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Abstract—This article describes a field-based analytical model
of single-sided linear induction motors (SLIMs) that explicitly
considers the following effects altogether: finite motor length,
magnetomotive force mmf space harmonics, slot effect, edge
effect, and tail effect. The derived closed-form solution of the
system’s differential equations makes the model computationally
more efficient than traditional finite elements (f.e.m.) models, and,
therefore, more suitable for SLIM design optimization processes.
The computational performance and accuracy of the proposed
analytical model are validated through numerical simulations (via
COMSOL Multiphysics) and experimental measurements carried
out through a dedicated test bench.

Index Terms—Linear induction motor (LIM), magnetic levita-
tion, magnetic vector potential, modeling, transportation

I. INTRODUCTION

THE electrification of transportation, driven by the need
to reduce reliance on fossil fuels [1], is emphasized

by the increasing number of electric vehicles for low-speed
and short-distance travels [2]. For extended distances, the
magnetic levitation train represents a promising solution to
achieve high commercial speeds (i.e. vm ≥ 100m s−1), and
linear induction motors (LIMs), have been extensively studied
during the 20th century as a promising candidate propulsion
device for levitated vehicles [3]–[8]. Compared to other lin-
ear electric motors, LIMs have several advantages, such as
infrastructure passivity (i.e., reaction rails do not need to be
magnetized nor electrified), construction simplicity, and si-
multaneous contact-less thrust and levitation forces generation
[6]. Proper mathematical models represent thus fundamental
tools for the optimal design of such motors since they allow
to derive LIM configurations that maximize certain metrics
such as lift and thrust density, efficiency, or a combination
of them. However, to the best of the authors’ knowledge, the
literature lacks accurate and computationally efficient models
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of LIMS that are experimentally validated up to high speed
(i.e., vm ≃ 100m s−1). Within this context, this article
proposes a pseudo-three-dimensional field analysis model of
short-primary SLIMs where the system’s governing differ-
ential equations have been analytically solved by imposing
proper modeling assumptions. The proposed analytical model
explicitly considers the following LIM effects altogether:

1) Finite motor length (extremity effect).
2) Finite motor width (edge effect).
3) Winding harmonics.
4) Slots effect.
5) Effect of the electromagnetic fields at the rear of the

motor (hereafter referred to as tail effect).

The proposed model is an extension of the double-sided
LIM (DSLIM) analytical model described in [9], with the main
differences and contributions listed hereafter:

1) Adaptation of the boundary conditions, geometry, and
hypotheses of [9] to comply with the SLIM case study.

2) The DSLIM model proposed in [9] has been improved
in this article by integrating the winding AC resistance
model and the computation of the SLIM efficiency.

3) In addition to thrust and lift, the efficiency calculation
has also been validated through experimental measure-
ments.

The article is structured as follows: Section II describes
the proposed SLIM analytical model, from geometry and
hypotheses definition to the formulation of the magnetic vector
potential differential equations and their solution. Section III
presents the numerical and experimental validation of the
proposed model through a comparison with f.e.m. simulations
and measurements obtained from a custom-made test bench
capable of reaching speeds up to 100m s−1. Section IV
summarizes the proposed SLIM analytical model and the
validation results, and concludes the article.






Fig. 1. Realistic SLIM geometry and reference frame.

II. ANALYTICAL MODEL DESCRIPTION

A. SLIM Model Geometry

Fig. 1 shows the reference frame and the geometry of the
SLIM under analysis. As known, short-primary SLIMs are
usually made of two main parts [10]:

1) A ferromagnetic moving part with the motor’s winding,
usually referred to as ”Primary”.

2) A passive rail installed along the track and composed
of a conductive reaction plate of thickness ϵ (e.g.,
Aluminum) on top of a ferromagnetic plate of thickness
T , usually called ”back iron”.

The space that separates the two parts is called ”air gap”,
and is identified by the symbol δ in Fig. 1. Similarly to [9],
the proposed analytical model refers to the simplified geometry
represented in Fig. 2, where some hypotheses have been made
to simplify the analysis. As can be seen in Fig. 2, the chosen
SLIM winding is a three-phase double-layer winding with
one slot per pole per phase (i.e., NSPP = 1). However,
the proposed analytical model is valid for any type of wind-
ing. The SLIM direction of movement is along the x̂ axis
(negative direction) and the winding conductors are placed
along the ẑ axis only, and so is the magnetic vector potential
A⃗ = Az(x, y)ẑ.

