additional degrees of freedom as in the 
Lagrange multipliers methods and, when properly stabilized, 
do not suffer from the ill-conditioning issues typically seen 
in penalty approaches. However, constructing a Nitsche-
type method for the Kirchhoff–Love shell equations requires 
computing the fluxes for the formulation. The expression 
typically found in the literature [51, 59], that tracks back 
to Koiter’s work [3], was recently identified as incorrect 
in [60]. In that study, a new expression was proposed and 
validated by several rigorous numerical tests related to the 
weak enforcement of essential boundary conditions.

Indeed, while multi-patch NURBS offer the potential to 
construct geometries of any desired curvature profile, the 
design of complex structures involving multiple intersect-
ing surfaces, cut-outs, or local features can often result in 
what is commonly referred to as dirty geometries, where 
boundaries between patches are not watertight. To overcome 
these limitations, a branch of research in IGA has focused on 
developing spline spaces using more intricate unstructured 
grids. The underlying idea is that by enhancing the flex-
ibility of the spline space to accommodate mesh topologies 
different from the classical one based on a tensor-product 
rectangular grid, these technologies can serve as tools dur-
ing the design phase to generate surfaces with more diverse 
shapes, enabling the representation of local features with 
high resolution. Numerous instances in this direction have 
been proposed in recent literature. To cite some, in the con-
text of Kirchhoff–Love shells, the work presented in [61] 
reparameterizes surfaces with cut-outs using third-degree 
analysis-suitable T-splines (AST-splines) that are C2 every-
where. In [62], multiple rectangular T-splines are combined 
through the use of extraordinary points where continuity is 
locally reduced to C1 . AST-splines are further extended in 
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[63] to ensure non-negativity of the basis functions and in 
[64] to allow for multiple extraordinary points per face. In 
[65], manifold-based basis functions with selected C0 edges 
are proposed to model shells with kinks, where the continu-
ity of the rotation is locally enforced through pure penalty. 
Unstructured splines (U-splines) are introduced in [66] capa-
ble of connecting rectangular and triangular cells, retain-
ing higher continuity except in the triangles’ edges. Fully 
triangle configuration B-splines (TCB-splines) are instead 
adopted in [67] to reparameterize and analyze shell struc-
tures topologically equivalent to a disk with a finite number 
of holes. In [68], the G-spline technology allows for building 
splines with an arbitrary unstructured quadrilateral layout 
while maintaining global C1 continuity. In these approaches, 
to some extent, there is a departure from the traditional con-
cept of designing by assembling different patches. Although 
some companies in the field are beginning to implement 
unstructured spline technologies in commercial software, 
their widespread adoption in industrial applications would 
necessitate a shift in the design paradigms of practitioners, 
which might require time and effort. Furthermore, shell mid-
surfaces with kinks impose a C0 continuity on the approxi-
mation space, still necessitating a weak coupling for the 
rotation.

As an alternative, the trimmed approach also allows for 
the definition of complex surfaces while limiting the number 
of NURBS patches required. This involves embedding a 
trimming curve in the parametric domain of a surface to 
delimit its outer boundary and identify active and non-
active regions. However, this increased flexibility comes 
with certain challenges. In fact, when adapting the IGA 
paradigm to this approach for representing geometries, 
the presence of trimmed elements raises issues related to 
integration, conditioning of the linear system, and stability 
of the method. These same issues arise when coupling 
between two patches occurs at a trimmed boundary, where 
one or both of the patches may be trimmed by the interface 
[48, 54]. Addressing these challenges is crucial to ensure the 
robustness and accuracy of the method.

Regarding the integration over trimmed elements, 
several techniques have been proposed in the literature, 
including: (i) hierarchical finite cells: where trimmed 
elements are subdivided into a hierarchy of smaller cells 
where a standard integration rule is applied [53, 54]; (ii) 
level-set function: that is applicable to domains where the 
boundary is implicitly represented by the zero level-set of 
a reference function [69, 70]; blending functions: that are 
used to approximate the geometry of the trimmed element, 
enabling efficient integration [52, 71]. In particular, recently, 
a robust and efficient algorithm based on higher-order 
reparameterization of trimmed elements has been proposed 
in [72], which allows dealing with explicitly defined 
domains.

In this work, we focus on the linear elastic static analysis of 
thin-walled structures using the Kirchhoff–Love shell equa-
tions and the IGA approach. Laminated shells are considered, 
and the formulation for isotropic ones is deduced as a special 
case. When dealing with structures composed of multiple 
trimmed patches, the proposed coupling strategy relies on the 
symmetric Nitsche method, also known as interior penalty 
method in the context of coupling [73]. This work seeks to 
reassess the interior penalty method for Kirchhoff–Love shells 
in light of the revised expression for the fluxes [60], which are 
employed for the first time here to enforce coupling condi-
tions. To handle integration over trimmed elements robustly, 
we employ the algorithm implemented in [72]. This compre-
hensive approach allows for efficient and accurate analysis 
of complex laminated shell structures with non-conforming 
trimmed interfaces and boundaries.

The paper is structured as follows: In Sect. 2, B-spline 
functions and their extension to trimmed domains are 
described; Sect. 3 introduces the formulation for the Kirch-
hoff–Love shell equations, along with details regarding the 
involved differential geometry; Sect. 4 recalls the correct 
expression for the formulation fluxes presented in [60], fol-
lowed by the Nitsche’s formulation for the boundary condi-
tions and the formulation for the coupling conditions; In 
Sect. 5, the efficiency of the method is demonstrated through 
comparisons with pure penalty methods for an isotropic and 
a laminated Kirchhoff plate, as well as an isotropic hyper-
bolic paraboloid shell from the new shell obstacle course for 
Kirchhoff–Love [60], obtaining for the first time L2 , H1 , and 
H2 convergence curves for a generally-curved shell in a cou-
pling test. Additionally, the method is applied to a complex 
structure consisting of five intersecting laminated cylindri-
cal shells, and the results are compared with those obtained 
using commercial software; Finally, Sect. 6 presents the 
conclusions of the study.

2  The isogeometric analysis method

In this section, an overview of B-splines and NURBS 
functions is given. In the context of IGA methods, they are 
utilized both to construct surfaces of shells and to discretize 
their displacement field. In this article, shell surfaces are 
eventually represented using a trimmed approach. This 
approach begins with a simple background surface that 
follows a tensor product structure. The surface is then 
trimmed by defining its boundary through some additional 
curves. The details of this trimming operations are provided 
in the following sections.
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2.1  The B‑splines functions

Univariate B-splines are created based on a polynomial order p 
and a knot vector, which is a sequence of non-decreasing knot 
values Ξ = {�1, �2, ..., �n+p+1} . These parameters are used to 
construct n basis functions Np

i
(�) , where � is the curvilinear 

coordinate and i = 1, 2, ...n . The Cox-de Boor recursion 
formula is employed to generate these basis functions [74]. 
A B-spline curve embedded in ℝ3 can be constructed by 
multiplying the basis functions by some control points Pi ∈ ℝ

3 
and summing up as

It is important to highlight the following aspects of 
B-splines: 

i) From the knot vector Ξ , the vector Θ = [�1, �2,… , �r] is 
constructed taking only the consecutive, non-repeating 
values �i in such a way that in the intervals [�i, �i+1] the 
partition of unity property of the spline basis functions is 
satisfied. It is worth noting that the number of elements 
of Θ , here denoted by r, depends on the specificity of Ξ . 
A B-spline function is therefore defined piece-wise in 
the intervals [�i, �i+1].

ii) Within each interval, a B-spline function is infinitely 
differentiable ( C∞ ). However, at the knots, the continuity 
is at most Cp−1 and is reduced of one unity for every 
repetition of the knot value.

iii) The piece-wise nature of a B-spline naturally leads to a 
mesh-like structure, where each element corresponds to 
a different interval.

From univariate B-splines basis functions, their bivariate 
counterparts are constructed using a tensor product approach 
as

where it is assumed the same polynomial degree in both 
curvilinear direction �1 and �2 . Additionally, Np

i
(�1) and 

N
p

j
(�2) are univariate basis functions constructed from the 

k n o t  v e c t o r s  Ξ1 = {�1
1
, �2

1
, ..., �

n+p+1

1
}  a n d 

Ξ2 = {�1
2
, �2

2
, ..., �

m+p+1

2
} , respectively. Therefore, a B-spline 

surface is constructed as

where Pij ∈ ℝ
3 is a generic control point. The knot vec-

tors in a B-spline identify the parametric domain. When 
open knot vectors are adopted the parametric domain is 

(1)F(�) =

n∑
i=1

N
p

i
(�)Pi.

