Résumé

During the past two decades, a number of two-terminal switching devices have been demonstrated in the literature. They typically exhibit hysteric behavior in the current-to-voltage characteristics. These devices have often been also referred to as memristive devices. Their capacity to switch and exhibit electrical hysteresis has made them well-suited for applications such as data storage, in-memory computing, and in-sensor computing or in-memory sensing. The aim of this perspective paper is to is twofold. Firstly, it seeks to provide a comprehensive examination of the existing research findings in the field and engage in a critical discussion regarding the potential for the development of new non-Von-Neumann computing machines that can seamlessly integrate sensing and computing within memory units. Secondly, this paper aims to demonstrate the practical application of such an innovative approach in the realm of cancer medicine. Specifically, it explores the modern concept of employing multiple cancer markers simultaneously to enhance the efficiency of diagnostic processes in cancer medicine.

Détails