B. Problem Statement

In steady state, the magnetic vector potential Az(x, y) in
the SLIM region satisfies the following differential equation
[11], [12]:

∇2Az(x, y) = µσ

(
jωAz(x, y) + vm

∂Az(x, y)

∂x

)
(1)

where Az(x, y) is the magnetic vector potential ẑ component,
vm is the LIM velocity, µ and σ are the magnetic permeability
and conductivity of the considered medium. For the targeted
motor geometry, (1) is valid in any domain and is solved in
the four different regions represented in Fig. 2 (i.e., Primary,
air gap, reaction rail, and back iron). The model’s results
are expressed in terms of electromagnetic field distributions,
efficiency, and longitudinal and transverse forces at different
slip operating points.

C. Model Hypotheses

1) Primary dimensions along x̂ and ŷ axis are infinite.
2) The back iron has infinite thickness T , infinite magnetic

permeability µfe, and zero electrical conductivity.
3) Air gap δ is uniform, constant, and slot-less throughout

the whole domain.
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Fig. 2. Simplified SLIM geometry

4) The primary winding is represented as a sequence of
infinite wires along the ẑ axis distributed in the air gap,
as shown in Fig. 2. Each wire carries the current nwkI0k
(current expressed in RMS value), where nwk is the
number of turns in the kth conductor.

5) The reaction rail is homogeneous with constant relative
permeability µr = 1, permittivity ϵAl, electrical conduc-
tivity σ, and thickness ϵ.

6) The primary has infinite magnetic permeability µfe

and zero electrical conductivity. As a consequence, iron
saturation is neglected and the superposition principle
can be applied1.

7) The study is performed in steady-state conditions (i.e.
in the frequency domain, with phasors).

D. Source Magnetic Vector Potential

With reference to Fig. 2, hypotheses 4, 6, 7, and inspired by
[9], [12], the input source of the model is represented by the
algebraic sum of the magnetic vector potentials generated by
each conductor in the air gap, in the absence of the primary,
reaction rail and back iron. It is directly derived from the Biot-
Savart law [15]:

As
z(x, y) =

∑
k

−nwkI0kµ0

2
√
2π

ln

(
(x− x0k)

2 + (y − y0k)
2

R2
0k

)
(2)

where the coordinates of the kth conductor’s center, of radius
R0k, are expressed by x0k and y0k. Since the system is linear,
as stated in Hypothesis 6, the solution of (1) in the air gap
is written as the sum of the source magnetic vector potential
As

z(x, y) and the result of the interaction between the SLIM
primary and the reaction rail plus back iron.

E. Solution of the Magnetic Vector Potential

The general solution of (1) is derived through a complex
Fourier series decomposition in the interval x ∈ [−L/2, L/2],
where L is the period of the Fourier series. Similarly to [9],
[12], [16], [17], it has the following form:

Az(x, y) =

∞∑
n=−∞

ejλnx (βne
γny + Γne

−γny) (3)

where λn = 2πn
L , γn =

√
λ2
n + jµσ (ω + vmλn), and ω =

2πfs, with fs being the supply frequency.

1The hypothesis is justified assuming that the iron core is designed such that
the intensity of the magnetic flux density at null speed is below the saturation
level of the considered ferromagnetic material (e.g. between 1.5T and 2.4T
as shown in [13], [14]). At high speed, the intensity of the magnetic flux
density decreases.



Some simplifications are applied to (3) based on the region
where the solution is considered:

1) Primary: according to Hypothesis 6, the electrical con-
ductivity is zero, and hence: γn = |λn|. Moreover,
for y → ∞, Aµz(x, y) → 0, and thus the integration
constant βn has to be 0.

2) Air gap: electrical conductivity is zero, hence: γn =
|λn|. Moreover, as mentioned above, the source mag-
netic vector potential As

z(x, y) has to be added to (3).
3) Reaction rail: the general formulation of (3) is used.
4) Back iron: according to Hypothesis 2, the electrical

conductivity is zero, and hence: γn = |λn|. Moreover,
for y → −∞, ATz(x, y) → 0, and thus the integration
constant Γn has to be 0.

By applying the above-mentioned simplifications to the gen-
eral formulation of (3), the solution of (1) in the four regions
of interest becomes the following:

Aµz(x, y) =
∑
n

ejλnxΓµne
−|λn|y

Aδz(x, y) = As
z(x, y) +

∑
n

ejλnx
(
βδne

|λn|y + Γδne
−|λn|y

)
Aρz(x, y) =

∑
n

ejλnx (βρne
γny + Γρne

−γny)
ATz(x, y) =

∑
n

ejλnxβTne
|λn|y

(4)
The six integration constants are determined by imposing
six boundary conditions at the various interfaces between
materials, as described hereafter.