(2)Bij(�1, �2) = N
p

i
(�1)N

p

j
(�2),

(3)F(�1, �2) =

n∑
i=1

m∑
j=1

Bij(�1, �2)Pij,

defined as Ω0 = [�1
1
, �

n+p+1

1
] × [�1

2
, �

n+p+1

2
] , meaning that 

(�1, �2) ∈ Ω0 . The bivariate splines inherit the piece-wise 
definition property from univariate ones through the tensor 
product structure. Therefore, a rectangular Bezier grid is 
identified on Ω0 and the domain of a generic cell is denoted 
as Q0 = [�i

1
, �i+1

1
] × [�

j

2
, �

j+1

2
] , where [�i

�
, �i+1

�
] denotes the i-th 

interval of definition of the univariate basis functions cor-
responding to ��.

For more details on 1D and 2D B-splines, together with 
the extension to NURBS curves and surfaces, that is not 
reported here for the sake of conciseness, the interest reader 
is referred to [74, 75].

2.2  Space of trimmed splines

A relatively simple approach to represent complex 
geometries with intricate boundaries and/or internal holes 
consists in using a standard B-spline surface and delimiting 
the actual geometry through some simply-connected curves 
that define the internal and external boundaries. By sampling 
a sufficient number of points in the physical space, each of 
these curves is projected onto the parametric domain, where 
they delineate two regions. The trimming operation selects 
only one of these two regions. By repeating this operation 
for each curve, an active subset of the parametric domain 
Ω ⊂ Ω0 is identified, which maps through F(�1, �2) to the 
final surface S of the modeled shell (see Fig. 1). The space 
of B-splines in the trimmed domain is defined as:

The trimming operation modifies the rectangular Bezier grid 
by classifying its cells, denoted as Q, into active or non-
active, accordingly to whether the corresponding untrimmed 
cell satisfy Q0 ∩ Ω ≠ � . Active elements are further catego-
rized as entire or partial depending on whether Q is equal to 
the untrimmed cell Q0 or only a portion of it. Partial cells are 
cut by the trimming curves and require special treatment for 
integration. In this work, the algorithm presented in [72] is 
employed, which performs a reparameterization of the cut 
cells, enabling the application of Gaussian rules and ensur-
ing high-order accuracy in the integration.

3  The Kirchhoff–Love shell theory

Unlike other shell theories, the Kirchhoff–Love equation 
solely considers the displacement of the mean surface of 
the shell as the primary variable. This theory is based on 
the assumption that straight segments perpendicular to the 

(4)

Sh = span{Bij◦F
−1 ∶

i ∈ {1, ..., n}, j ∈ {1, ...,m}, supp{Bij} ∩ Ω ≠ 0}
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mean surface remain both straight and perpendicular after 
deformation. Consequently, its rotation is directly obtained 
from the derivatives of the displacement field, resulting in a 
fourth-order problem that necessitates C1 continuity of the 
variable. For a more comprehensive understanding of the 
derivation of the Kirchhoff–Love shell theory, interested 
readers are referred to [21, 60]. In this section, for the sake 
of completeness, we present the theory first for a single patch 
shell and subsequently extend it to a multi-patch setting.

3.1  Problem setting

Let S ∈ �
3 be the mean oriented surface of the shell under 

consideration, with �3 representing the three-dimensional 
Euclidean space. Let S be the image of the parametric 
domain Ω ∈ ℝ

2 , accordingly to the map

where �1, �2 are the curvilinear coordinates spanning Ω . The 
components of the vector x0 refer to the standard basis e1e2e3 
of the Euclidean space.

Let �Ω denote the boundary of the parametric domain, 
which is mapped onto the boundary of the surface Γ . The 
boundary Γ is split into two parts as Γ = ΓD1 ∪ ΓN1 , and as 
Γ = ΓD2 ∪ ΓN2 , with ΓD1 ∩ ΓN1 = � , ΓD2 ∩ ΓN2 = � . Where 
ΓD1 and ΓD2 represent the portions of the boundary where 
Dirichlet displacement and rotation boundary conditions 
are applied respectively, while ΓN1 and ΓN2 represent the 
portions of the boundary where Neumann force and moment 
boundary conditions are applied, respectively. Let us define 
the set of corners � ∈ Γ which is further divided into 
�D ∈ ΓD1  where Dirichlet displacement boundary conditions 

(5)x0 = x0(�1, �2) =

⎡⎢⎢⎣

x01(�1, �2)

x02(�1, �2)

x03(�1, �2)

⎤⎥⎥⎦
,

are applied and �N ∈ ΓN1 where Neumann force boundary 
conditions are applied. The external force distributed on 
the shell surface is denoted as F̃ . Whereas, regarding the 
surface boundary, the applied force is denoted as �̃ , while the 
bending and twisting moments are denoted as M̃nn and M̃nt , 
respectively. However, for the Kirchhoff–Love shell theory 
�̃ and M̃nt cannot be imposed separately and both contribute 
to the ersatz force applied on ΓN1 . On the other hand, M̃nn is 
the only moment applied on ΓN2.

The shell material is assumed to be a laminate, with 
homogeneous, orthotropic layers having a uniform 
lamination angle and of uniform thickness. Therefore, the 
total thickness of the shell, denoted as � , is also uniform 
across the surface.

In the reminder of the article, Latin indices span the set 
{1, 2, 3} while Greek indices span the set {1, 2} . The Einstein 
summation convention is utilized for repeated indices.

3.2  Basics of differential geometry

Let us introduce some concepts of differential geometry 
needed for the formulation. Starting from the map in Eq. (5), 
the local covariant basis is defined as

Here, the comma preceding one or more Greek indices 
indicates a series of coordinate derivatives in the specified 
sequence of curvilinear directions. It is important to note 
that the vectors of the covariant basis are tangential to the 
lines of constant curvilinear coordinates and, therefore, 
lie on the plane that is locally tangent to the surface. As a 
result, the unit vector a3 locally orthogonal to the surface S 
is obtained from the covariant basis as

(6)a� = x0,�(�1, �2) .

Fig. 1  Active (in grey) and non-
active (in white) regions of the 
parametric (a) and physical (b) 
domains
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where | ∙ | is the standard Euclidean norm. The covariant 
components of the metric tensor are defined as a�� = a� ⋅ a� , 
where ⋅ denotes the dot product. The determinant of the 
metric tensor is denoted as a. The contravariant components 
of the metric tensor are obtained from the covariant 
components as [a��] = [a��]

−1 and allow us to compute the 
contravariant basis vectors as

that satisfy the property a� ⋅ a� = �
�
� , where ��� represents 

the Kronecker delta. Additionally, we introduce the covari-
ant components and the mixed components of the curvature 
tensor, defined respectively as 

 where consistently with the introduced comma notation for 
the coordinate derivative a�,� = �a�∕��� = �2x0∕������ . 
In this article it is adopted the convention of indicating 
covariant coordinates referring to the contravariant basis 
with upper indices, as in v� , and contravariant coordinates 
referring to the covariant basis with lower indices, as in 
v� . Furthermore, the notation v�|� denotes the covariant 
derivative of the �-th component of a generic vector v 
along the direction � . This notation is extended to tensors 
as well, where ���|� represents the covariant derivative of 
the �� component of a generic tensor � with respect to the 
� direction.

3.3  Weak form of the Kirchhoff–Love shell 
equations

Focusing on a single patch shell, the weak form of the 
Kirchhoff–Love equation is stated as: find u ∈ Vu such that

where the choice of the vector spaces Vv ∈ H2(Ω) and 
Vu ∈ H2(Ω) depends on the specific boundary conditions 
of the problem. In the discretized version of Eq. (10) the 
choice of the spaces also takes into account whether the 
boundary conditions are applied in a strong or a weak sense, 
as explained in Sect. 4. The bilinear and the linear forms in 
Eq. (10) are defined as 

(7)a3 =
a1 × a2

|a1 × a2| ,

(8)a
� = a��a� ,

(9a)b�� = a3 ⋅ a�,� ,

(9b)b�
�
= a��b�� ,

(10)a(u, v) = f (v) ∀v ∈ Vv,

(11a)a(u, v) = ∫S

�(v) ∶ N(u)dS + ∫S

�(v) ∶ M(u)dS ,

 where � and � represent the membrane and bending strains, 
respectively, and their expression is provided in Appendix A, 
while N and M represent the conjugate generalized force and 
moment, respectively. These quantities are all rank-2 tensors, 
and their components are related through the following 
constitutive equations: 

 where the coefficients introduced constitute the components 
of the generalized stiffness tensors for a Kirchhoff–Love 
laminated shell. Their values depend on both the material 
and the geometry of the shell. A comprehensive description 
of how these coefficients are obtained is provided in 
Appendix B for the sake of completeness. The components 
of the membrane and bending strains, as well as the normal 
or bending rotation �n , are derived as linear combinations 
of the first and second coordinate derivatives of the 
displacement vector. The specific expressions for these 
quantities can be found in Appendix A.

Regarding the terms related to the applied forces in 
Eq. (10), in addition to the bending moment M̃nn and the 
surface force F̃ that were already introduced in Sect. 3.1, two 
additional forces are introduced: the ersatz forces T̃ and the 
corner forces R̃ . These are defined, respectively, as

where t� represents the �-th contravariant coordinate of 
the vector t , which is the unit vector locally tangent to 
the counterclockwise-oriented boundary Γ . Additionally, 
n = t × a3 is the outer unit vector orthogonal to the boundary 
and lying in the local plane tangent to S. The components 
of the applied moment M̃nn and M̃nt are referred to the basis 
formed by the vectors n and t.

At  this  point ,  i t  i s  wor th mentioning that 
Kirchhoff–Love shells, unlike Reissner-Mindlin ones, 
do not suffer from shear locking. However, membrane 
locking can be an issue in certain critical situations. 
Various remedies for addressing membrane locking have 
been proposed in the literature. To mention a few: in 
[76], two approaches are proposed: the discrete strain 

(11b)

f (v) = ∫S

v ⋅ F̃dS + ∫ΓN1

v ⋅ T̃dΓ + ∫ΓN2

𝜃n(v)M̃nndΓ+

+
∑
C∈𝜒N

(
v3R̃

)|||C ,

(12a)N�� = �
������� + �

������� ,

(12b)M�� = ℂ
������� + 𝔻

������� ,

(13)T̃ =
(
𝜏𝛼 − M̃ntb𝛼𝛽 t

𝛽
)
a𝛼 +

(
𝜏3 +

𝜕M̃nt

𝜕t

)
a3,

(14)R̃ = lim
𝜖→0

(
M̃nt(x + 𝜖t) − M̃nt(x − 𝜖t)

)
,
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gap method, that is based on ad-hoc integration rules 
for strains, but due to the higher-order continuity of 
spline spaces in IGA, leads to a loss of sparsity of the 
stiffness matrix; and a mixed-method incorporating both 
displacement and membrane stress as main variables in 
the Hellinger-Reissner principle. The mixed displacement 
method is introduced in [77], where additional 
displacement degrees of freedom are introduced from the 
same approximation space as the actual displacements to 
compute the assumed membrane strain. Instead, in [78], 
assumed membrane strains are obtained through a local 
projection of the B-spline space and then reconstructed 
on a patch level using a local smoothing procedure. In 
[79], C0 continuous assumed strains are constructed as 
a bilinear interpolation of the strains at the four nodes 
of a rectangular element, addressing locking without 
the introduction of additional degrees of freedom, the 
need for additional matrix inversion, and preserving 
the sparsity of the stiffness matrix, although limited to 
quadratic elements. It is important to mention that in the 
present formulation, no treatment for locking is utilized, 
and an efficient combination of locking treatments with 
the coupling strategy proposed in this paper is left for 
further development of the present work.

3.4  Extension to multi‑patch

The variational statement in Eq.  (10) applies to shell 
structures consisting on a single patch. However, if the 
structure is composed of NP patches that intersect at NI 
interfaces, the problem becomes finding u ∈ V

u such that:

where ap(u, v) and f p(v) are defined as in Eq. (11), but a 
superscript p is added to indicate that they belong to the p-
th patch. Additionally, Vu and Vv are vector spaces defined 
over the union of the surfaces of the patches of the structure. 
These spaces have to be defined in a way that, apart from 
satisfying the essential boundary conditions, ensures the 
following conditions over each of the interfaces Γi : 

 where [∙] represents the jump operator, which calculates the 
difference between the quantity of interest computed from 
the different patches at the interface.

In order to enforce this coupling condition in a strong 
sense, Eq. (16) should be embedded in the spaces Vv and 

(15)
NP∑
p=1

ap(u, v) =

NP∑
p=1

f p(v) ∀v ∈ V
v,

(16a)[u] = 0 ,

(16b)[�n] = 0 ,

V
u . In practice, after discretization, it is relatively easy 

to enforce Eq. (16a) in the case where the patches are 
conforming at the interface, but is not straightforward 
to do the same for Eq. (16b) and this is restricted to G1 
surfaces [31, 33, 80]. However, in situations where the 
interface is generated in a non-conforming manner, such 
as when two patches meet on a trimmed boundary, the 
coupling conditions can only be enforced in a weak sense. 
The same applies to essential boundary conditions on the 
trimmed boundary of each patch.

4  The interior penalty coupling 
for Kirchhoff–Love shells

In this section, the problem stated in Eq. (10) in a continuous 
framework is discretized by selecting appropriate spaces 
Vu and Vv for a single patch problem and Vu and Vv for a 
multi-patch problem. In an IGA approach, these spaces 
are constructed starting from the trimmed B-spline space 
introduced in Sect. 2.2. In this article, Dirichlet boundary 
conditions are applied in either a weak or a strong sense, 
depending on the specific problem being investigated.

For a single patch shell, in order to impose Dirichlet 
boundary conditions in a strong sense, it is necessary to 
ensure that the test and trial functions uh and vh of Vu

h
 and Vv

h
 , 

respectively, satisfy uh = ũ and vh = 0 on ΓD1

h
 and 𝜃n(uh) = 𝜃n 

and �(vh) = 0 on ΓD2

h
 . These conditions can be imposed 

strongly only on conforming edges. However, if Dirichlet 
boundary conditions are enforced in a weak sense, these 
requirements no longer need to be satisfied. The same prin-
ciples apply when considering shell structures composed of 
multiple patches. More specifically, regarding the coupling 
conditions, this work adopts exclusively a weak imposition, 
as explained in the following sections. Additionally, simi-
larly to other fourth-order equations, in the Kirchhoff–Love 
one there is a continuity requirement on the trial functions 
of at least C1 [60, 81].

Different methods are available in literature to apply 
boundary conditions and coupling conditions in a weak 
sense. In this work, the symmetric Nitsche method [60], also 
known as the interior penalty method [73] in the context of 
coupling conditions, is employed. This method requires the 
computation of the fluxes of the formulation obtained as 
explained in Sect. 4.1.

4.1  The fluxes for the Kirchhoff–Love problem

Due to the complexity of the Kirchhoff–Love shell equations, 
the computation of the fluxes is not a trivial task. In fact, 
the initially proposed expression for the fluxes by Koiter 
[3] was found to be incorrect, as discussed in [60]. For a 
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complete derivation of their expression, interested readers 
are referred to this source. However, the correct definition is 
also provided here for the sake of completeness.

Recalling the outer-facing unit normal n introduced in 
Sect. 3.3, in this direction, the fluxes associated with the 
problem are of two types: those corresponding to the ersatz 
force and those corresponding to the bending moment. 
Respectively, their definitions are 

 where n� is the component of n referred to a� , and the 
components of the vector T are defined as 

 where with the notation (∙),t we denote the arc-lenght 
derivative along the curve that identifies t . Additional details 
on the computation of the terms appearing in Eq. (18) are 
given in Appendix C.

4.2  The Nitsche’s method for weakly imposing 
Dirichlet boundary conditions

In this article, when a strong imposition of Dirichlet 
boundary conditions is not possible, the symmetric 
Nitsche’s method [60] is employed. For a single-patch 
shell, the discretized Kirchhoff–Love variational statement 
is formulated as follows: find uh ∈ Vu

h
 such that

Where Vu
h
 , and Vv

h
 are constructed from the space of B-splines 

defined over Ω and their exact definition depends on whether 
the boundary conditions are imposed strongly in a portion 
of the boundary. In the equations presented in this section, 
it is assumed that essential boundary conditions are applied 
in a weak sense in the entire ΓD1

h
 and ΓD2

h
 , whereas in the 

results presented in Sect. 5 it is preferred, when possible, to 
enforce them in a strong sense. Both the bilinear form on the 
left-hand side and the linear form on the right-hand side of 
Eq. (19) are constructed by summing three contributions. As 
for the terms with a subscript h, they are defined as follows: 

(17a)T(u) = T�a� + T3a3 ,

(17b)Mnn(u) = M��n�n� ,

(18a)T� = N��n� − b�
�
M��n� −Mntb

�
�
t� ,

(18b)T3 = M
��

|� n� + (M��n�t�),t ,

(19)
ah(uh, vh) + an(uh, vh) + as(uh, vh) = fh(vh)+

+ fn(vh) + fs(vh) ∀vh ∈ Vv
h
.