F. Boundary Conditions Formulation

The following Neumann boundary conditions are applied at
the interface between two media [18]:

1) Continuity of the magnetic flux density normal compo-
nent r̂ ·

(
B⃗1 − B⃗2

)
.

2) Continuity of the magnetic field tangential component
r̂ ×

(
H⃗1 − H⃗2

)
.

Where r̂ is the versor perpendicular to the considered surface.
The above boundary conditions are applied at each material
interface of the SLIM geometry of Fig. 2. The solution is the
same as the one of the DSLIM model described in [9], with the
substitution ϵ/2 → ϵ, since in a SLIM no symmetry is applied
in the middle of the reaction rail (contrary to a DSLIM).

G. Electromagnetic Fields Calculation

Once the magnetic vector potential solution is derived,
the electromagnetic fields can be calculated by recalling the
definition of the magnetic vector potential and Faraday’s law:

B⃗ = ∇× A⃗ E⃗ = −∂A⃗

∂t
(5)

By applying (5) to (4) the distributions of the magnetic flux
density and the electric field are obtained. Of particular interest

are the distributions in the air gap and reaction rail, which are
reported hereafter.

Bδy(x, y) = Bs
y(x, y)− j

∑
n

λne
jλnx

(
βδne

|λn|y + Γδne
−|λn|y

)
Bδx(x, y) = Bs

x(x, y) +
∑
n

|λn|ejλnx
(
βδne

|λn|y − Γδne
−|λn|y

)
Bρy(x, y) = −2j

∑
n

λne
jλnxβρn cosh (γny)

Bρx(x, y) = 2
∑
n

γne
jλnxβρn sinh (γny)

(6)
Eδz(x, y) = −jωAs

z(x, y)− jω
∑
n

ejλnx
(
βδne

|λn|y + Γδne
−|λn|y

)
Eρz(x, y) = −2jω

∑
n

ejλnxβρn cosh (γny)

(7)
The hyperbolic functions in (6) and (7) are introduced as
a consequence of the boundary conditions, where it can be
shown that βρn = Γρn (see [9] for further details).

H. SLIM Forces Calculation

The forces applied by the SLIM primary to the reaction
rail are calculated through the integration of Maxwell’s stress
tensor along the rail surface:

1) Longitudinal force (thrust) along the x̂ axis, Fx.
2) Transverse (or normal) force along the ŷ axis, Fy .

Hence:

Fx = − hm

2µ0

L/2∫
−L/2

ℜ
(
B∗

ρx

(
x,

ϵ

2

)
Bρy

(
x,

ϵ

2

))
dx (8)

Fy =
hm

4µ0

L/2∫
−L/2

(
|Bρy

(
x,

ϵ

2

)
|2 − |Bρx

(
x,

ϵ

2

)
|2
)
dx (9)

where hm is the primary width along the ẑ axis, the ∗ denotes
the complex conjugate, and a factor 1

2 has to be added to
transform the forces from peak to RMS values. By substituting
(6) into (8) and (9) one obtains the final formulation of the
SLIM electromagnetic forces:

Fx = −2Φ
∑
n

ℜ [(βρnγn sinh (ϑn))
∗ (−jλnβρn cosh (ϑn))] (10)

Fy = Φ
∑
n

(
|λnβρn cosh (ϑn)|2 − |γnβρn sinh (ϑn)|2

)
(11)

where Φ = (Lhm/µ0), and ϑn = γnϵ.

I. Primary-to-Rail Complex Power

The electromagnetic power transmitted from the primary
to the reaction rail is computed through the integral of the
Poynitng vector evaluated at the rail surface (i.e., y = ϵ)2:

Pρ =
hm

2

L/2∫
−L/2

E⃗ρ × H⃗∗
ρ dx =

hm

2

L/2∫
−L/2

Eρz (x, ϵ) ·H∗
ρx (x, ϵ) dx

(12)

2The rail surface has been chosen for the evaluation of Pρ to capture the
mechanical power transmitted to rail plus the Joule losses dissipated in it.
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Fig. 3. Double-layer distributed winding pattern (a), coil geometry (b), and
slot detail (c) for the SLIM of Table I

By substituting (6) and (7) into (12) and after some simplifi-
cations, one obtains the following expression for the Poynitng
vector:

Pρ = −2jωΦ
∑
n

βρn cosh (ϑn) (γnβρn sinh (ϑn))
∗ (13)