(20a)

ah(uh, vh) = ∫Sh

�(vh) ∶ N(uh)dS + ∫Sh

�(vh) ∶ M(uh)dS ,

 and constitute the discretized version of Eq.(10). As such, 
Sh , Γ

N1

h
 , ΓN2

h
 , and �N

h
 are the approximated versions after dis-

cretization of ΓN1 , ΓN2 , and �N , respectively. The terms with 
a subscript n are the symmetric Nitsche terms, which include 
the fluxes described in Sect. 4.1. These terms are defined as 

 where ũ and 𝜃n are the applied displacement and normal 
rotation, respectively and ΓD1

h
 , ΓD2

h
 , and �D

h
 are the approxi-

mated versions of ΓD1 , ΓD2 , and �D , respectively. The sub-
script 3 in u3h and v3h denotes the component of the respec-
tive vector relative to a3 = a3 . Additionally, the following 
definition has been employed:

where Mnt = M��n�t� and t� is the component of t along a� . 
Both an(vh, uh) and fn(vh) are composed of three terms. The 
first and second terms correspond to the displacements and 
rotation boundary conditions, respectively. The third term, 
which involves the displacements at the corners, is intro-
duced to ensure optimal convergence, as discussed in [60]. 
Each of the three contributes are constructed from a con-
sistency term (e.g., vh ⋅ T(uh) ) and a symmetry term (e.g., 
T(vh) ⋅ uh and T(vh) ⋅ ũ ). Finally, the stabilization terms in 
Eq. (19), denoted by a subscript s, are defined as 

(20b)

fh(vh) = ∫Sh

v ⋅ F̃dS + ∫Γ
N1
h

vh ⋅ T̃dΓ+

+ ∫Γ
N2
h

𝜃n(vh)M̃nndΓ +
∑
C∈𝜒N

h

(
v3hR̃

)|||C ,

(21a)

an(vh, uh) = −∫Γ
D1
h

(
T(vh) ⋅ uh + vh ⋅ T(uh)

)
dΓ+

− ∫Γ
D2
h

(
Mnn(vh)�n(uh) + �n(vh)Mnn(uh)

)
dΓ+

−
∑
C∈�D

h

(
R(vh)u3h + v3hR(uh)

)|||C ,

(21b)

fn(vh) = −∫Γ
D1
h

T(vh) ⋅ ũdΓ − ∫Γ
D2
h

Mnn(vh)𝜃ndΓ+

−
∑
C∈𝜒D

h

(
R(vh)ũ3

)|||C ,

(22)R = lim
�→0

(
Mnt(x + �t) −Mnt(x − �t)

)
,

(23a)

as(vh, uh) = ∫Γ
D1
h

�b
D
vh ⋅ uhdΓ + ∫Γ

D2
h

�b
R
�n(vh)�n(uh)dΓ+

+ ∫Γ
D1
h

�b
3
v3hu3hdΓ +

∑
C∈�D

h

(
�b
C
v3hu3h

)|||C ,
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 where �b
D

 , �b
R
 , �b

3
 , and �b

C
 are the so-called penalty 

parameters, which play a crucial role in the weak imposition 
of boundary and coupling conditions, since they provide 
stability to the method. The choice of these parameters is 
still an open question and depends on the specific problem 
at hand. A discussion on the importance of these parameters, 
some guidelines on how to choose them, and the approach 
adopted in this paper is presented in Sec.4.4.

4.3  The interior penalty method for coupling IGA 
patches

The framework presented in Sect. 4.2 focuses on a single-
patch shell. However, when dealing with structures composed 
of multiple shells that intersect at common interfaces, the 
formulation needs to be extended to address the coupling 
conditions. To achieve this, the terms in Eq. (19) are enriched 
with a superscript p to indicate that they belong to the p-th 
patch. Then, the following forms are defined: 

 The discretized version of the Kirchhoff–Love shell 
equation for multi-patch structures becomes: find uh in Vu

h
 

such that

where Vu
h
 and Vv

h
 are the discretized spaces correspondent 

to Vu and Vv , respectively, and bi(uh, vh) is the contribute to 
the variational statement ensuring the coupling between the 
patches intersecting at the i-th interface. These terms are 
obtained as

Once again, Nitsche and stabilization terms have been 
introduced, denoted by the subscripts n and s, respectively. 
The definitions of these terms are 

(23b)

fs(vh) = ∫Γ
D1
h

𝜇b
D
vh ⋅ ũdΓ + ∫Γ

D2
h

𝜇b
R
𝜃n(vh)𝜃ndΓ+

+ ∫Γ
D1
h

𝜇b
3
v3hũ3dΓ +

∑
C∈𝜒D

h

(
𝜇b
C
v3hũ3

)|||C ,

(24a)ap(uh, vh) = a
p

h
(uh, vh) + ap

n
(uh, vh) + ap

s
(uh, vh) ,

(24b)f p(vh) = f
p

h
(vh) + f p

n
(vh) + f p

s
(vh) .

(25)
NP∑
p=1

ap(uh, vh) +

NI∑
i=1

bi(uh, vh) =

NP∑
p=1

f p(vh) ∀vh ∈ V
v
h
,

(26)bi(uh, vh) = bi
n
(uh, vh) + bi

s
(uh, vh) .

(27a)

bi
n
(uh, vh) = −∫Γi

h

(
[vh] ⋅ {T(uh)} + [�n(vh)]{Mnn(uh)}

)
dΓ

− �1 ∫Γi
h

(
{T(vh)} ⋅ [uh] + {Mnn(vh)}[�n(uh)]

)
dΓ ,

 Where Γi
h
 denotes the approximation of the i-th interface Γi . 

The penalty terms �c
D
 and �c

R
 , associated to the displacement 

and the rotation coupling conditions, respectively, have been 
introduced. Their choice is discussed together with their 
counterparts for boundary conditions in Sect. 4.4. {∙} and 
[∙] are the average and jump operators, defined as 

 where ∙ denotes a generic quantity defined over both patches 
at the same point on the interface Γi . The superscript + and 
− are used to distinguish between the two patches. The 
parameters �1 and �2 are used to differentiate amongst the 
Nitsche type methods. Their meaning and effect on the 
stabilization of the method is discussed in Sect. 4.4. In this 
contribute, these are chosen as �1 = 1 and �2 = 0.5 that leads 
to a symmetric interior penalty formulation.

In this formulation, it is assumed that the curves in the 
Euclidean space describing the i-th interface are known 
explicitly. Consequently, the unit vector t tangent to 
the interface is also assumed to be known. t denotes the 
tangent vector to both the external boundaries of the patch 
(as mentioned in Sect. 3.3) and the interface between two 
patches. Moreover, since an interface is common to both the 
intersecting patches that generate it, the unit vector t is also 
the same for both patches. The context always makes it clear 
which condition is being referred to, whether a boundary 
or a coupling one. However, in the case of the coupling 
condition, the requirement of t to be oriented in a counter-
clockwise direction is discarded, and whether the orientation 
is clockwise or counter-clockwise depends on the relative 
position between t , a3 , and n for each specific patch, being 
n the outer unit vector normal to the interface, lying on the 
plane locally tangent to the patch surface.

As a result, n+ and n− can be different. In the simplest 
case, they lie in the same direction, either coinciding or 
being opposite. But, if the patches meet at an angle, their 
directions differ. The formulation presented in this article is 
capable of handling every possible case. However, in order 
to properly compute the average, the fluxes for the second 
patch (in contrast to the first patch) are obtained with respect 
to a normal vector entering the surface domain.

(27b)

bi
s
(uh, vh) = ∫Γi

h

(
�c
D
[vh] ⋅ [uh]

)
dΓ

+ ∫Γi
h

(
�c
R
[�n(vh)][�n(uh)]

)
dΓ .

(28a){∙} = �2 ∙+ + (1 − �2) ∙
− ,

(28b)[∙] = ∙+ − ∙− ,
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4.4  Choice of the parameters of the methods

In order to weakly enforce essential boundary and coupling 
conditions, various methods have been investigated in 
literature. In particular, different penalty and Nitsche’s 
methods can be constructed based on the presence of Nitsche 
and/or stabilization terms, the presence and the sign of the 
symmetry terms, and the definition of the average operator. 
The unified formulation proposed in [82] introduces the 
parameters �1 and �2 , which allow for the construction of 
different Nitsche type methods. When no Nitsche terms 
are present in the formulation, the resulting method is 
the pure penalty [42–45, 47, 83]. The symmetric interior 
penalty method [51–53, 57] is constructed adopting �1 = 1 
and �2 = 0.5 , requiring the introduction of penalty terms to 
ensure stability. The skew Nitsche’s method [54] is obtained 
with �1 = −1 and �2 = 0.5 without adding stabilization terms. 
This choice leads to a skew-symmetric solving linear system 
and has the advantage of being parameter-free. Taking 
�1 = −1 and �2 ≠ 0.5 leads to the weighted non-symmetric 
Nitsche’s method [55, 56, 84, 85]. This method provides 
increased stability compared to other Nitsche’s methods but 
at the expense of losing any symmetry of the linear system.

In pure penalty methods, which rely solely on penalty 
integrals, the choice of the penalty parameter can 
significantly impact the accuracy of the method, setting 
a lower bound on the achievable error corresponding to 
that particular value of the penalty parameter [47]. If the 
value is too low, it results in a weak enforcement of the 
boundary/coupling condition. Conversely, if the value is too 
high, it leads to ill-conditioning of the linear system. When 
employing a Nitsche’s method that includes the flux terms, 
the penalty terms are used solely for stabilization purposes. 
In this case, the minimum value of the penalty parameter 
required to achieve optimal convergence is lower than 
that needed for pure penalty methods, allowing for more 
flexibility in its selection.

In this work, symmetric Nitsche terms defined in Eq. (21) 
and Eq.  (27a) offer the advantage, compared to other 
Nitsche’s methods, of resulting in symmetric linear systems, 
which can be beneficial in terms of computational efficiency. 
However, the interior penalty formulation may lose 
coercivity, and therefore stability, when using a fixed penalty 
parameter for discretization including small cut elements. 
Unfortunately, as of the authors’ knowledge, a method stable 
under all circumstances for coupling trimmed shell patches 
does not currently exist in the literature. A possible local 
estimate for the penalty parameter to retain coercitivity 
relies on solving a local eigenvalue problem [50, 54, 86, 
87]. However, this approach can significantly increase 
computational time and lead to high penalty parameters in 
some critical scenarios such as coupling of patches with 
different constitutive properties or coupling of elements 

with drastically different sizes. In these cases, choosing 
different values of �1 or �2 can benefit stability while limiting 
the penalty value, as shown in [88], with the drawbacks of 
loosing symmetry of the linear system. Fortunately, for 
the symmetric Nitsche’s method, penalty parameters that 
ensure optimal convergence while preserving a reasonable 
condition number of the system matrix still span a wide 
range. The approach chosen here takes advantage of this 
property and follows the recommendations already available 
in the literature for the choice of the penalty parameters. 
Further investigation is needed in this direction, but the 
development of an unconditionally-stable Nitsche-type 
coupling method falls beyond the scope of this work.

To properly scale the penalty terms with respect to 
the problem parameters, a typical construction involves 
multiplying a problem-independent constant, a problem-
dependent term, and a mesh-size-dependent term, that might 
be raised to a mesh-degree-dependent power, accordingly 
to the problem at hand and the method adopted. Following 
[60], and extending the construction to interface coupling, 
the penalty parameters are chosen as: 

 where �b
D
 and �c

D
 are employed for displacement boundary 

and coupling conditions, respectively. Similarly, �b
R
 and �c

R
 

are employed for rotation boundary and coupling conditions, 
respectively. The parameters �b

3
 and �b

C
 relate the component 

of the displacement vector along a3 at the boundaries and 
at the corners, respectively. The corresponding integrals 
to these last two penalty terms in Eq. (23) are proven to 
be necessary for achieving optimal convergence in [60]. In 
Eq. (29), El represents the maximum Young modulus of the 
laminate (as described in Appendix B), and h is a measure 
of the mesh size. The problem-independent parameter � is 
taken here as either 10, 102 , or 103 for all the penalty terms, 
as specified in the tests of Sect. 5. This choice helps balance 
the enforcement of the boundary/coupling conditions while 
maintaining a well-conditioned system.

5  Results

In this section, we evaluate the performance of the 
proposed method through various numerical experiments 
on benchmark problems involving isotropic and laminated 

(29a)�b
D
= �c

D
= �El�∕h ,

(29b)�b
R
= �c

R
= �El�

3∕h ,

(29c)�b
3
= �El�

3∕h3 ,

(29d)�b
C
= �El�

2∕h2 ,
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plates and shells. The structures in the proposed tests are 
loaded by domain forces and are subjected to various 
boundary conditions, including homogeneous and non-
homogeneous Dirichlet conditions. The application of these 
boundary conditions varies depending on the cases, with 
some being enforced in a strong manner, while others are 
applied weakly. When available, the numerical solution are 
compared with analytical ones. These are manufactured 
computing the applied domain force from the desired 
distribution of the displacement field by using the strong 
form of the Kirchhoff–Love shell equations, as presented 
in [60], or if the test involves a planar geometry using the 
Kirchhoff plate equations.

To what concerns software, the open-source  MATLAB® 
library GeoPDEs [89, 90] is utilized, with additional 
functions implemented for the coupling. High-order 
integration over trimmed elements and their boundaries 
is achieved using the algorithm presented in [72], which 
is based on a reparameterization of the trimmed elements. 
In particular, integration over non-conforming interfaces 
requires specific attention. The interfaces must be subdivided 
in such a way that each curved segment corresponds to a 
unique element on each of the interface’s patches. This 
segmentation of the interface is then projected onto both 
parametric domains to compute the quantities of interest 
from each patch. For a detailed description of this procedure, 
interested readers are referred to [88].

Notoriously, ill-conditioning is a common challenge in 
linear systems arising from shell element structures. This 
issue is further exacerbated by high degree polynomials 
and weak coupling conditions. Additionally, in immersed 
boundary approaches, a huge difference in element size 
can appear in certain refinement level of the discretization, 
contributing to increase the condition number. To mitigate 

this issue, in this work it is used a Jacobi preconditioner 
[91] that, despite its simplicity, has demonstrated 
remarkable efficacy. Nontheless, developing a more robust 
preconditioner could be beneficial in addressing this issue 
in more general cases. However, this potential solution falls 
outside the scope of the current work and could be pursued 
as an interesting direction for future research.

The coupling strategy is tested on multi-patch geometries 
connected at non-conforming trimmed interfaces. The 
convergence curves for multi-patch discretizations in the 
L2 norm, H1 seminorm, and H2 seminorm are compared 
to those correspondent to reference single patch ones. 
Furthermore, results involving a structure comprised of 
multiple intersecting laminated cylindrical shells showcase 
the method’s potential for industrial problems.

5.1  Square Kirchhoff plate

In this test, the mechanical response of an isotropic plate 
structure is modelled using two trimmed planar patches 
coupled along a non-conforming interface. The main geo-
metrical features of the structure are depicted in Fig. 2a and 
the two patches for a specific refinement level are illustrated 
in Fig. 2b. The map of the shell is constructed to ensure that 
the lines of constant curvilinear coordinates are curved in 
the physical space, making in such way this example more 
significant.

To create a non-conforming interface, an additional knot 
is inserted in each patch, specifically (0.5, 0.5) for the first 
patch and (0.45, 0.53) for the second patch. After trimming 
both patches using the same trimming curve, which is also 
constructed to be curved in the physical domain, they are 
joint together. This configuration ensures that subsequent 

Fig. 2  Geometry of the Kirchhoff plate described in Sect. 5.1 (a). Discretization of the plate employing two non-conformal IGA patches (b) and 
a single IGA patch (c)
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dyadic refinements of the discretization maintain the non-
conforming nature of the coupling interface.

As a reference for efficiency comparison, Fig. 2c displays 
the same structure modeled with a single patch, which cor-
responds to the untrimmed left patch of the multi-patch 
configuration. The material used for the analysis is char-
acterized by a Young modulus E = 70 [GPa] and a Poisson 
ratio � = 0.3 . The plate has a square mid-surface with an 
edge length L = 1 [m] and three values of the thickness are 
considered, namely � = 0.1 [m], � = 0.01 [m], and � = 0.001 
[m]. Simply supported boundary conditions are applied, 
with homogeneous displacements Dirichlet boundary con-
ditions enforced in a strong manner along the entire exter-
nal boundaries. A distributed surface force is applied in the 
direction e3 to reproduce the manufactured smooth solution:

where U0 = 0.1 [m] is the maximum absolute value of 
the displacement. Regarding the choice of the penalty 
parameters, the arbitrary coefficient in Eq. (29) is selected 
as � = 102.

In Fig. 3, the convergence behavior of the L2 norm, H1 , 
and H2 seminorms of the error for different polynomial 
values, plate thickness, and discretization approaches in the 
presented test case is illustrated. The dashed lines represent 
the convergence curves for the single-patch case, serving 
as a reference for optimal convergence relative to that 
specific polynomial order. The solid lines correspond to the 
interior penalty method discussed in Sect. 4.3, showing how 

(30)uex = U0 sin
(
2�x

L

)
sin

(
2�y

L

)
e3,

Fig. 3  L2 convergence a, d and g, H1 convergence b, e, and h, and H2 convergence c, f and i, associated with the Kirchhoff plate shown in 
Sect. 5.1, for � = 10

2 and for different values of the thickness �
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accurately they follow the reference convergence curves. 
On the other hand, the dotted lines depict the convergence 
results for the pure penalty method, where only the 
stabilization terms in Eq. (27) are considered.