J. SLIM Efficiency Calculation

According to Hypotheses 2 and 6, core and back iron losses
have been neglected. Therefore, the SLIM efficiency may be
computed as follows:

η =
vmFx

ℜ{Pρ}+ Pjs
(14)

where Pjs are the Joule losses due to the windings Pjs =
3RphI

2, and Rph is the winding AC phase resistance. For the
double-layer distributed winding shown in Fig. 3a, Rph can be
calculated as follows:

Rph = KsRDC = Ks

(
2p NSPP

ρwNlw
NpSw

)
(15)

where RDC is the winding DC resistance, Ks is the skin
effect resistance factor, p is the number of pole pairs, ρw the
resistivity of the conductor, N the number of turns per coil,
Sw the wire cross-section, Np the number of conductors in
parallel, and lw the average length of a coil turn, approximated
by:

lw = 2(hm +
τs

cos ζ
) (16)

where τs is the coil span, and ζ is the angle between the end
winding and the primary, as illustrated in Fig. 3b. The skin
effect resistance factor Ks has been derived from [14] for the
case of a slot filled with rectangular conductors of side dw, as
shown in Fig. 3c.

Ks = ξ
sinh (2ξ) + sin (2ξ)

cosh (2ξ)− cos (2ξ)
+

2ξ
(
N2

y − 1
)
(sinh (ξ)− sin (ξ))

3 (cosh (ξ) + cos (ξ))
(17)

And:

ξ = dw

√
1

2ρw
ωµ0

Nxdw
bn

(18)

where bn is the slot width.

K. Hypotheses Compensation

The simplifications introduced by some of the hypotheses
have been compensated in the same way described in [9]. For
the sake of clarity, they are summarized hereafter.

1) Slot-Less Air Gap Compensation: Hypothesis 3 states
that the air gap is uniform throughout the Fourier series period
and does not have slots. To compensate for the assumption, a
correction of the air gap through Carter’s coefficient is done
[6], [19]. With reference to [14], [20], the equivalent slotted
air gap δe is derived as:

δe =
τp

τp − kbn
δ (19)

where τp is the LIM pole pitch. The coefficient k is derived
from [14]:

k =
2

π

arctan( bn
2δ

)
− 2δ

bn
ln

√
1 +

(
bn
2δ

)2
 (20)

2) Edge Effect Compensation: The proposed analytical
model is bi-dimensional. However, a correction of the reac-
tion rail electrical conductivity, reflecting the motor’s finite
width (i.e., the edge effect), is derived through the Russel-
Norsworthy coefficient [21].

Kρ = 1− tanh (χ)

χ
(
1 + tanh (χ) tanh

(
π
τp

(
hr−hm

2

))) (21)

where hr is the reaction rail width along the ẑ axis, and
χ = (πhm)/(2τp). Hence, the equivalent reaction rail electrical
conductivity σe can be calculated as:

σe = Kρσ (22)

3) Uniform and Constant Air Gap Compensation: Hy-
potheses 1 and 3 state that the SLIM air gap is constant and
uniform throughout the whole Fourier series period. This effect
has been called the ”tail effect” and leads to an overestimation
of the forces developed by the SLIM. To compensate for this
effect, the forces developed by the rear section of the LIM
only (i.e., tail) are computed by evaluating the integrals (8)
and (9) in the interval x ∈ [lmot/2, L/2], where lmot is the
length of the primary. Thanks to the linearity of the model,
the obtained forces are then subtracted from the thrust and lift
calculated through (10) and (11).

III. MODEL VALIDATION

The validity and accuracy of the proposed SLIM analytical
model have been assessed through both f.e.m. simulations and
measurements obtained from a dedicated test bench. The SLIM
used in the validation is half of the double-sided LIM used in
[9], and its geometry is reported in Table I.

A. SLIM Test Bench
The test bench used in [9] to experimentally validate the

DSLIM has been assembled in a SLIM configuration. In this
respect, the 2mm-thick AW-5005 aluminum rail is joined with
a 3mm-thick DC01 back iron. Fig. 4 shows the test bench.

B. F.e.m. Model
To numerically validate the proposed SLIM analytical

model, a 2D f.e.m. model has been built in COMSOL Multi-
physics through the magnetic field (mf) interface of the AC/DC
module [22]. Details of the COMSOL model are reported in
[9].



Fig. 4. Picture of the SLIM test bench

TABLE I
SLIM REFERENCE GEOMETRY.

Parameter Symbol Value

Pole pitch τp 0.045m
Number of pole pairs p 3
Number of phases m 3
Rail thickness ϵ 2mm
Nominal air gap δn 5mm
Number of slot/pole/phase NSPP 1
Number of turns per coil N 15
Number of conductors in parallel Np 2
Number of conductors along the x̂ axis Nx 4
Number of conductors along the ŷ axis Ny 8
Conductor diameter dw 1.12mm
Supply nominal current I 15Arms
Motor width hm 0.04m
Slot width bn 8mm
Motor length lmot 35 cm

C. Key Performance Indicators

The comparison between the proposed model, the COMSOL
f.e.m. model, and the experimental measurements is performed
by comparing thrust and lift forces at different operating
points. The same KPIs as [9] are used. They are reported
hereafter for the sake of clarity:

• Maximum error to capture the highest difference between
the forces computed by the proposed LIM model vs the
f.e.m. benchmark.

• RMS error to quantify the average quality of the forces
computed by the proposed LIM model vs the f.e.m.
benchmark.

D. Numerical Validation Via COMSOL

The thrust and lift comparisons between the proposed SLIM
analytical model and the f.e.m. are shown in Fig. 5, whereas
Fig. 7 shows the maximum and RMS errors for each simulated

characteristic. As can be noticed, the proposed analytical
model exhibits excellent accuracy and one can further notice
the following:

• Both Maximum and RMS errors are bounded in each
simulation.

• RMSE, which represents the most relevant metric to
assess the model’s accuracy, is bounded to less than 3%
and 1% for lift and thrust respectively.

• The maximum error is bounded to 4.5% and 2% for lift
and thrust respectively.

Furthermore, the greatest advantage of the proposed analytical
model is its higher computation efficiency compared to f.e.m.
models, as reported in Table II, which makes the model
suitable to be coupled with optimization frameworks for the
design phase of SLIMs, whereas, an f.e.m.-based optimization
would take too much time and thus be impractical.

E. Experimental Validation

The comparisons between simulated and measured thrust
and lift are shown in Fig. 6, whereas Fig. 8 shows the com-
parison between the simulated and measured efficiency. The
shaded areas in Fig. 6 represent the air gap interval, centered
around the nominal value, that has been used in the simulations
to account for the air gap variations due to the test bench disk
irregularities (i.e., δ = δn ± 0.5mm) [9]. As can be noticed,
the proposed analytical model exhibits excellent accuracy
compared to the experimental data. It is worth noticing that, as
expected, the simulated efficiency is overestimated due to the
absence of core and back iron losses in the analytical model,
with the RMSE bounded to 3.3%.

TABLE II
COMPARISON OF THE COMPUTATION TIMES FOR A DIFFERENT NUMBER

OF SUPPLY FREQUENCIES.

Simulation type Analytical COMSOL

Single supply frequency ≃ 3.5 s ≃ 0.5h
Full characteristic (15 frequencies) ≃ 25 s ≃ 3h

IV. CONCLUSIONS

The article proposes a quasi-three-dimensional model of
a SLIM, obtained through a Fourier series decomposition
method, whose derivation has been described in detail. The
model’s results have been validated through both numerical
simulations, obtained through COMSOL f.e.m. models, and
experimental results, obtained with a dedicated test bench.
The proposed model explicitly takes into account the main
characteristics of SLIMs, it is computationally efficient and
very accurate up to high speed (i.e, vm ≃ 100m s−1). The
comparison of simulated thrust and lift with COMSOL f.e.m.
models has shown that maximum and RMS errors are always
bounded and that RMS error is below 3% and 1% for lift
and thrust respectively. Moreover, the experimental results
confirmed the accuracy of the proposed model throughout
the whole speed range of interest. The efficiency calculation,



Fig. 5. Longitudinal force Fx and normal force Fy comparisons between analytical model and COMSOL f.e.m. simulations.

Fig. 6. Longitudinal force Fx and normal force Fy comparisons between measurements (dots) and the proposed analytical model (solid) with δn = 5mm.
The shaded areas represent the air gap interval used in the simulations.

Fig. 7. Maximum and RMS errors between the analytical model and
COMSOL f.e.m. simulations.

although overestimated due to the absence of core and back
iron losses in the model, proves to be very accurate in
comparison with the measurements, with the RMSE bounded
to 3.3%. Finally, the high computation efficiency, compared to
f.e.m. models, is the greatest advantage of the proposed model,

Fig. 8. Efficiency comparison between measurements (dots) and the proposed
analytical model (solid).

which makes it possible to be integrated into design-oriented
optimization processes.
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