Consistently with the findings in [47], the pure penalty 
method fails to ensure optimal convergence due to the choice 
of the penalty parameters. Achieving optimal convergence 
with the pure penalty method would require super-penali-
zation, where the penalty parameters scales with powers of 
the mesh size that depends on the order of the polynomials 
[49]. However, such high penalty values typically lead to ill-
conditioning of the linear system, especially for high-order 
polynomials. This underscores the advantage of the interior 
penalty method, which achieves accurate convergence with-
out facing severe ill-conditioning issues and therefore ensur-
ing accurate results without compromising numerical stabil-
ity, although some locking phenomena can still be observed 
in the curves for p = 2 and p = 3 when � = 0.001 [m]. The 

triangles in the graphs show the optimal convergence rates 
expected for the Kirchhoff–Love theory [60]. It is worth not-
ing that, consistently with the expected theoretical prediction 
[60, 81], in our results the optimal convergence rate in L2 
norm for p = 2 is equal to p and not p + 1.

The geometry depicted in Fig. 2a is also utilized for con-
ducting a laminate test, with its multi-patch and single-patch 
configurations presented in Fig. 4. In the multi-patch discre-
tization, a knot is inserted in the position (0.5, 0.5) for the 
left patch and (0.45, 0.53) for the right one. The laminate 
is constructed using orthotropic laminae with the following 
properties: longitudinal Young’s modulus E⟨�⟩

l
= 25 [GPa], 

transversal Young’s modulus E⟨�⟩
t = 1 [GPa], Poisson’s ratio 

�
⟨�⟩
lt

= 0.25 , shear modulus G⟨�⟩
lt

= 0.4 [GPa] and thickness 
�⟨�⟩ = 0.0025 [m]. The lamination sequence employed is 
[0, 90, 90, 0]. The boundary conditions are identical to those 
of the isotropic case, while the force applied to the shell 

Fig. 4  Discretization of the 
Kirchhoff laminate in a non-
conformal multi-patch (a) and a 
single-patch (b) setting

Fig. 5  L2 norm convergence (a), H1 convergence (b), and H2 convergence (c), correspondent to the Kirchhoff laminate having thickness � = 0.01 
[m]
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surface is modified in order to manufacture the distribution 
of the displacement in Eq. (30) with the different material 
properties. The arbitrary coefficient in the definition of the 
penalty parameter is selected as � = 10 . The L2 , H1 , and 
H2 convergence curves for this test are depicted in Fig. 5. 
Similar to the isotropic case, the observations regarding the 
convergence properties of the methods investigated hold true 
also in this scenario.

As a final remark, Fig. 6 depicts the laminate’s bent struc-
ture. The mesh lines, the contour of the displacement vec-
tor’s magnitude, the components of the generalized moment 
M11 , and M12 , are presented superimposed on the deformed 
surface of the plate. The images refer to p = 3 and � = 10 . 
It is important to mention that some of the lines in the image 
are merely used to visualise trimmed elements and do not 
delimit any actual element edge.

5.2  Hyperbolic paraboloid Kirchhoff–Love shell

The second set of numerical experiments focuses on a 
curved isotropic shell with a mid-surface represented by 
a hyperbolic paraboloid. This example is derived from the 
shell obstacle course introduced in [60], which offers a col-
lection of tests having analytical solutions. These tests serve 
as an appropriate benchmark to assess the performance of 
the proposed coupling method by evaluating the conver-
gence curve based on the L2 norm, H1 , and H2 seminorms 
of the solution error.

In this test, three values of the shell thickness are taken 
into account � = 0.1 [m], � = 0.01 [m], and � = 0.001 [m], 
while the complete definition of the mid-surface can be 
found in [60]. Nonetheless, for a better understanding, the 
geometry of the shell and the coordinates of the vertices 
are illustrated in Fig. 7a. The material is isotropic with a 
Young’s modulus of E = 70 [GPa] and a Poisson ratio of 
� = 0.3 . The shell is subjected to non-homogeneous Dirichlet 

Fig. 6  Deformed configuration for the laminate in Fig. 4a with superimposed mesh grid and contour of the magnitude of the displacement (a), 
generalized moments M11 (b), and M12 (c)

Fig. 7  Geometry of the hyperbolic paraboloid described in Sect. 5.2 (a). Discretization of the shell employing two non-conformal IGA patches 
(b) and a single IGA patch (c), shown for a certain refinement level
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boundary conditions that for the displacement are enforced 
strongly assigning values directly to the degrees of freedom 
after the L2 projection of the displacement field in the spline 
space of the corresponding edges. Conversely, the bending 
rotation corresponding to the reference displacement field is 
weakly imposed at the boundary using the Nitsche’s method 
described in Sect. 4.2, using in Eqs.(21) and (23) only the 
terms corresponding to the bending rotation. The boundary 
conditions and the domain force are chosen to manufacture 
the reference displacement field:

where U0 = 1 [m]. The function for the force is provided in 
the Mathematica notebook associated with [60]. Similarly 

(31)u
ex = U0�2 sin

(
�

2
�2

)
e1 + U0�2 sin

(
�

2
�2

)
e2 ,

to the previous test, the shell is modeled using a two-
patch configuration (see Fig. 7b), as well as a single patch 
configuration (see Fig. 7c) which serves as a reference for 
the convergence curves. To make the two patches in the 
multi-patch configuration non-conforming at the interface, 
a knot is inserted in each patch at the curvilinear coordinates 
(0.5, 0.5) and (0.54, 0.43), respectively. In such way, even 
after subsequent dyadic refinements of the discretization, 
the non-conforming nature of the interface is maintained.

Figs.  8 and  9 show the L2 , H1 , and H2 convergence 
curves for the proposed test, considering different values of 
the shell thickness, the polynomial order, and the approxi-
mation approach. Two values of the arbitrary parameter � 
that appears in the penalty terms in Eq. (29) are taken into 
account, specifically, � = 10 in Fig. 8 and � = 103 in Fig. 9. 

Fig. 8  L2 convergence a, d and g, H1 convergence b, e, and h, and H2 convergence c, f and i, associated with the shell shown in Fig. 7a, for dif-
ferent values of the thickness � and arbitrary parameter � = 10
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Three different approaches are compared: a single-patch, 
a two-patch configuration coupled through a pure penalty 
method, and a two-patch configuration coupled through the 
interior penalty method.

The first feature that can be noticed in both Figs. 8 and 9 
is that, with regard to the L2 norm, the interior penalty 
method tend to closely follow the convergence curves of 
the reference single patch discretization, in contrast to the 
pure penalty method. In this comparison, the penalty value 
is scaled in the same way for both the interior penalty and 
pure penalty methods. Once again, it is worth remarking 
that achieving optimal convergence rates with the pure pen-
alty approach would necessitate a scaling of the penalty 

parameter with higher exponents of the mesh size h, thereby 
directly deteriorating the condition number of the linear 
system.

Focusing on L2 convergence for p = 4 and � = 0.1 [m], 
the curve for the single patch undergoes a slight change with 
an increase in the parameter � . This change occurs because, 
while the boundary conditions for displacements are 
strongly imposed, the boundary conditions for rotation are 
still enforced through Nitsche’s method. Consequently, the 
condition number for the last refinement level is influenced 
by the higher penalty, causing the curve to deviate from the 
optimal rate. This phenomenon is also evident in the interior 
penalty method, where weak coupling among trimmed 
elements also adversely affects the condition number. In the 
curves corresponding to L2 norm for p = 4 , convergence is 

Fig. 9  L2 convergence a, d and g, H1 convergence b, e, and h, and H2 convergence c, f and i, associated with the shell shown in Fig. 7a, for dif-
ferent values of the thickness � and arbitrary parameter � = 10

3
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lost in the last refinement level for every combination of � 
and �.

A similar behavior is observed in H1 convergence, 
although the spurious increase of the error in the last 
refinement level is more pronounced. This is particularly 
noticeable in the graphs associated with � = 0.1 [m] 
and � = 10 , where also the curves for p = 2 and p = 3 
are affected. In the latter case, it is apparent that further 
enhancing the stability of the interior penalty method by 
increasing the arbitrary parameter to � = 103 effectively 
reduces the error. This observation suggests that, in certain 
scenarios, stability issues may arise independently of the 
condition number of the linear system.

An in-depth examination is essential for the graphs in 
H2 seminorm. Notably, in these graphs, spurious effects 
become evident even in earlier refinement levels, and a clear 
asymptotic regime, demonstrating optimal convergence, is 
achieved only in certain instances. The spurious increase 
in error in the last refinement level diminish only slightly 
with an increase in the penalty parameter. However, it is 
apparent that, for � = 103 , the earlier refinement levels 
closely concord to the reference single patch discretization, 
suggesting that a more robust stabilization technique 
would indeed be beneficial. This test confirms that, in the 
H2 seminorm for Kirchhoff–Love trimmed shell patches 
coupled weakly, criticalities tend more easily to emerge.

Another noteworthy observation is that higher values of 
� result in increased errors in the preasymptotic regime for 
the interior penalty method. This effect is expected since the 
non-conforming nature of the coupling interface leads to a 
locking effect due to the stabilization terms in the integrals 
in Eq. (27b). In fact, the discrete approximation spaces of 
the displacement fields for the two patches are unable to 
perfectly match at the interface for non-trivial distribution, 

causing spurious locking phenomena. Further increasing the 
penalty exacerbates this issue.

To better assess the stability of the method, the discretiza-
tion shown in Fig. 10 is adopted. The configuration involves 
two patches with inserted knots at (0.5−� , 0.5) and (0.5+�
,0.43), respectively. Both patches are trimmed along the line 
characterized by �1 = 0.5 , and then weakly merged together. 
This arrangement ensures that the coupling interface leans 
on two columns of arbitrarily small trimmed elements. Each 
patch consists of a 16 × 9 grid with p = 3 , with one col-
umn of 16 elements being critically cut. The value of � is 
varied, and the trend on the error as � approaches zero is 
depicted in Fig. 11. The increase in error is evident in all the 
norms considered, and more pronounced in H2 seminorm, as 
expected. The graph in Fig. 11d shows the value of the pen-
alty parameter and the condition number after the applica-
tion of the Jacobi preconditioner, showing that the proposed 
stabilization technique still affect the condition number. This 
test demonstrates that when dealing with trimmed elements, 
in certain critical conditions, the method can indeed lead 
to instabilities. Addressing this issue is a priority in future 
developments of the present work to increase robustness..

It is also worth noting that the proposed method is 
adopted for a wide range of thickness values. However, 
it is important to highlight that the Kirchhoff–Love shell 
equation may not be suitable for thickness ratios that are 
too high. In such cases, higher-order theories should be 
employed to accurately capture the behavior of the shells.

Lastly, for the sake of completeness, in Fig. 12 it is shown 
the contour of the magnitude of the displacement vector, the 
contour of the generalized force component N11 , and the 
contour of the generalized moment component M11 , super-
imposed to the undeformed shell mid-surface, together with 
the mesh edges. The images refer to p = 4 and � = 103

Fig. 10  Discretization of the 
hyperbolic paraboloid shell 
in the parametric domain (a) 
and in the Euclidean space (b), 
consisting of two patches meet-
ing at a non-conforming straight 
interface that leans on two 
columns of trimmed and poorly 
shaped elements
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5.3  Coupling of intersecting cylindrical shells

The final test aims to demonstrate the efficiency and 
robustness of the proposed method, as well as the 
effectiveness of the trimming and coupling algorithms. This 
test involves a geometry with a complexity level comparable 
to that encountered in real-world industrial applications, 
consisting of multiple patches intersecting at variable angles. 

The structure under investigation consists of five intersecting 
cylinders, as depicted in Fig. 13a. The main cylinder has 
a length of L = 8 [m] and a radius of R = 1 [m], while the 
remaining cylinders have an untrimmed length of L = 4 
[m] and a radius of R = 0.8 [m]. The complete geometrical 
description of the structure is not provided here for the sake 
of conciseness but can be found in the STEP file associated 
with this publication.

Fig. 11  Error on L2 norm (a), H1 seminorm (b), and H2 seminorm (c), value of the parameter � (left ordinate in d), and condition number (right 
ordinate in d), as functions of decreasing value of the parameter � for the discretization shown in Fig. 10

Fig. 12  Undeformed configuration for the shell in Fig. 7a with superimposed mesh grid and contour of the magnitude of the displacement (a), 
generalized force N11 (b), and generalized moment M11
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Figures 13b to 13f illustrate the trimmed parametric 
domains of the corresponding cylindrical patches in 
Fig. 13a. It is noteworthy that the intersecting curves, both 
in the physical and parametric domains, consist of multiple 
segments connected in general with C0 continuity. For such 
geometric configurations, the robustness of the algorithm 
for identifying quadrature points with high-order precision 
becomes crucial.

The cylinders in the structure are simply-supported at the 
external edges, and the structure is subjected to a uniformly 
applied domain traction given by F̃ = [105, 105, 105]T [Pa]. 
The material used is a laminate with layers made of the 
same orthotropic material as described in Sect. 5.1, with 
a thickness of �⟨�⟩ = 0.0025 [m], and lamination sequence 
[90, 0, 0, 90];

In each patch, the continuity along the circumferential 
directions between the edges corresponding to the first 
and last values of the knot vector is enforced here using 

periodic boundary conditions obtained adopting periodic 
spline spaces [74]. It is worth noting that along these edges, 
a weak imposition of the coupling condition could also be 
applied by considering an interface with both edges coming 
from the same patch. However, using periodic boundary 
conditions allows for a reduction in the overall number 
of degrees of freedom in the analysis. The cylindrical 
patches meet at interfaces with non-zero angles, that are 
easily managed by the proposed formulation, as it is not 
limited to G1 surfaces. The polynomial degree used for each 
patch in each direction is p = 6 , that can be easily adopted 
thanks to the straightforward construction of B-spline basis 
functions. It is worth mentioning that to properly integrate in 
the trimmed elements and their respective boundaries nine 
Gaussian points were adopted in each direction.

Figure 14 presents the contour plot of the magnitude 
of the displacement from two different views. The results 
obtained using the formulation described in this paper (a) 

Fig. 13  Geometry of the test described in Sect. 5.3 with superimposed mesh (a). Parametric domain of each of the B-rep patches (b–f)
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and (b) are compared with those obtained using triangu-
lar elements (STRI3) in the  Abaqus® software [92], (c) 
and (d). The close agreement between the two approaches 

highlights the competitiveness of the proposed method with 
the available finite element software, affirming its accuracy 
and reliability even for complex geometries consisting of 

Fig. 14  Two different views of the contour of the magnitude of the displacement for the structure described in Sect.  5.3 obtained with the 
method presented here (a) and (b), and with the elements STRI3 in  Abaqus® (c) and (d)
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patches intersecting at a variable angle. For completeness, 
in Fig. 15 the contours of the components of the general-
ized force N22 and N12 , as well as the components of the 
generalized moment M11 and M22 , as defined in Eq. (12) are 
also depicted.

6  Conclusions

In this work, we have conducted the linear elastic static 
analysis of isotropic and laminated plates and shells using 
the Kirchhoff–Love theory. The associated fourth-order 
problem imposes a C1 continuity requirement on the solution 
space that through the Isogeometric Analysis (IGA) was 
seamlessly addressed by simply using high-degree splines.

Fig. 15  Contours of some representative components of the generalized force and moment for the test regarding the intersecting cylindrical 
shells
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The proposed method is capable of handling structures 
formed by multiple IGA patches meeting at interfaces that 
may not necessarily be conforming and might even intersect at 
an angle. In fact, amongst the various coupling strategies, we 
employed the symmetric interior penalty method. This method 
produces a weak imposition of the coupling conditions, that 
therefore does not need to be embedded in the solution space, 
easily lending itself to non-conforming and trimmed intersec-
tions amongst patches. Unlike other Nitsche-type methods, 
the interior penalty method yields a symmetric solving lin-
ear system. The proposed choice for the penalty parameters 
in the stabilization terms of the weak variational statements 
demonstrated to be effective in the numerical results, where 
multi-patch discretization with non conforming interfaces 
were tested. The error norms showed optimal convergence in 
the asymptotic regime, in agreement with expected theoretical 
rates, and proved to be competitive respect to single patch dis-
cretizations. For comparison, results related to a pure penalty 
formulation were also shown but exhibited a behaviour not 
comparable with the interior penalty’s one.

In the proposed formulation, Dirichlet boundary conditions 
are applied both strongly and weakly, depending on whether 
the boundary is conforming or trimmed, and whether the 
Dirichlet condition refers to displacement or rotation. The 
expression for the fluxes used to apply coupling conditions and 
essential boundary conditions was adopted from [60], where 
their correctness was rigorously demonstrated, in contrast with 
the formulation typically used in the existing literature. This 
work successfully replicated the results for the hyperbolic 
paraboloid benchmark from the new shell obstacle course, for 
the first time in the context of non-conforming multi-patch 
discretizations. The method proved optimal convergence, 
although for high refinement level and for high polynomials 
some ill-conditioning of the linear system appeared.

The presented formulation allows for laminated shells, 
assuming uniform thickness and lamination angle for the layers. 
However, the extension to variable thickness or variable angle 
tow composite is straight-forward. The numerical experiments 
on laminates include a laminated Kirchhoff plate and a structure 
comprising five laminated intersecting cylinders. For the first 
one, an analytical solution exists, and the error convergence 
curves were shown, confirming the properties of the method 
already demonstrated for an isotropic material. In the last test, 
a comparison of the solution contour with that obtained with 
 Abaqus® was shown. This last test showcases the potential of 
the proposed method to handle laminated shell structures of 
industrial application level of complexity. The software adopted 
in this work is in fact capable of importing directly STEP files, 
making it a powerful tool for mechanical analysis.

To what concerns future development, possible directions 
for further research include: extending the method to address 

other mechanical phenomena, such as linear buckling, 
free vibration, and transient response, as well as nonlinear 
elasticity; investigating the limits of the interior penalty 
method and developing efficient approaches to address 
potential loss of stability as well as the ill-conditioning issues, 
especially for trimmed patches; extending the method to 
encompass Reissner-Mindlin and higher-order shell theories.

Appendix A: Linear membrane and bending 
strain and rotation

In this Appendix the problem formulated in Sect.  3 is 
completed by providing the definition of � , � , and �n , which 
are obtained by linearizing their non-linear expressions, 
at the condition of uniform zero displacement. For a more 
comprehensive understanding of the underlying continuum 
mechanics concepts, the interest readers are referred to [59]. 
The expressions for the components of linear membrane and 
bending strain are: 

 In Eq. (32) the matrices M and M� have been introduced as 

 where � = |a1 × a2| . Similarly, the linear expression for the 
normal rotation is obtained from the non-linear one in [45] 
obtaining

It is remarked that the expressions shown in Eq. (32) for 
the strain are equivalent to those in [27]. However, we find 
the proposed notation to be more convenient as it allows for 
the introduction of some terms that are common with the 
definition of �n.

(32a)��� =
1

2
(a� ⋅ u,� + a� ⋅ u,�) ,

(32b)
��� = −a3 ⋅ u,�� −

(
a�,� × a1

�
+ aT

�,�
MM1

)
⋅ u,2

+

(
a�,� × a2

�
+ aT

�,�
MM2

)
⋅ u,1 .

(33a)M =
a3 ⊗ a3

𝜆
,

(33b)M� = [e1 × a� e2 × a� e3 × a�] ,

(34)
�n =

(
(t × a3) × a1

�
+ (t × a3)

TMM1

)
⋅ u,2

−

(
(t × a3) × a2

�
+ (t × a3)

TMM2

)
⋅ u,1.
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Appendix B: Stiffness matrices for a laminate 
in tensor notation

Due to the assumption of orthotropic homogeneous layers, 
each of the � layers is characterized by three orthotropic 
directions. We assume that thickness direction a3 is always 
one of these three. The other two directions, namely the 
longitudinal and transversal direction respect to the fibers, 
depend on the lamination angle of the layer �⟨�⟩ . In the 
orthotropic reference system the stiffness matrix in Voigt 
notation is

where E⟨�⟩
l

 and E⟨�⟩
t  are the Young moduli in the longitudinal 

and transversal directions, �⟨�⟩
lt

 and �⟨�⟩
tl

 are the Poisson ratios, 
and G⟨�⟩

lt
 is the shear modulus, for the �-th layer. It is worth 

mentioning that Eq. (35) takes into consideration also the 
plane stress state hypothesis [93]. To retrieve the case of 
an isotropic material, a single-layer laminate is considered 
where it is assumed E⟨1⟩

l
= E

⟨1⟩
t = E , �⟨1⟩

lt
= �

⟨1⟩
tl

= � , and 
G

⟨1⟩
lt

= E∕(1 + �) , where E and � are the only Young modu-
lus and Poisson ratio for the material under investigation.

To define the equivalent stiffness matrices for the entire 
laminate, the stiffness matrix of each layer is rotated in 
the common orthonormal reference system m1m2 , which 
is defined as 

 through the equation

where the rotation matrix T is the following

The laminate generalized stiffness matrices in the reference 
m1m2 are obtained after a through-the-thickness integration 
as: 

(35)E
⟨�⟩
ort =

⎡⎢⎢⎢⎣

1∕E
⟨�⟩
l

− �
⟨�⟩
lt

∕E
⟨�⟩
l

0

−�
⟨�⟩
tl

∕E
⟨�⟩
t 1∕E

⟨�⟩
t 0

0 0 1∕G
⟨�⟩
lt

⎤⎥⎥⎥⎦

−1

,

(36a)m1 =
a1

|a1|

(36b)m2 =
a2

|a2| ,

(37)E⟨�⟩ = T⟨�⟩E⟨�⟩
ort T

⟨�⟩T ,

(38)

T⟨�⟩ =
⎡⎢⎢⎣

cos2 �⟨�⟩ sin2 �⟨�⟩ − 2 sin �⟨�⟩ cos �
sin2 �⟨�⟩ cos2 �⟨�⟩ 2 sin �⟨�⟩ cos �⟨�⟩

sin �⟨�⟩ cos �⟨�⟩ − sin �⟨�⟩ cos �⟨�⟩ cos2 �⟨�⟩ − sin2 �⟨�⟩

⎤
⎥⎥⎦
.

(39a)Ā =

N
��

�=1
∫

𝜏
⟨�⟩
t

𝜏
⟨�⟩
b

E⟨�⟩d𝜉3 ,

 where �⟨�⟩
b

 and �⟨�⟩t  are the values of �3 at the bottom and 
top surfaces of the �-th layer, respectively, with the thick-
ness of the �-th layer given by �⟨�⟩ = �

⟨�⟩
t − �

⟨�⟩
b

 . These 
constitutive matrices in Voigt notation are used to obtain 
the constitutive tensors. Taking as example the first matrix 
Ā , the associated tensor is obtained through �̄𝛼𝛽𝛾𝛿 = Āab , 
using the correspondences �� ⟷ a and �� ⟷ b , where 
the indices 11, 22, 12, and 21 correspond to 1, 2, 3, and 
3, respectively. Finally, the laminate constitutive tensors in 
the local covariant basis are obtained trough the following 
transformation law:

Appendix C: Kirchhoff–Love fluxes

The covariant and contravariant component of the vector 
t are obtained as t� = t ⋅ a� and t� = t ⋅ a� , respectively. 
The same applies to the vector n . The bending and 
twisting moments are derived from Mnn = M��n�n� and 
Mnt = M��n�t� , respectively. The covariant derivative of 
the moment tensor is obtained as

where Γ�

��
 represents the Christoffel symbols of the second 

kind which are defined as

Recalling Eq. (12), the coordinate derivative of the moment 
tensor is computed as

The derivatives appearing in Eq. (43) are not reported here 
for the sake of conciseness. However, their computation 
through the chain rule is straightforward, albeit somewhat 
laborious. To what regards the second term in Eq. (18b), the 
following relationship holds:

(39b)B̄ =

N
��

�=1
∫

𝜏
⟨�⟩
t

𝜏
⟨�⟩
b

E⟨�⟩𝜉3d𝜉3 ,

(39c)D̄ =

N
��

�=1
∫

𝜏
⟨�⟩
t

𝜏
⟨�⟩
b

E⟨�⟩𝜉2
3
d𝜉3 ,

(39d)C̄ = B̄ ,

(40)
�

𝛼1𝛽1𝛾1𝛿1 =�̄𝛼2𝛽2𝛾2𝛿2 (m𝛼2
⋅ a𝛼1)

(m𝛽2
⋅ a𝛽1)(m𝛾2

⋅ a𝛾1 )(m𝛿2
⋅ a𝛿1).

(41)M
��

|� = M��
,�

+ Γ�
��
M�� + Γ

�

��
M��,

(42)Γ
�

��
= a� ⋅ a�,� .

(43)
M��

,�
= ℂ

����
,�

��� + ℂ
���� ���,� + 𝔻

����
,�

��� + 𝔻
���� ���,�.
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where the notation (∙),t is used to denote the arc-length deriv-
ative along the curve that identifies t . Let us suppose that 
this curve is known in the Euclidean space through a map 
y = y(�) , being � an auxiliary curvilinear direction. Then, 
the tangent unit vector is computed as t = y,�

|y,� | , while its 
derivative with respect to � is

where I is the identity 3 × 3 tensor. The arc-length derivative 
of t is further obtained as

To what regards the normal vector n = t × a3 , its arc-length 
derivative is computed as

However, it is worth noting that when dealing with shells 
coupling, the relative orientation of t , n and a3 may be such 
that n = a3 × t , which implicates a straightfoward adapta-
tion of Eq. (47). The arc-length derivative of a3 is computed 
as (a3),t = a3,� t

� , where, introducing the vector p = a1 × a2 , 
a3,� is obtained as

and p,� is computed through the chain rule. The arc-length 
derivatives of the covariant components of t and n are 
obtained as (t�),t = (t),t ⋅ a� and (n�),t = (n),t ⋅ a� . Finally, the 
arc-length derivative of M�� is obtained as (M��),t = M

��

|� t
�.
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